Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluating large language models’ capability to generate algorithmic code using prompt engineering
Högskolan i Skövde, Institutionen för informationsteknologi.
Högskolan i Skövde, Institutionen för informationsteknologi.
Högskolan i Skövde, Institutionen för informationsteknologi.
2024 (engelsk)Independent thesis Basic level (degree of Bachelor), 20 poäng / 30 hpOppgave
Abstract [en]

The study evaluated the performance of large language models (LLMs) such as Gemini, ChatGPT- 4, and GitHub Copilot in generating C++ algorithms for specific tasks using different prompting techniques. The central aim was to assess the effectiveness of these models in creating code solutions that are both functionally correct and complete, using a combination of automated unit tests and human evaluation. Across two main tasks (Social Network and Huffman Encoding), the models showed different levels of success in generating functionally correct code. Github Copilot and ChatGPT-4 generally produced more syntactically accurate and functionally appropriate code than Gemini, There was a notable variation in completeness, whether the code met all the tasks’ specified requirements. Some models managed to include all necessary functionalities more consistently than others. Gemini, for instance, excelled in generating complete solutions for the Social Network task but had issues with the Huffman Encoding task, where its output often did not integrate the provided code effectively or correctly. 

sted, utgiver, år, opplag, sider
2024. , s. 3, 42, xv
Emneord [en]
LLM, large language model, ChatGPT, Gemini, Github Copilot, prompt engineering, algorithm
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-24285OAI: oai:DiVA.org:his-24285DiVA, id: diva2:1883138
Fag / kurs
Informationsteknologi
Utdanningsprogram
Computer Science - Specialization in Systems Development
Veileder
Examiner
Tilgjengelig fra: 2024-07-09 Laget: 2024-07-09 Sist oppdatert: 2024-07-09bibliografisk kontrollert

Open Access i DiVA

fulltext(1324 kB)242 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1324 kBChecksum SHA-512
ca05f209d8b06cf402baf01f41bda8bb96b4bab8275dd0db6f413c7bcac04196d06eaf0712dffcc06145ffd0f2ca07642b7f0d50a9c14d0ee13cc7aa1825be5b
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 242 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 615 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf