Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Identifying prognostic biomarkers for severe sepsis disease and 28 days mortality
Högskolan i Skövde, Institutionen för biovetenskap.
2022 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 30 poäng / 45 hpOppgave
Abstract [en]

Sepsis is a complex, deadly, and difficult-to-diagnose disease characterized by anomalies in numerous life-threatening organ failures caused by an improper host response to an infecting organism such as bacteria, fungi, or viruses. Patient characteristics such as age and immunologic state, infection factors, and environmental factors such as nutritional status affect sepsis prognosis and make it difficult and a common cause of mortality. This project aimed to identifysepsis prognostic biomarkers by identifying significantly differentially expressed biomarkers across patient groups, then developing and evaluating a classification model that can help predict patients' prognosis. The project used input data consisting of 368 protein measurementsrepresented as Normalized Protein expression. These data have been preprocessed, split, and analyzed using the Wilcoxon rank-sum test to identify the significantly expressed biomarkers in each patient's subgroup, one in the ICU admission and six in the non-survived subgroups. These significantly expressed biomarkers were Volcano plotted, then integrated into different supervised and unsupervised multivariate statistical models. The best prognosis models for ICU admission were the KNN models based solely on either procalcitonin or C-reactive protein with AUCs of 1.00 (95% Cl: 1.00-1.00). The best prognosis model for the 28 days mortality was the KNN model of the tenascin-C with an AUC of 1.00 (95% Cl: 1.00-1.00). However, further studies are suggested using a larger sample size in order to lessen the likelihood of bias. Some of the identified significantly expressed biomarkers, procalcitonin, and CRP, could generate KNN models with high AUC that can be used to prognosis the ICU admission or the 28 days of mortality due to sepsis. 

sted, utgiver, år, opplag, sider
2022. , s. 69
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-21573OAI: oai:DiVA.org:his-21573DiVA, id: diva2:1681290
Fag / kurs
Systems Biology
Utdanningsprogram
Molecular Biotechnology - Master's Programme, 120 ECTS
Veileder
Examiner
Tilgjengelig fra: 2022-07-06 Laget: 2022-07-06 Sist oppdatert: 2022-07-06bibliografisk kontrollert

Open Access i DiVA

fulltext(1436 kB)353 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1436 kBChecksum SHA-512
4a67737c87c7fe6aaa73b84a070509ec553a3afdc9345ea1d72ab16cb977e2fc107855255f11b8c0f2203fb2e49eb2e1eecc04d0be73f93d4ac6b92e43435ac6
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 353 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 285 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf