Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluation of static driving posture predictions for trucks
Högskolan i Skövde, Institutionen för ingenjörsvetenskap.
Högskolan i Skövde, Institutionen för ingenjörsvetenskap.
2023 (engelsk)Independent thesis Basic level (degree of Bachelor), 20 poäng / 30 hpOppgave
Abstract [sv]

The project aims to validate and assess different methods for predicting driving posture in trucks using a physical truck cabin as well as a digital version of the truck cabin in the form of CAD geometries. Two prediction methods, statistical and IPS IMMA simulation, were employed. By doing a User Test, measurements in the physical truck cabin were obtained for at least one of the four key analysis points, the position of the Steering Wheel. In both prediction methods, the statistical and IPS IMMA simulation, the location of the Steering Wheel, H-Point, Hip Center and Eye Point were obtained. 

Some similarities exist between the results of the two prediction methods and the User Test. Some of the most relevant conclusions drawn from the results obtained were that regarding the Steering Wheel position the statistical prediction better predicted the distances above accelerator heel point and IPS IMMA simulation better predicted the distance aft to accelerator heel point, in both predictions, it can be seen that there wasa direct relationship between the anthropometric measurements of the subjects and the position of the steering wheel, but in the User Test this did not occur. To conclude, the results from this project work indicates that the statistical prediction gives better results, since they were more in line to reality. However, both prediction methods have improvement potential that could be studied in future projects.

sted, utgiver, år, opplag, sider
2023. , s. vii, 78
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-22869OAI: oai:DiVA.org:his-22869DiVA, id: diva2:1776920
Fag / kurs
Product Design Engineering
Veileder
Examiner
Merknad

Utbytesstudenter Eerasmus

Tilgjengelig fra: 2023-06-28 Laget: 2023-06-28 Sist oppdatert: 2023-06-28bibliografisk kontrollert

Open Access i DiVA

fulltext(3866 kB)239 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3866 kBChecksum SHA-512
ce4532b0e70f0e06a45947965c9ba642e58c5beb82d58adb6f7c1730c6ed81260d48f5129da2d2ff656fa4158c7457a7f4c45224de3256e219bed96935f7c301
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 239 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 147 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf