Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automatic CVSS classification: Automatic classification of CVSS score
Högskolan i Skövde, Institutionen för informationsteknologi.
2019 (engelsk)Independent thesis Basic level (degree of Bachelor), 20 poäng / 30 hpOppgaveAlternativ tittel
Automatisk CVSS klassifikation : Automatisk klassificering av CVSS betyg (svensk)
Abstract [en]

With a growing amount of information security incidents around the world, organizationsneed to manage information security more efficiently. A way to enable organizations to improve their information security management is to utilize decision support systems in information security. Previous studies has presented promising capabilities in machine learning models for analysis of security vulnerabilities with the industry standard Common Vulnerability Scoring System 2.0. These studies hashowever used the older version of the scoring system, and not in all cases fully automated the entire analysis process. This research conducts an experiment which indicates that the newer scoring system, Common Vulnerability Scoring System 3.0 is possible to automate with machine learning models. The machine learning models in this study perform similarly and in some cases slightly better than the previous studies. This study presents the possibility of a completely automated scoring system, the study presents a high positive correlation of 0.7 with classifications from the recognized information security database NVD which publishes information security analyses for vulnerabilities in systems.

sted, utgiver, år, opplag, sider
2019. , s. 42
Emneord [en]
Information Security, Machine Learning, CVSS
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-16981OAI: oai:DiVA.org:his-16981DiVA, id: diva2:1321351
Fag / kurs
Informationsteknologi
Utdanningsprogram
Information Systems - Business Intelligence
Veileder
Examiner
Tilgjengelig fra: 2019-06-11 Laget: 2019-06-07 Sist oppdatert: 2019-06-11bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Søk i DiVA

Av forfatter/redaktør
Flodihn, Marcus
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 731 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf