Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Post-processing Evolved Decision Trees
School of Business and Informatics, University of Borås, Borås, Sweden.
School of Business and Informatics, University of Borås, Borås, Sweden.
School of Business and Informatics, University of Borås, Borås, Sweden.
School of Business and Informatics, University of Borås, Borås, Sweden.
Vise andre og tillknytning
2009 (engelsk)Inngår i: Studies in Computational Intelligence, ISSN 1860-949X, E-ISSN 1860-9503, Vol. 204, s. 149-164Artikkel i tidsskrift (Annet vitenskapelig) Published
Abstract [en]

Although Genetic Programming (GP) is a very general technique, it is also quite powerful. As a matter of fact, GP has often been shown to outperform more specialized techniques on a variety of tasks. In data mining, GP has successfully been applied to most major tasks; e.g. classification, regression and clustering. In this chapter, we introduce, describe and evaluate a straightforward novel algorithm for post-processing genetically evolved decision trees. The algorithm works by iteratively, one node at a time, search for possible modifications that will result in higher accuracy. More specifically, the algorithm, for each interior test, evaluates every possible split for the current attribute and chooses the best. With this design, the post-processing algorithm can only increase training accuracy, never decrease it. In the experiments, the suggested algorithm is applied to GP decision trees, either induced directly from datasets, or extracted from neural network ensembles. The experimentation, using 22 UCI datasets, shows that the suggested post-processing technique results in higher test set accuracies on a large majority of the datasets. As a matter of fact, the increase in test accuracy is statistically significant for one of the four evaluated setups, and substantial on two out of the other three.

sted, utgiver, år, opplag, sider
Springer Berlin/Heidelberg, 2009. Vol. 204, s. 149-164
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-3210DOI: 10.1007/978-3-642-01088-0_7Scopus ID: 2-s2.0-65549119359ISBN: 978-3-642-01087-3 OAI: oai:DiVA.org:his-3210DiVA, id: diva2:225373
Merknad

978-3-642-01087-3 (Print)

978-3-642-01088-0 (Online)

Foundations of Computational Intelligence Volume 4: Bio-Inspired Data Mining: Theoretical Foundations and Applications

edited by Ajith Abraham, Aboul-Ella Hassanien, André Ponce de Leon F. Carvalho

Studies in Computational Intelligence Volume 204

1860-9503

1860-949X

Tilgjengelig fra: 2009-06-26 Laget: 2009-06-26 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Niklasson, Lars

Søk i DiVA

Av forfatter/redaktør
Niklasson, Lars
Av organisasjonen
I samme tidsskrift
Studies in Computational Intelligence

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 546 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf