Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Segmentation and dynamic expansion of IDS rulesets
Högskolan i Skövde, Institutionen för informationsteknologi.
2024 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

This research explores an innovative approach to managing extensive rulesets in Host Intrusion Detection Systems (HIDS) through segmentation and dynamic expansion. Drawing upon the MITRE ATT&CK framework, the methodology categorizes rulesets into initial detection, choke point detection, and advanced detection, streamlines threat detection, and optimizes resource utilization. The segmentation allows for targeted detection of potential threats, while dynamic expansion enables the addition of advanced detection rules based on attacker actions. The study evaluates the effectiveness of this approach in reducing performance overhead and improving threat detection capabilities. Test cases validate the approach for detecting multi-stage attacks and optimizing system performance. Results indicate that while the segmentation and dynamic expansion technique offers structured threat detection, challenges such as missed detections and complexity in rule management exist. Future research directions include refining segmentation processes and enhancing rule categorization logic. Overall, this research contributes to the advancement of HIDS methodologies and underscores the importance of ongoing refinement and validation in cybersecurity strategies.

sted, utgiver, år, opplag, sider
2024. , s. iv, 65
Emneord [en]
Intrusion detection systems, rule management, MITRE ATT&CK framework, segmentation, dynamic expansion, system performance
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-23959OAI: oai:DiVA.org:his-23959DiVA, id: diva2:1871525
Eksternt samarbeid
Ericsson AB
Fag / kurs
Informationsteknologi
Utdanningsprogram
Privacy, Information and Cyber Security - Master's Programme 120 ECTS
Veileder
Examiner
Tilgjengelig fra: 2024-06-17 Laget: 2024-06-17 Sist oppdatert: 2024-06-17bibliografisk kontrollert

Open Access i DiVA

fulltext(2235 kB)140 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2235 kBChecksum SHA-512
dd4f216f244c46969a6fb0f16c47932227cac6c517f1fbd8e01b8d5bdeb05ef37b20558341ee007f5848d105541ff54425b9260997064b17605833b3a1a9f2d9
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 140 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 487 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf