Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Multivariate time series prediction for endpoint prediction of temperature, phosphorus, and carbon in the basic oxygen furnace
Högskolan i Skövde, Institutionen för informationsteknologi.
2024 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

To forecast the endpoint of the Basic Oxygen Furnace (BOF) process in steelmaking, we have employed deep learning techniques. However, our project faces limitations due to insufficient data, leaving key influencing factors undisclosed at the process's conclusion. The BOF process is intricate and multi-targeted, primarily managed manually by operators. It involves converting a blend of pig iron and recycled scrap into low-carbon steel. Our strategy involves deploying a joint neural network and comparing it against a static model to evaluate whether incorporating sequential data enhances predictive precision. Trained deep learning models exhibit proficiency in accurately predicting temperature, carbon, and phosphorus within predefined limits. We did SHAP analysis for finding the influential factors for target variables. Leveraging a comprehensive dataset, we conducted predictions on these target variables. One model relies solely on static data, while the other is a joint model integrating static and sparse sequential data. Surprisingly, the accuracy of the static model surpasses the joint model, with R2 scores of 0.92 for phosphorous, 0.79 for temperature, and 0.71 for carbon compared to lower R2 scores for the joint model, indicating that richer data can indeed enhance predictions in the BOF process. 

sted, utgiver, år, opplag, sider
2024. , s. 23
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-24248OAI: oai:DiVA.org:his-24248DiVA, id: diva2:1882803
Fag / kurs
Informationsteknologi
Utdanningsprogram
Data Science - Master’s Programme
Veileder
Examiner
Tilgjengelig fra: 2024-07-08 Laget: 2024-07-08 Sist oppdatert: 2024-07-08bibliografisk kontrollert

Open Access i DiVA

fulltext(750 kB)118 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 750 kBChecksum SHA-512
b420b07642625fc595b60eff0ede6039a08c36734ecf41081855fb9545964eb5a88626be61aac2499da04cdd0d783c6f36054767bad874aeff7c459d6069a3bb
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 118 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 613 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf