Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A Scalable Recommender System for Automatic Playlist Continuation
Högskolan i Skövde, Institutionen för informationsteknologi.
2018 (engelsk)Independent thesis Advanced level (degree of Master (One Year)), 10 poäng / 15 hpOppgave
Abstract [en]

As major companies like Spotify, Deezer and Tidal look to improve their music streamingproducts, they repeatedly opt for features that engage with users and lead to a morepersonalised user experience. Automatic playlist continuation enables these platforms tosupport their users with a seamless and smooth interface to enjoy music, own their experience,and discover new songs and artists.This report details a recommender system that enables automatic playlist continuation;providing the recommendation of music tracks to users who are creating new playlists or curatingexisting ones. The recommendation framework given in this report is able to provide accurateand pertinent track recommendation, but also addresses issues of scalability, practicalimplementation and decision transparency, so that commercial enterprises can deploy such asystem more easily and develop a winning strategy for their user experience. Furthermore, therecommender system does not require any rich and varied supply of user data, instead requiringonly basic information as input such as the title of the playlist, the tracks currently in the playlist,and the artists associated with those tracks.To accomplish these goals, the system relies on user-based collaborative filtering; a simple, wellestablishedmethod of recommendation, supported by web-scraping and topic modellingalgorithms that creatively use the supplied data to paint a more holistic image of what kind ofplaylist the user would like. This system was developed using data from the Million PlaylistDataset, released by Spotify in 2018 as part of the Recommender Systems Challenge, evaluatedusing R-precision, normalised discounted cumulative gain, and a proprietary evaluation metriccalled Recommended Song Clicks, that reflects the number of times a user would have to refreshthe list of recommendations provided if the current Spotify user interface was used tocommunicate them. Over an 80:20 train-test split, the scores were: 0.343, 0.224, and 15.73.

sted, utgiver, år, opplag, sider
2018. , s. 30
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-15822OAI: oai:DiVA.org:his-15822DiVA, id: diva2:1223679
Utdanningsprogram
Data Science - Master’s Programme
Veileder
Examiner
Tilgjengelig fra: 2018-06-26 Laget: 2018-06-25 Sist oppdatert: 2018-06-26bibliografisk kontrollert

Open Access i DiVA

fulltext(1378 kB)915 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1378 kBChecksum SHA-512
f028ee706169397942b4f917ecfe242d60e3a1f837e9038cb0de6fc93da1a4c5e2a7573bd31d0b3270fc1b64cb9d838fed8ba4c2c093c7858ae99376673a42cf
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Bennett, Jack
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 916 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1477 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf