Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluating the effects of hyperparameter optimization in VizDoom
Högskolan i Skövde, Institutionen för informationsteknologi.
Högskolan i Skövde, Institutionen för informationsteknologi.
Högskolan i Skövde, Institutionen för informationsteknologi.
2022 (engelsk)Independent thesis Basic level (degree of Bachelor), 20 poäng / 30 hpOppgave
Abstract [en]

Reinforcement learning is a machine learning technique in which an artificial intelligence agent is guided by positive and negative rewards to learn strategies. To guide the agent’s behavior in addition to the reward are its hyperparameters. These values control how the agent learns. These hyperparameters are rarely disclosed in contemporary research, making it hard to estimate the value of optimizing these hyperparameters.

This study aims to partly compare three different popular reinforcement learning algorithms, Proximal Policy Optimization (PPO), Advantage Actor-Critic (A2C) and Deep Q Network (DQN), and partly investigate the effects of hyperparameter optimization of several hyperparameters for each algorithm.

All the included algorithms showed a significant difference after hyperparameter optimization, resulting in higher performance. A2C showed the largest performance increase after hyperparameter optimization, and PPO performed the best of the three algorithms both with default and optimized hyperparameters.

sted, utgiver, år, opplag, sider
2022. , s. 5, 51, xii
Emneord [en]
Vizdoom, reinforcement learning, hyperparameter optimization
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-21533OAI: oai:DiVA.org:his-21533DiVA, id: diva2:1679888
Fag / kurs
Informationsteknologi
Utdanningsprogram
Computer Science - Specialization in Systems Development
Veileder
Examiner
Tilgjengelig fra: 2022-07-02 Laget: 2022-07-02 Sist oppdatert: 2022-08-05bibliografisk kontrollert

Open Access i DiVA

fulltext(3050 kB)858 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3050 kBChecksum SHA-512
32a77a234448f1b2135d882d4dcbf0ab1d73d3ceabd9303ca14079825480c56b19ff1136d47dfb38c339067998c91023c50068b7735369b10a132df55c486f76
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 859 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1180 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf