Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Using Transcriptomic Data to Predict Biomarkers for Subtyping of Lung Cancer
Högskolan i Skövde, Institutionen för biovetenskap.
2021 (engelsk)Independent thesis Advanced level (degree of Master (One Year)), 20 poäng / 30 hpOppgave
Abstract [en]

Lung cancer is one the most dangerous types of all cancer. Several studies have explored the use of machine learning methods to predict and diagnose this cancer. This study explored the potential of decision tree (DT) and random forest (RF) classification models, in the context of a small transcriptome dataset for outcome prediction of different subtypes on lung cancer. In the study we compared the three subtypes; adenocarcinomas (AC), small cell lung cancer (SCLC) and squamous cell carcinomas (SCC) with normal lung tissue by applying the two machine learning methods from caret R package. The DT and RF model and their validation showed different results for each subtype of the lung cancer data. The DT found more features and validated them with better metrics. Analysis of the biological relevance was focused on the identified features for each of the subtypes AC, SCLC and SCC. The DT presented a detailed insight into the biological data which was essential by classifying it as a biomarker. The identified features from this research may serve as potential candidate genes which could be explored further to confirm their role in corresponding lung cancer types and contribute to targeted diagnostics of different subtypes. 

sted, utgiver, år, opplag, sider
2021. , s. 39
Emneord [en]
lung cancer, decision tree, random forest, accuracy, cross-validation, machine learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-21598OAI: oai:DiVA.org:his-21598DiVA, id: diva2:1682705
Fag / kurs
Bioinformatics
Utdanningsprogram
Bioinformatics - Master’s Programme
Veileder
Examiner
Tilgjengelig fra: 2022-07-11 Laget: 2022-07-11 Sist oppdatert: 2022-07-15bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 190 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf