his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Prediction of Protein Mutations Using Artificial Neural Networks
Högskolan i Skövde, Institutionen för datavetenskap.
1999 (engelsk)Independent thesis Advanced level (degree of Master (One Year))Oppgave
Abstract [en]

This thesis is concerned with the prediction of protein mutations using artificial neural networks. From the biological perspective it is of interest to investigate weather it is possible to find rules of mutation between evolutionary adjacent (or closely related) proteins. Techniques from computer science are used in order to see if it is possible to predict protein mutations i.e. using artificial neural networks. The computer science perspective of this work would be to try optimizing the results from the neural networks. However, the focus of this thesis is primarily on the biological perspective and the performance of the computer science methods are secondary objective i.e. the primary interest is to show the existence of rules for protein mutations.

The method used in this thesis consists two neural networks. One network is used to predict the actual protein mutations and the other network is used to make a compressed representation of each amino acid. By using a compression network it is possible to make the prediction network much smaller (each amino acid is represented by 3 nodes instead of 22 nodes). The compression network is an auto associative network and the prediction network is a standard feed-forward network. The prediction network predicts a block of amino acids at a time and for comparison a sliding window technique has also been tested.

It is my belief that the results in this thesis indicate that there exists rules for protein mutations. However, the tests done in this thesis is only performed on a small portion of all proteins. Some protein families tested show really good results while other families are not as good. I believe that extended work using optimized neural networks would improve the predictions further.

sted, utgiver, år, opplag, sider
Skövde: Institutionen för datavetenskap , 1999. , s. 73
Emneord [en]
bioinformatics prediction protein mutation ANN
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-400OAI: oai:DiVA.org:his-400DiVA, id: diva2:2771
Presentation
(engelsk)
Uppsök
Social and Behavioural Science, Law
Veileder
Tilgjengelig fra: 2007-12-19 Laget: 2007-12-19 Sist oppdatert: 2018-01-12

Open Access i DiVA

fulltekst(1734 kB)275 nedlastinger
Filinformasjon
Fil FULLTEXT01.psFilstørrelse 1734 kBChecksum SHA-1
77f8b5a660513fdee39bec8469140d2c73a3a43763f0817295e15d21887484b0026fe4a2
Type fulltextMimetype application/postscript
fulltekst(214 kB)455 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 214 kBChecksum SHA-512
9ac62bc9a591fc37273f84f975bce4b622b296059c740c588e89a827a2df1f9b5ecf2194bf5164cd8cf614e14f53935a47a79719bddc60deec89ff3632b168de
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 730 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 266 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf