Open this publication in new window or tab >>2023 (English)In: Business & Information Systems Engineering, ISSN 2363-7005, E-ISSN 1867-0202, Vol. 65, no 6, p. 643-676Article in journal (Refereed) Published
Abstract [en]
Critical infrastructure (CIs) such as power grids link a plethora of physical components from many different vendors to the software systems that control them. These systems are constantly threatened by sophisticated cyber attacks. The need to improve the cybersecurity of such CIs, through holistic system modeling and vulnerability analysis, cannot be overstated. This is challenging since a CI incorporates complex data from multiple interconnected physical and computation systems. Meanwhile, exploiting vulnerabilities in different information technology (IT) and operational technology (OT) systems leads to various cascading effects due to interconnections between systems. The paper investigates the use of a comprehensive taxonomy to model such interconnections and the implied dependencies within complex CIs, bridging the knowledge gap between IT security and OT security. The complexity of CI dependence analysis is harnessed by partitioning complicated dependencies into cyber and cyber-physical functional dependencies. These defined functional dependencies further support cascade modeling for vulnerability severity assessment and identification of critical components in a complex system. On top of the proposed taxonomy, the paper further suggests power-grid reference models that enhance the reproducibility and applicability of the proposed method. The methodology followed was design science research (DSR) to support the designing and validation of the proposed artifacts. More specifically, the structural, functional adequacy, compatibility, and coverage characteristics of the proposed artifacts are evaluated through a three-fold validation (two case studies and expert interviews). The first study uses two instantiated power-grid models extracted from existing architectures and frameworks like the IEC 62351 series. The second study involves a real-world municipal power grid.
Place, publisher, year, edition, pages
Springer Nature Switzerland AG, 2023
Keywords
critical infrastructure, domain-specific language, cybersecurity, power grids
National Category
Information Systems
Research subject
Distributed Real-Time Systems; Information Systems
Identifiers
urn:nbn:se:his:diva-22495 (URN)10.1007/s12599-023-00811-0 (DOI)000982391100001 ()2-s2.0-85158156411 (Scopus ID)
Funder
University of Skövde
Note
CC BY 4.0
© 2023 Springer Nature Switzerland AG. Part of Springer Nature.
Paper is partly based on the results of the EU ISF project ELVIRA, his.se/elvira
We thank the colleagues from the ELVIRA project for their contributions to earlier versions of the taxonomy. We are in particular grateful to Yacine Atif for his support and encouragement. Many thanks also to the interview partners for helping to validate the usefulness of our approach. Finally, we thank the anonymous reviewers for their diligent and constructive evaluations
Open access funding provided by University of Skövde.
2023-05-072023-05-072023-12-13Bibliographically approved