his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Maritime anomaly detection: A review
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Skövde Artificial Intelligence Lab (SAIL))ORCID-id: 0000-0003-2900-9335
Lawrence Livermore National Laboratory, Livermore, California, USA.
Directorat e for Space, Security and Migration,Demography, Migration & Governance Unit,European Commission, Joint Research Centre(JRC), Ispra, Italy.
2018 (engelsk)Inngår i: Wiley Interdisciplinary Reviews. Data Mining and Knowledge Discovery, ISSN 1942-4787, Vol. 8, nr 5, artikkel-id e1266Artikkel, forskningsoversikt (Fagfellevurdert) Published
Abstract [en]

The surveillance of large sea areas normally requires the analysis of large volumes of heterogeneous, multidimensional and dynamic sensor data, in order to improve vessel traffic safety, maritime security and to protect the environment. Early detection of conflict situations at sea provides critical time to take appropriate action with, possibly before potential problems occur. In order to provide an overview of the state‐of‐the‐art of research carried out for the analysis of maritime data for situational awareness, this study presents a review of maritime anomaly detection. The found articles are categorized into four groups (a) data, (b) methods, (c) systems, and (d) user aspects. We present a comprehensive summary of the works found in each category, and finally, outline possible paths of investigation and challenges for maritime anomaly detection.

sted, utgiver, år, opplag, sider
John Wiley & Sons, 2018. Vol. 8, nr 5, artikkel-id e1266
Emneord [en]
anomaly detection, data mining, maritime anomaly detection, maritime traffic, review, situation awareness
HSV kategori
Forskningsprogram
Skövde Artificial Intelligence Lab (SAIL); INF301 Data Science
Identifikatorer
URN: urn:nbn:se:his:diva-16182DOI: 10.1002/widm.1266ISI: 000441767200004Scopus ID: 2-s2.0-85051797167OAI: oai:DiVA.org:his-16182DiVA, id: diva2:1247173
Forskningsfinansiär
Knowledge Foundation, 20140294Tilgjengelig fra: 2018-09-11 Laget: 2018-09-11 Sist oppdatert: 2018-09-13bibliografisk kontrollert

Open Access i DiVA

fulltext(585 kB)116 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 585 kBChecksum SHA-512
7cc4f5cf6e0a07760abfe0a7c5a3ab67092cabf2e22d085dfa9be5be41060bc4bb319a190383246295b0499499674a5c70d1b1b1dcfac5a941febd4494109be5
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Riveiro, Maria

Søk i DiVA

Av forfatter/redaktør
Riveiro, Maria
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 116 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 56 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf