Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Characterizing sub-populations of myxoid liposarcoma cells using a multi-algorithmic pipeline for analyzing single-cell RNA sequencing data
Högskolan i Skövde, Institutionen för biovetenskap.
2018 (engelsk)Independent thesis Advanced level (degree of Master (One Year)), 20 poäng / 30 hpOppgave
Abstract [en]

All tumors are characterized by intratumor heterogeneity at varying degrees. Cancer stem cells have been put forward to be an essential element that promotes heterogeneity. Myxoid liposarcoma, which is a lipogenic cancer that develops in deep soft connective tissues, is characterized by intermediate intratumor heterogeneity. Despite recent therapeutic advances, the post-treatment recurrence rate remains relatively high. Identifying sub-populations of myxoid liposarcoma tumors can help in characterizing their molecular signatures and tumorigenic capabilities leading to developing better therapeutics. Single-cell transcriptomic approaches can highlight deviations in gene expression patterns among different subpopulations within the tumor. In this study, a multi-algorithmic pipeline was developed to make a fast, simple and efficient process for characterizing cellular sub-populations of cancer cells and gain insight about the molecular signature of the cancer stem sub-population. This pipeline consists of four successive steps, read counts’ pre-processing, cellular clustering and pseudotemporal ordering, defining differential expressed genes and defining biomarker genes. The results showed a harmonic integration between the algorithms that constitute the backbone of the proposed pipeline leading to a reduction in the limitations of some of these algorithms. The outcome of this study is a panel of 33 genes nominated as possible biomarkers for stemness and aggressiveness. To optimize and validate these biomarker candidates, further investigations are required. Moreover, additional functional coupling analysis is necessary to nominate biomarkers for each of the sub-populations based on the defined differential expressed genes.

sted, utgiver, år, opplag, sider
2018. , s. 40
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-15837OAI: oai:DiVA.org:his-15837DiVA, id: diva2:1225239
Fag / kurs
Bioinformatics
Utdanningsprogram
Bioinformatics - Master’s Programme
Veileder
Examiner
Tilgjengelig fra: 2018-06-28 Laget: 2018-06-26 Sist oppdatert: 2018-06-28bibliografisk kontrollert

Open Access i DiVA

Salim Ghannoum Master Thesis(3005 kB)403 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3005 kBChecksum SHA-512
29b1497581aaed7dec33fab5ff42febcc4c0ee61d5b12328c53181bc92da5b9300e58cca0471a68e253c68f7ea6570d8c3f6b77f9d687e6baec6aa30111de254
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 403 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 548 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf