Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
NPOCR – Needle Printer Character Recognition: Deep learning-based image ID recognition
Högskolan i Skövde, Institutionen för informationsteknologi.
2022 (engelsk)Independent thesis Advanced level (degree of Master (One Year)), 10 poäng / 15 hpOppgave
Abstract [en]

Tagging or marking goods is essential for the warehouses, quality assurance, or the automatization of industrial processes. Serial numbers are embedded into RFID tags, encoded into a QR Code, and usually processed by a camera or laser scanner. There are industries, however, where these traditional methods donot satisfy the requirements and alternatives are desired. This paper focuses on the feasibility of using deep learning technology to read serial numbers from a steel bar which was printed with English characters by a needle printer.

The detection and recognition of text is a well-studied computer vision field also known as optical character recognition (OCR). In this work, we demonstrate that existing OCR methods are unable to solve the posed task without additional training of the deep learning models. This work divides the problem into three individual sub-problems and approaches all three of them by using deep learning technologies. The given dataset was analyzed and divided into training and validation sets for each individual problem, while a part of the entire dataset was reserved for the final system evaluation. After selecting the best model for each subproblem, the resulting system could achieve a serial number accuracy of 90.4 percent and a false positive rate of zero percent. This work has shown that deep learning technologies can be used to read serial numbers, but it is essential to include a checksum to be able to verify a prediction.

sted, utgiver, år, opplag, sider
2022. , s. 43
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-21537OAI: oai:DiVA.org:his-21537DiVA, id: diva2:1680036
Eksternt samarbeid
Ovako
Fag / kurs
Informationsteknologi
Utdanningsprogram
Data Science - Master’s Programme
Veileder
Examiner
Merknad

Det finns övrigt digitalt material (t.ex. film-, bild- eller ljudfiler) eller modeller/artefakter tillhörande examensarbetet som ska skickas till arkivet.

Tilgjengelig fra: 2022-07-03 Laget: 2022-07-03 Sist oppdatert: 2023-07-10bibliografisk kontrollert

Open Access i DiVA

fulltext(2315 kB)319 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2315 kBChecksum SHA-512
8cc95594202af37f8a7403ac8a39ff77fba07a321702353bbf79d382737592070f047e6c654891666f16ed405b1016f49652d07ddf5e7b71b19a543260fe7cf9
Type fulltextMimetype application/pdf
programvara(3097 kB)0 nedlastinger
Filinformasjon
Fil SOFTWARE01.zipFilstørrelse 3097 kBChecksum SHA-512
16de19c274e1225dd779067d7766a2bfa8318f84c160b045509445d36c3b0df931eb4f40487a8db4801647bac59e7e937113e61ce7a80d32f5620aea871b15fc
Type softwareMimetype application/zip

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 319 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 422 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf