Endometrial adenocarcinoma (EAC) is the fourth leading cause of carcinoma in woman worldwide, but not much is known about genetic factors involved in this complex disease. During the EAC process, it is well known that losses and gains of chromosomal regions do not occur completely at random, but partly through some flow of causality. In this work, we used three different algorithms based on frequency of genomic alterations to construct 27 tree models of oncogenesis. So far, no study about applying pathway models to microsatellite marker data had been reported. Data from genome–wide scans with microsatellite markers were classified into 9 data sets, according to two biological approaches (solid tumor cell and corresponding tissue culture) and three different genetic backgrounds provided by intercrossing the susceptible rat BDII strain and two normal rat strains. Compared to previous study, similar conclusions were drawn from tree models that three main important regions (I, II and III) and two subordinate regions (IV and V) are likely to be involved in EAC development. Further information about these regions such as their likely order and relationships was produced by the tree models. A high consistency in tree models and the relationship among p19, Tp53 and Tp53 inducible
protein genes provided supportive evidence for the reliability of results.