Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning in-contact control strategies from demonstration
School of Electrical Engineering, Aalto University, Finland.
Intelligent Autonomous Systems (IAS) and Computational Learning for Autonomous Systems (CLAS) labs at TU Darmstadt.
Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. (Interaction Lab)ORCID-id: 0000-0002-8400-5153
School of Electrical Engineering, Aalto University, Finland.
2016 (engelsk)Inngår i: IROS 2016: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2016, s. 688-695Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Learning to perform tasks like pulling a door handle or pushing a button, inherently easy for a human, can be surprisingly difficult for a robot. A crucial problem in these kinds of in-contact tasks is the context specificity of pose and force requirements. In this paper, a robot learns in-contact tasks from human kinesthetic demonstrations. To address the need to balance between the position and force constraints, we propose a model based on the hidden semi-Markov model (HSMM) and Cartesian impedance control. The model captures uncertainty over time and space and allows the robot to smoothly satisfy a task's position and force constraints by online modulation of impedance controller stiffness according to the HSMM state belief. In experiments, a KUKA LWR 4+ robotic arm equipped with a force/torque sensor at the wrist successfully learns from human demonstrations how to pull a door handle and push a button.

sted, utgiver, år, opplag, sider
IEEE, 2016. s. 688-695
Serie
Proceedings of the International Conference on Intelligent Robots and Systems, ISSN 2153-0858, E-ISSN 2153-0866
HSV kategori
Forskningsprogram
Interaction Lab (ILAB)
Identifikatorer
URN: urn:nbn:se:his:diva-13319DOI: 10.1109/IROS.2016.7759127ISI: 000391921700101Scopus ID: 2-s2.0-85006511822ISBN: 978-1-5090-3762-9 (digital)OAI: oai:DiVA.org:his-13319DiVA, id: diva2:1066449
Konferanse
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2016), Daejeon, South Korea, 9-14 October, 2016
Tilgjengelig fra: 2017-01-18 Laget: 2017-01-18 Sist oppdatert: 2023-01-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Montebelli, Alberto

Søk i DiVA

Av forfatter/redaktør
Montebelli, Alberto
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 740 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf