Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Increasing rule extraction accuracy by post-processing GP trees
School of Business and Informatics, University of Borås, Sweden.
School of Business and Informatics, University of Borås, Sweden.
School of Business and Informatics, University of Borås, Sweden.
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Skövde Cognition and Artificial Intelligence Lab (SCAI))
2008 (engelsk)Inngår i: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), IEEE, 2008, s. 3005-3010Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Genetic programming (GP), is a very general and efficient technique, often capable of outperforming more specialized techniques on a variety of tasks. In this paper, we suggest a straightforward novel algorithm for post-processing of GP classification trees. The algorithm iteratively, one node at a time, searches for possible modifications that would result in higher accuracy. More specifically, the algorithm for each split evaluates every possible constant value and chooses the best. With this design, the post-processing algorithm can only increase training accuracy, never decrease it. In this study, we apply the suggested algorithm to GP trees, extracted from neural network ensembles. Experimentation, using 22 UCI datasets, shows that the post-processing results in higher test set accuracies on a large majority of datasets. As a matter of fact, for two setups of three evaluated, the increase in accuracy is statistically significant.

sted, utgiver, år, opplag, sider
IEEE, 2008. s. 3005-3010
Serie
IEEE Transactions on Evolutionary Computation, ISSN 1089-778X, E-ISSN 1941-0026
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-3612DOI: 10.1109/CEC.2008.4631203ISI: 000263406501201Scopus ID: 2-s2.0-55749096880ISBN: 978-1-4244-1823-7 (digital)ISBN: 978-1-4244-1822-0 (tryckt)OAI: oai:DiVA.org:his-3612DiVA, id: diva2:291121
Konferanse
2008 IEEE Congress on Evolutionary Computation, CEC 2008, Hong Kong, China, 1-6 June 2008
Merknad

© 2008 IEEE

Tilgjengelig fra: 2010-01-29 Laget: 2010-01-29 Sist oppdatert: 2021-03-02bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopusFulltext (DiVA Högskolan i Borås)

Person

Niklasson, Lars

Søk i DiVA

Av forfatter/redaktør
Niklasson, Lars
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 518 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf