his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Affective–associative two-process theory: a neurocomputational account of partial reinforcement extinction effects
Department of Applied IT, University of Gothenburg, Gothenburg, Sweden. (Interaction Lab)
Department of Applied IT, University of Gothenburg, Gothenburg, Sweden.
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Interaction Lab (ILAB))ORCID-id: 0000-0002-6568-9342
Institute of Neuroinformatics, Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
Vise andre og tillknytning
2017 (engelsk)Inngår i: Biological Cybernetics, ISSN 0340-1200, E-ISSN 1432-0770, Vol. 111, nr 5-6, s. 365-388Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The partial reinforcement extinction effect (PREE) is an experimentally established phenomenon: behavioural response to a given stimulus is more persistent when previously inconsistently rewarded than when consistently rewarded. This phenomenon is, however, controversial in animal/human learning theory. Contradictory findings exist regarding when the PREE occurs. One body of research has found a within-subjects PREE, while another has found a within-subjects reversed PREE (RPREE). These opposing findings constitute what is considered the most important problem of PREE for theoreticians to explain. Here, we provide a neurocomputational account of the PREE, which helps to reconcile these seemingly contradictory findings of within-subjects experimental conditions. The performance of our model demonstrates how omission expectancy, learned according to low probability reward, comes to control response choice following discontinuation of reward presentation (extinction). We find that a PREE will occur when multiple responses become controlled by omission expectation in extinction, but not when only one omission-mediated response is available. Our model exploits the affective states of reward acquisition and reward omission expectancy in order to differentially classify stimuli and differentially mediate response choice. We demonstrate that stimulus–response (retrospective) and stimulus–expectation–response (prospective) routes are required to provide a necessary and sufficient explanation of the PREE versus RPREE data and that Omission representation is key for explaining the nonlinear nature of extinction data.

sted, utgiver, år, opplag, sider
Springer, 2017. Vol. 111, nr 5-6, s. 365-388
Emneord [en]
Partial reinforcement, Reinforcement learning, Decision making, Associative two-process theory, Affect
HSV kategori
Forskningsprogram
Interaction Lab (ILAB)
Identifikatorer
URN: urn:nbn:se:his:diva-14392DOI: 10.1007/s00422-017-0730-1ISI: 000415625500004PubMedID: 28913644Scopus ID: 2-s2.0-85029510456OAI: oai:DiVA.org:his-14392DiVA, id: diva2:1156311
Prosjekter
NeuralDynamics, 7th framework of the EU, grant #270247
Forskningsfinansiär
EU, FP7, Seventh Framework Programme, 270247Tilgjengelig fra: 2017-11-11 Laget: 2017-11-11 Sist oppdatert: 2018-02-01bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Personposter BETA

Lowe, RobertBilling, Erik

Søk i DiVA

Av forfatter/redaktør
Lowe, RobertBilling, Erik
Av organisasjonen
I samme tidsskrift
Biological Cybernetics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 287 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf