his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Utilizing Swarm Intelligence Algorithms for Pathfinding in Games
Högskolan i Skövde, Institutionen för informationsteknologi.
2017 (engelsk)Independent thesis Basic level (degree of Bachelor), 20 poäng / 30 hpOppgave
Abstract [en]

The Ant Colony Optimization and Particle Swarm Optimization are two Swarm Intelligence algorithms often utilized for optimization. Swarm Intelligence relies on agents that possess fragmented knowledge, a concept not often utilized in games. The aim of this study is to research whether there are any benefits to using these Swarm Intelligence algorithms in comparison to standard algorithms such as A* for pathfinding in a game.

Games often consist of dynamic environments with mobile agents, as such all experiments were conducted with dynamic destinations. Algorithms were measured on the length of their path and the time taken to calculate that path.

The algorithms were implemented with minor modifications to allow them to better function in a grid based environment. The Ant Colony Optimization was modified in regards to how pheromone was distributed in the dynamic environment to better allow the algorithm to path towards a mobile target. Whereas the Particle Swarm Optimization was given set start positions and velocity in order to increase initial search space and modifications to increase particle diversity.

The results obtained from the experimentation showcased that the Swarm Intelligence algorithms were capable of performing to great results in terms of calculation speed, they were however not able to obtain the same path optimality as A*. The algorithms' implementation can be improved but show potential to be useful in games.

sted, utgiver, år, opplag, sider
2017. , s. 55
Emneord [en]
Swarm Intelligence, Pathfinding, Ant Colony Optimization, Particle Swarm Optimization, A*
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-13636OAI: oai:DiVA.org:his-13636DiVA, id: diva2:1106037
Fag / kurs
Informationsteknologi
Utdanningsprogram
Computer Game Development - Programming
Veileder
Examiner
Tilgjengelig fra: 2017-06-16 Laget: 2017-06-06 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

fulltext(4332 kB)419 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4332 kBChecksum SHA-512
7eb14be450738200103abdd4fddaa59fdf31f4a3675df68d0b69afd1c51532e5550fd01910d7ad8cd9a767d369ce634050c863e427346518daf0eb80cb525f7c
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Kelman, Alexander
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 419 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1946 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf