Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A fuzzy logic approach to influence maximization in social networks
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningsmiljön Informationsteknologi. (Distribuerade realtidssystem (DRTS), Distributed Real-Time Systems)ORCID-id: 0000-0002-7312-9089
College of Information Technology, United Arab Emirates University, Al-Ain, United Arab Emirates.
Royal Institute of Management, Thimphu, Bhutan.
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningsmiljön Informationsteknologi. (Distribuerade realtidssystem (DRTS), Distributed Real-Time Systems)ORCID-id: 0000-0002-1039-5830
2020 (engelsk)Inngår i: Journal of Ambient Intelligence and Humanized Computing, ISSN 1868-5137, E-ISSN 1868-5145, Vol. 11, nr 6, s. 2435-2451Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Within a community, social relationships are paramount to profile individuals’ conduct. For instance, an individual within a social network might be compelled to embrace a behaviour that his/her companion has recently adopted. Such social attitude is labelled social influence, which assesses the extent by which an individual’s social neighbourhood adopt that individual’s behaviour. We suggest an original approach to influence maximization using a fuzzy-logic based model, which combines influence-weights associated with historical logs of the social network users, and their favourable location in the network. Our approach uses a two-phases process to maximise influence diffusion. First, we harness the complexity of the problem by partitioning the network into significantly-enriched community-structures, which we then use as modules to locate the most influential nodes across the entire network. These key users are determined relatively to a fuzzy-logic based technique that identifies the most influential users, out of which the seed-set candidates to diffuse a behaviour or an innovation are extracted following the allocated budget for the influence campaign. This way to deal with influence propagation in social networks, is different from previous models, which do not compare structural and behavioural attributes among members of the network. The performance results show the validity of the proposed partitioning-approach of a social network into communities, and its contribution to “activate” a higher number of nodes overall. Our experimental study involves both empirical and real contemporary social-networks, whereby a smaller seed set of key users, is shown to scale influence to the high-end compared to some renowned techniques, which employ a larger seed set of key users and yet they influence less nodes in the social network.

sted, utgiver, år, opplag, sider
Springer, 2020. Vol. 11, nr 6, s. 2435-2451
Emneord [en]
Social networks, Community detection, Influence propagation, Fuzzy logic
HSV kategori
Forskningsprogram
Distribuerade realtidssystem (DRTS)
Identifikatorer
URN: urn:nbn:se:his:diva-16779DOI: 10.1007/s12652-019-01286-2ISI: 000536462400019Scopus ID: 2-s2.0-85064252809OAI: oai:DiVA.org:his-16779DiVA, id: diva2:1305165
Tilgjengelig fra: 2019-04-15 Laget: 2019-04-15 Sist oppdatert: 2020-06-29bibliografisk kontrollert

Open Access i DiVA

fulltext(3132 kB)233 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 3132 kBChecksum SHA-512
94982f0082f90511b53d40cf5757a746e22d2752e2332781b5fa4a51fdddea8dace38a68c50b2297b53f225297758cbb9e7c68c8a1286a17cb9de3951eb05bcc
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Atif, YacineLindström, Birgitta

Søk i DiVA

Av forfatter/redaktør
Atif, YacineLindström, Birgitta
Av organisasjonen
I samme tidsskrift
Journal of Ambient Intelligence and Humanized Computing

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 359 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1373 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf