Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Content extraction from marketing flyers
Högskolan i Skövde, Institutionen för informationsteknologi.
2022 (engelsk)Independent thesis Advanced level (degree of Master (One Year)), 10 poäng / 15 hpOppgave
Abstract [en]

Shops, supermarkets, and real estate dealers use marketing flyers in abundance to advertise the weekly and seasonal offers these days. The information available in such flyers is a good source marketing study. However, this information is not recorded in any central repository for future usage. This work focuses on the feasibility of using deep learning technology to detect objects from marketing flyers. The detection and recognition of objects from media files such as images is a prominent computer vision domain. Although previous investigations have used two-stage object detection techniques to solve the problem using models like Faster R-CNN, this work experiments with the usage of the state-of-the-art single-stage object detecting method YOLO in the object detection from marketing flyers. The work utilizes different training techniques of the YOLO algorithm and identifies the best one to use for detecting objects from marketing flyers.

Transfer learning and custom object training are the two methods of training YOLO. Transfer learning uses the pre-trained knowledge, while custom training is done with two different methodologies. One is by using a pre-annotated dataset like google open images. Another option is to collect representative data and manually annotate the object's position in it. Custom training with manual annotation achieved a mean average precision MAP of 98.56%. Hence it shows that single-stage object detection can be used to detect and classify objects from flyers provided to have representative datasets for training the model.

sted, utgiver, år, opplag, sider
2022. , s. 2, 22
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-21536OAI: oai:DiVA.org:his-21536DiVA, id: diva2:1680034
Fag / kurs
Informationsteknologi
Utdanningsprogram
Data Science - Master’s Programme
Veileder
Examiner
Tilgjengelig fra: 2022-07-02 Laget: 2022-07-02 Sist oppdatert: 2022-07-07bibliografisk kontrollert

Open Access i DiVA

fulltext(1015 kB)1172 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 1015 kBChecksum SHA-512
27508041f160df544b924a7dcca425050916f26363ae62660c50952f231cdd9490a6831a359e96b0fa4238c1b015fd297ec4ea116d7928db50c5e52253805ebb
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 1173 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 515 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf