Högskolan i Skövde

his.sePublications
Change search
Link to record
Permanent link

Direct link
Garcia Rivera, Francisco
Alternative names
Publications (10 of 12) Show all publications
Garcia Rivera, F., Asreen, R., Mattsson, S. & Söderlund, H. (2024). How Can XR Enhance Collaboration with CAD/CAE Tools in Remote Design Reviews?. In: Joel Andersson; Shrikant Joshi; Lennart Malmsköld; Fabian Hanning (Ed.), Sustainable Production through Advanced Manufacturing, Intelligent Automation and Work Integrated Learning: Proceedings of the 11th Swedish Production Symposium (SPS2024). Paper presented at 11th Swedish Production Symposium, SPS 2024 Trollhättan 23 April 2024 through 26 April 2024 (pp. 383-394). IOS Press
Open this publication in new window or tab >>How Can XR Enhance Collaboration with CAD/CAE Tools in Remote Design Reviews?
2024 (English)In: Sustainable Production through Advanced Manufacturing, Intelligent Automation and Work Integrated Learning: Proceedings of the 11th Swedish Production Symposium (SPS2024) / [ed] Joel Andersson; Shrikant Joshi; Lennart Malmsköld; Fabian Hanning, IOS Press, 2024, p. 383-394Conference paper, Published paper (Refereed)
Abstract [en]

This study studies the challenges of effective communication and collaboration in remote design review meetings (DRMs) and explores the potential of Extended Reality (XR) technologies to address these challenges. The research focuses on identifying recurring communication issues and the preferences of companies within the context of remote DRMs. The study involves qualitative content analysis and industry workshops to uncover the current problems with conventional approaches and the aspirations of companies regarding improved collaboration in the DRM process. Drawing upon the insights gathered from both the workshop and design review observations, this paper highlights the features that are critical for collaborative software to handle online design reviews. XR technologies offer immersive and interactive experiences that can transform communication and collaboration in the context of DRMs. By identifying the specific challenges faced in remote DRMs and understanding the desires of companies, this study sets the stage for a more efficient and effective collaborative process. It emphasizes the adaptability of XR technologies to meet industry needs and integrate seamlessly into existing workflows. The study concludes by highlighting the potential for XR technologies to enhance collaboration in DRMs, making them a valuable tool for various industries. 

Place, publisher, year, edition, pages
IOS Press, 2024
Series
Advances in Transdisciplinary Engineering, ISSN 2352-751X, E-ISSN 2352-7528 ; 52
Keywords
Collaboration, Design Review, Extended Reality, CAD/CAE, Communication and collaborations, Content analysis, Content industry, Current problems, Effective communication, Research focus, Computer aided design
National Category
Interaction Technologies Human Aspects of ICT
Research subject
User Centred Product Design
Identifiers
urn:nbn:se:his:diva-23827 (URN)10.3233/ATDE240182 (DOI)2-s2.0-85191336566 (Scopus ID)978-1-64368-510-6 (ISBN)978-1-64368-511-3 (ISBN)
Conference
11th Swedish Production Symposium, SPS 2024 Trollhättan 23 April 2024 through 26 April 2024
Projects
PLENUM
Funder
Vinnova, 2022-01704
Note

CC BY-NC 4.0 DEED

© 2024 The Authors.

Correspondence Address: G.R. Francisco; University of Skövde, Sweden; email: francisco.garcia.rivera@his.se

The authors would like to thank the Swedish innovation agency Vinnova for their funding of the PLENUM project, grant number: 2022-01704 as well as the partners in the projects that made this work possible.

Available from: 2024-05-13 Created: 2024-05-13 Last updated: 2024-05-15Bibliographically approved
Cao, H., Söderlund, H., Despeisse, M., Garcia Rivera, F. & Johansson, B. (2024). VR Interaction for Efficient Virtual Manufacturing: Mini Map for Multi-User VR Navigation Platform. In: Joel Andersson; Shrikant Joshi; Lennart Malmsköld; Fabian Hanning (Ed.), Sustainable Production through Advanced Manufacturing, Intelligent Automation and Work Integrated Learning: Proceedings of the 11th Swedish Production Symposium (SPS2024). Paper presented at 11th Swedish Production Symposium, SPS 2024 Trollhättan 23 April 2024 through 26 April 2024 (pp. 335-345). IOS Press
Open this publication in new window or tab >>VR Interaction for Efficient Virtual Manufacturing: Mini Map for Multi-User VR Navigation Platform
Show others...
2024 (English)In: Sustainable Production through Advanced Manufacturing, Intelligent Automation and Work Integrated Learning: Proceedings of the 11th Swedish Production Symposium (SPS2024) / [ed] Joel Andersson; Shrikant Joshi; Lennart Malmsköld; Fabian Hanning, IOS Press, 2024, p. 335-345Conference paper, Published paper (Refereed)
Abstract [en]

Over the past decade, the value and potential of VR applications in manufacturing have gained significant attention in accordance with the rise of Industry 4.0 and beyond. Its efficacy in layout planning, virtual design reviews, and operator training has been well-established in previous studies. However, many functional requirements and interaction parameters of VR for manufacturing remain ambiguously defined. One area awaiting exploration is spatial recognition and learning, crucial for understanding navigation within the virtual manufacturing system and processing spatial data. This is particularly vital in multi-user VR applications where participants' spatial awareness in the virtual realm significantly influences the efficiency of meetings and design reviews. This paper investigates the interaction parameters of multi-user VR, focusing on interactive positioning maps for virtual factory layout planning and exploring the user interaction design of digital maps as navigation aid. A literature study was conducted in order to establish frequently used technics and interactive maps from the VR gaming industry. Multiple demonstrators of different interactive maps provide a comprehensive A/B test which were implemented into a VR multi-user platform using the Unity game engine. Five different prototypes of interactive maps were tested, evaluated and graded by the 20 participants and 40 validated data streams collected. The most efficient interaction design of interactive maps is thus analyzed and discussed in the study. 

Place, publisher, year, edition, pages
IOS Press, 2024
Series
Advances in Transdisciplinary Engineering, ISSN 2352-751X, E-ISSN 2352-7528 ; 52
Keywords
Interactive Map, Manufacturing, Multi-User Collaboration Platform, User-Oriented, Virtual Reality, Data handling, Personnel training, Collaboration platforms, Interactive maps, Layout planning, Multi-user collaboration, Multiusers, User oriented, Virtual manufacturing, VR applications, Navigation
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
User Centred Product Design
Identifiers
urn:nbn:se:his:diva-23831 (URN)10.3233/ATDE240178 (DOI)2-s2.0-85191303354 (Scopus ID)978-1-64368-510-6 (ISBN)978-1-64368-511-3 (ISBN)
Conference
11th Swedish Production Symposium, SPS 2024 Trollhättan 23 April 2024 through 26 April 2024
Projects
PLENUM
Funder
Vinnova, 2022-01704
Note

CC BY-NC 4.0 DEED

© 2024 The Authors

Correspondence Address: H. Cao; Chalmers University of Technology, Sweden; email: huizhong@chalmers.se

The authors would like to thank the Swedish innovation agency Vinnova for their funding of the PLENUM project, grant number: 2022-01704. The work was carried out within Chalmers’ Area of Advance Production. The support is gratefully acknowledged.

Available from: 2024-05-13 Created: 2024-05-13 Last updated: 2024-05-14Bibliographically approved
Almirón Santa-Bárbara, R., García Rivera, F., Lamb, M., Víquez Da-Silva, R. & Gutiérrez Bedmar, M. (2023). New technologies for the classification of proximal humeral fractures: Comparison between Virtual Reality and 3D printed models—a randomised controlled trial. Virtual Reality, 27(3), 1623-1634
Open this publication in new window or tab >>New technologies for the classification of proximal humeral fractures: Comparison between Virtual Reality and 3D printed models—a randomised controlled trial
Show others...
2023 (English)In: Virtual Reality, ISSN 1359-4338, E-ISSN 1434-9957, Vol. 27, no 3, p. 1623-1634Article in journal (Refereed) Published
Abstract [en]

Correct classification of fractures according to their patterns is critical for developing a treatment plan in orthopaedic surgery. Unfortunately, for proximal humeral fractures (PHF), methods for proper classification have remained a jigsaw puzzle that has not yet been fully solved despite numerous proposed classifications and diagnostic methods. Recently, many studies have suggested that three-dimensional printed models (3DPM) can improve the interobserver agreement on PHF classifications. Moreover, Virtual Reality (VR) has not been properly studied for classification of shoulder injuries. The current study investigates the PHF classification accuracy relative to an expert committee when using either 3DPM or equivalent models displayed in VR among 36 orthopaedic surgery residents from different hospitals. We designed a multicentric randomised controlled trial in which we created two groups: a group exposed to a total of 34 3DPM and another exposed to VR equivalents. Association between classification accuracy and group assignment (VR/3DPM) was assessed using mixed effects logistic regression models. The results showed VR can be considered a non-inferior technology for classifying PHF when compared to 3DPM. Moreover, VR may be preferable when considering possible time and resource savings along with potential uses of VR for presurgical planning in orthopaedics. 

Place, publisher, year, edition, pages
Springer Science and Business Media Deutschland GmbH, 2023
Keywords
Fracture, Orthopedics, Regression analysis, Surgery, Virtual reality, Classification accuracy, Exposed to, Humeral fractures, Interobserver agreement, Orthopaedic surgery, Proximal humeral fracture, Randomized controlled trial, Shoulder surgery planning, Surgery planning, Three-dimensional printed model, 3D printing, Three-dimensional printed models
National Category
Orthopaedics Surgery Human Computer Interaction
Research subject
Interaction Lab (ILAB); User Centred Product Design
Identifiers
urn:nbn:se:his:diva-22269 (URN)10.1007/s10055-023-00757-4 (DOI)000926409600001 ()2-s2.0-85147386442 (Scopus ID)
Note

CC BY 4.0

© 2023, The Author(s)

Published: 04 February 2023

Funding for open access publishing: Universidad Málaga/CBUA.

Available from: 2023-02-16 Created: 2023-02-16 Last updated: 2023-09-22Bibliographically approved
Garcia Rivera, F., Högberg, D., Lamb, M. & Perez Luque, E. (2022). DHM supported assessment of the effects of using an exoskeleton during work. International Journal of Human Factors Modelling and Simulation, 7(3/4), 231-246
Open this publication in new window or tab >>DHM supported assessment of the effects of using an exoskeleton during work
2022 (English)In: International Journal of Human Factors Modelling and Simulation, ISSN 1742-5549, Vol. 7, no 3/4, p. 231-246Article in journal (Refereed) Published
Abstract [en]

Recently, exoskeletons have been gaining popularity in many industries, primarily for supporting manual assembly tasks. Due to the relative novelty of exoskeleton technologies, knowledge about the consequences of using these devices at workstations is still developing. Digital human modelling (DHM) and ergonomic evaluation tools may be of particular use in this context. However, there are no standard integrations of DHM and ergonomic assessment tools for assessing exoskeletons. This paper proposes a general method for evaluating the ergonomic effects of introducing an exoskeleton in a production context using DHM simulation tools combined with a modified existing ergonomic assessment framework. More specifically, we propose adapting the Assembly Specific Force Atlas tool to evaluate exoskeletons by increasing the risk level threshold proportionally to the amount of torque that the exoskeleton reduces in the glenohumeral joint. We illustrate this adaptation in a DHM tool. We believe the proposed methodology and the corresponding workflow can be helpful for decision-makers and stakeholders when considering implementing exoskeletons in a production environment.

Place, publisher, year, edition, pages
Geneva: InderScience Publishers, 2022
Keywords
digital human modelling, DHM, assessment, ergonomics, exoskeleton, Assembly Specific Force Atlas, ASFA
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
User Centred Product Design; INF202 Virtual Ergonomics; Interaction Lab (ILAB)
Identifiers
urn:nbn:se:his:diva-21703 (URN)10.1504/ijhfms.2021.10048920 (DOI)
Funder
Vinnova, 2018-05026Knowledge Foundation, 20180167
Available from: 2022-08-22 Created: 2022-08-22 Last updated: 2022-10-17Bibliographically approved
Garcia Rivera, F., Lamb, M. & Waddell, M. (2022). Improving the efficiency of virtual-reality-based ergonomics assessments with digital human models in multi-agent collaborative virtual environments. In: Proceedings of the 7th International Digital Human Modeling Symposium (DHM 2022), August 29–30, 2022, Iowa City, Iowa, USA: . Paper presented at 7th International Digital Human Modeling Symposium (DHM 2022), August 29–30, 2022, Iowa City, Iowa, USA. The conference was followed by the Iowa Virtual Human Summit 2022. (pp. 1-11). University of Iowa Press, 7, Article ID 39.
Open this publication in new window or tab >>Improving the efficiency of virtual-reality-based ergonomics assessments with digital human models in multi-agent collaborative virtual environments
2022 (English)In: Proceedings of the 7th International Digital Human Modeling Symposium (DHM 2022), August 29–30, 2022, Iowa City, Iowa, USA, University of Iowa Press, 2022, Vol. 7, p. 1-11, article id 39Conference paper, Published paper (Refereed)
Abstract [en]

Often new digital tools are introduced alongside existing tools and workflows to augment and fill gaps in current processes. Virtual and augmented reality (XR) tools are currently being deployed in this way within design processes, allowing for interactive visualization in virtual environments including the use of DHM tools. Currently, the focus is on how to implement XR as a stand-alone tool for single-user scenarios. However, in collaborative design contexts, screen-based and XR tools can be used together to leverage the benefits of each technology maximizing the potential of multi-user design processes. XR allows for an immersive exploration of designed objects in 3D space, while screen-based tools allow for easier notetaking and integration of additional non-3D software and meeting tools. Ensuring that these technologies are integrated in a mutually beneficial manner requires a framework for determining the best combination of technologies and interfaces for diverse design teams. This paper presents a framework for performing collaborative design reviews in a digital environment that can be accessed using both XR and 2D screen devices simultaneously. It enables asymmetric collaboration to provide each design team member with the technology that best fits their workflow and requirements.

Place, publisher, year, edition, pages
University of Iowa Press, 2022
Keywords
Collaborative design, Asymmetric collaboration, Extended Reality
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
User Centred Product Design; Interaction Lab (ILAB)
Identifiers
urn:nbn:se:his:diva-21832 (URN)10.17077/dhm.31781 (DOI)978-0-9840378-4-1 (ISBN)
Conference
7th International Digital Human Modeling Symposium (DHM 2022), August 29–30, 2022, Iowa City, Iowa, USA. The conference was followed by the Iowa Virtual Human Summit 2022.
Note

Copyright © 2022 the author(s) 

Available from: 2022-09-20 Created: 2022-09-20 Last updated: 2022-10-17Bibliographically approved
García Rivera, F., Lamb, M., Högberg, D. & Brolin, A. (2022). The Schematization of XR Technologies in the Context of Collaborative Design. In: Amos H. C. Ng; Anna Syberfeldt; Dan Högberg; Magnus Holm (Ed.), SPS2022: Proceedings of the 10th Swedish Production Symposium. Paper presented at 10th Swedish Production Symposium (SPS2022), Skövde, April 26–29 2022 (pp. 520-529). Amsterdam; Berlin; Washington, DC: IOS Press
Open this publication in new window or tab >>The Schematization of XR Technologies in the Context of Collaborative Design
2022 (English)In: SPS2022: Proceedings of the 10th Swedish Production Symposium / [ed] Amos H. C. Ng; Anna Syberfeldt; Dan Högberg; Magnus Holm, Amsterdam; Berlin; Washington, DC: IOS Press, 2022, p. 520-529Conference paper, Published paper (Refereed)
Abstract [en]

Recently, the concept of Industry 5.0 has been introduced to complement, among other things, Industry 4.0’s focus on efficiency and productivity with a focus on humans in digital design and production processes. The inclusion of human interaction with digital realities, extended reality (XR) technologies, such as augmented reality (AR) and virtual reality (VR), can play an essential role in Industry 5.0. While rapid advances in XR technologies are solidifying and finding their place in the product and production development process, terminology and classification scheme remain under-determined. As a result, there have been numerous classifications of XR technologies from different perspectives, but little widespread agreement. They have been classified by their level of immersion or how well they meet a specific purpose (such as training). In addition to that, the classifications are usually made for one particular field (e.g. marketing, healthcare, engineering, architecture, among others). Therefore, to set the basis for future research, it is essential to identify and outline the dimensions that intervene in product and production design in regards to XR facilitated collaboration. With the ideas proposed in this paper, we want to identify basic concepts that classify a collaborative XR system by analyzing how users interact with the environment and other users. Our motivation is that collaborative design involves not only the physical dimension but also a social dimension. Defining when an XR system contributes to increasing social and/or physical presence could clarify and simplify its categorization.

Place, publisher, year, edition, pages
Amsterdam; Berlin; Washington, DC: IOS Press, 2022
Series
Advances in Transdisciplinary Engineering, ISSN 2352-751X, E-ISSN 2352-7528 ; 21
Keywords
Virtual Reality, Augmented Reality, Extended Reality, Collaborative design
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
User Centred Product Design; Interaction Lab (ILAB)
Identifiers
urn:nbn:se:his:diva-21109 (URN)10.3233/ATDE220170 (DOI)001191233200044 ()2-s2.0-85132809030 (Scopus ID)978-1-64368-268-6 (ISBN)978-1-64368-269-3 (ISBN)
Conference
10th Swedish Production Symposium (SPS2022), Skövde, April 26–29 2022
Funder
Knowledge FoundationVinnova
Note

CC BY-NC 4.0

Francisco García Rivera [francisco.garcia.rivera@his.se]

This work has been made possible with the support from the Knowledge Foundation supported research environment INFINIT at University of Skövde, in the project Synergy Virtual Ergonomics (SVE), and with support from VINNOVA in the project VIVA - the Virtual Vehicle Assembler, and by the participating organizations. This support is gratefully acknowledged.

Available from: 2022-05-02 Created: 2022-05-02 Last updated: 2024-05-15Bibliographically approved
Garcia Rivera, F., Brolin, A., Perez Luque, E. & Högberg, D. (2021). A Framework to Model the Use of Exoskeletons in DHM Tools. In: Julia L. Wright; Daniel Barber; Sofia Scataglini; Sudhakar L. Rajulu (Ed.), Advances in Simulation and Digital Human Modeling: Proceedings of the AHFE 2021 Virtual Conferences on Human Factors and Simulation, and Digital Human Modeling and Applied Optimization, July 25-29, 2021, USA. Paper presented at AHFE International Conference on Human Factors and Simulation and the AHFE International Conference on Digital Human Modeling and Applied Optimization, 2021, Virtual, Online, 25 July 2021 - 29 July 2021, USA (pp. 312-319). Cham: Springer
Open this publication in new window or tab >>A Framework to Model the Use of Exoskeletons in DHM Tools
2021 (English)In: Advances in Simulation and Digital Human Modeling: Proceedings of the AHFE 2021 Virtual Conferences on Human Factors and Simulation, and Digital Human Modeling and Applied Optimization, July 25-29, 2021, USA / [ed] Julia L. Wright; Daniel Barber; Sofia Scataglini; Sudhakar L. Rajulu, Cham: Springer, 2021, p. 312-319Conference paper, Published paper (Refereed)
Abstract [en]

Work-related musculoskeletal disorders (WMSDs) constitute a large part of work absences among industry workers, together with all the health and economic problems that it carries. Exoskeletons developed for overhead operations can potentially be a solution to reduce risks for WMSDs. However, some companies are still hesitant to implement exoskeletons in their workplace, since the effects of using exoskeletons are still not fully proved. Digital human modeling (DHM) could help with this dilemma by facilitating studies of the viability of the exoskeletons for specific work tasks. This paper proposes a DHM based framework to implement the study of upper body exoskeletons focused on overhead assembly operations. The framework emphasizes the kinematics and forces interaction between the human and the exoskeleton. 

Place, publisher, year, edition, pages
Cham: Springer, 2021
Series
Lecture Notes in Networks and Systems, ISSN 2367-3370, E-ISSN 2367-3389 ; 264
Keywords
DHM, Digital human modelling, Exoskeleton, Simulation
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
User Centred Product Design; VF-KDO
Identifiers
urn:nbn:se:his:diva-20484 (URN)10.1007/978-3-030-79763-8_38 (DOI)2-s2.0-85111956387 (Scopus ID)978-3-030-79762-1 (ISBN)978-3-030-79763-8 (ISBN)
Conference
AHFE International Conference on Human Factors and Simulation and the AHFE International Conference on Digital Human Modeling and Applied Optimization, 2021, Virtual, Online, 25 July 2021 - 29 July 2021, USA
Note

© 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.

This work has been made possible with the support from the Knowledge Foundation supported research environment INFINIT at the University of Skövde, in the project Synergy Virtual Ergonomics (SVE), and with support from VINNOVA in the project VIVA - the Virtual Vehicle Assembler, and by the participating organizations. This support is gratefully acknowledged.

Available from: 2021-08-19 Created: 2021-08-19 Last updated: 2023-02-24Bibliographically approved
Igelmo, V., Syberfeldt, A., Högberg, D., García Rivera, F. & Peréz Luque, E. (2020). Aiding Observational Ergonomic Evaluation Methods Using MOCAP Systems Supported by AI-Based Posture Recognition. In: Lars Hanson, Dan Högberg, Erik Brolin (Ed.), DHM2020: Proceedings of the 6th International Digital Human Modeling Symposium, August 31 – September 2, 2020. Paper presented at 6th International Digital Human Modeling Symposium, August 31 – September 2, 2020, Skövde, Sweden (pp. 419-429). Amsterdam: IOS Press
Open this publication in new window or tab >>Aiding Observational Ergonomic Evaluation Methods Using MOCAP Systems Supported by AI-Based Posture Recognition
Show others...
2020 (English)In: DHM2020: Proceedings of the 6th International Digital Human Modeling Symposium, August 31 – September 2, 2020 / [ed] Lars Hanson, Dan Högberg, Erik Brolin, Amsterdam: IOS Press, 2020, p. 419-429Conference paper, Published paper (Refereed)
Abstract [en]

Observational ergonomic evaluation methods have inherent subjectivity. Observers’ assessment results might differ even with the same dataset. While motion capture (MOCAP) systems have improved the speed and the accuracy of motiondata gathering, the algorithms used to compute assessments seem to rely on predefined conditions to perform them. Moreover, the authoring of these conditions is not always clear. Making use of artificial intelligence (AI), along with MOCAP systems, computerized ergonomic assessments can become more alike to human observation and improve over time, given proper training datasets. AI can assist ergonomic experts with posture detection, useful when using methods that require posture definition, such as Ovako Working Posture Assessment System (OWAS). This study aims to prove the usefulness of an AI model when performing ergonomic assessments and to prove the benefits of having a specialized database for current and future AI training. Several algorithms are trained, using Xsens MVN MOCAP datasets, and their performance within a use case is compared. AI algorithms can provide accurate posture predictions. The developed approach aspires to provide with guidelines to perform AI-assisted ergonomic assessment based on observation of multiple workers.

Place, publisher, year, edition, pages
Amsterdam: IOS Press, 2020
Series
Advances in Transdisciplinary Engineering, ISSN 2352-751X, E-ISSN 2352-7528 ; 11
Keywords
Artificial Intelligence, Machine Learning, Motion Capture, Wearable Inertial Sensors, Ergonomic Assessment, Ergonomic Evaluation
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
Production and Automation Engineering; User Centred Product Design; VF-KDO
Identifiers
urn:nbn:se:his:diva-19002 (URN)10.3233/ATDE200050 (DOI)000680825700043 ()2-s2.0-85091239183 (Scopus ID)978-1-64368-105-4 (ISBN)978-1-64368-104-7 (ISBN)
Conference
6th International Digital Human Modeling Symposium, August 31 – September 2, 2020, Skövde, Sweden
Funder
Knowledge Foundation, 20180167
Note

CC BY-NC 4.0 Funder: Knowledge Foundation and the INFINIT research environment (KKS Dnr. 20180167). This work has been made possible with the support of the Knowledge Foundation and the associated INFINIT research environment at the University of Skövde, in the Synergy Virtual Ergonomics (SVE) project, and by the participating organizations. This support is gratefully acknowledged.

Available from: 2020-09-07 Created: 2020-09-07 Last updated: 2023-02-24Bibliographically approved
Iriondo Pascual, A., Högberg, D., Syberfeldt, A., García Rivera, F., Pérez Luque, E. & Hanson, L. (2020). Implementation of Ergonomics Evaluation Methods in a Multi-Objective Optimization Framework. In: Lars Hanson, Dan Högberg, Erik Brolin (Ed.), DHM2020: Proceedings of the 6th International Digital Human Modeling Symposium, August 31 - September 2, 2020. Paper presented at 6th International Digital Human Modeling Symposium, August 31 - September 2, 2020, Skövde, Sweden (pp. 361-371). Amsterdam: IOS Press
Open this publication in new window or tab >>Implementation of Ergonomics Evaluation Methods in a Multi-Objective Optimization Framework
Show others...
2020 (English)In: DHM2020: Proceedings of the 6th International Digital Human Modeling Symposium, August 31 - September 2, 2020 / [ed] Lars Hanson, Dan Högberg, Erik Brolin, Amsterdam: IOS Press, 2020, p. 361-371Conference paper, Published paper (Refereed)
Abstract [en]

Simulations of future production systems enable engineers to find effective and efficient design solutions with fewer physical prototypes and fewer reconstructions. This can save development time and money and be more sustainable. Better design solutions can be found by linking simulations to multiobjective optimization methods to optimize multiple design objectives. When production systems involve manual work, humans and human activity should be included in the simulation. This can be done using digital human modeling (DHM) software which simulates humans and human activities and can be used to evaluate ergonomic conditions. This paper addresses challenges related to including existing ergonomics evaluation methods in the optimization framework. This challenge arises because ergonomics evaluation methods are typically developed to enable people to investigate ergonomic conditions by observing real work situations. The methods are rarely developed to be used by computer algorithms to draw conclusions about ergonomic conditions. This paper investigates how to adapt ergonomics evaluation methods to implement the results as objectives in the optimization framework. This paper presents a use case of optimizing a workstation using two different approaches: 1) an observational ergonomics evaluation method, and 2) a direct measurement method. Both approaches optimized two objectives: the average ergonomics results, and the 90th percentile ergonomics results.

Place, publisher, year, edition, pages
Amsterdam: IOS Press, 2020
Series
Advances in Transdisciplinary Engineering, ISSN 2352-751X, E-ISSN 2352-7528 ; 11
Keywords
Ergonomics, Optimization, DHM, Simulation
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
User Centred Product Design; Production and Automation Engineering; VF-KDO
Identifiers
urn:nbn:se:his:diva-19010 (URN)10.3233/ATDE200044 (DOI)000680825700037 ()2-s2.0-85091200988 (Scopus ID)978-1-64368-105-4 (ISBN)978-1-64368-104-7 (ISBN)
Conference
6th International Digital Human Modeling Symposium, August 31 - September 2, 2020, Skövde, Sweden
Funder
Vinnova, 41466Knowledge Foundation, 20180167
Note

CC BY-NC 4.0

Funder: Knowledge Foundation and the INFINIT research environment (KKS Dnr. 20180167). This work has been made possible with support from ITEA3 in the project MOSIM, and with the support from the Knowledge Foundation and the associated INFINIT research environment at the University of Skövde, within the Virtual Factories – KnowledgeDriven Optimization (VF-KDO) research profile and the Synergy Virtual Ergonomics (SVE) project, and by the participating organizations. This support is gratefully acknowledged.

Available from: 2020-09-08 Created: 2020-09-08 Last updated: 2023-11-14Bibliographically approved
Perez Luque, E., Högberg, D., Iriondo Pascual, A., Lämkull, D. & Garcia Rivera, F. (2020). Motion Behavior and Range of Motion when Using Exoskeletons in Manual Assembly Tasks. In: Kristina Säfsten; Fredrik Elgh (Ed.), SPS2020: Proceedings of the Swedish Production Symposium, October 7–8, 2020. Paper presented at 9th Swedish Production Symposium (SPS2020), 7-8 October 2020, Jönköping, Sweden (pp. 217-228). Amsterdam: IOS Press
Open this publication in new window or tab >>Motion Behavior and Range of Motion when Using Exoskeletons in Manual Assembly Tasks
Show others...
2020 (English)In: SPS2020: Proceedings of the Swedish Production Symposium, October 7–8, 2020 / [ed] Kristina Säfsten; Fredrik Elgh, Amsterdam: IOS Press, 2020, p. 217-228Conference paper, Published paper (Refereed)
Abstract [en]

The manufacturing industry is becoming increasingly more complex as the paradigm of mass-production moves, via mass-customization, towards personalized production, and Industry 4.0. This increased complexity in the production system also makes everyday work for shop-floor operators more complex. To take advantage of this complexity, shop-floor operators need to be properly supported in order to perform their important work. The shop-floor operators in this future complex manufacturing industry, the Operator 4.0, need to be supported with the implementation of new cognitive automation solutions. These automation solutions, together with the innovativeness of new processes and organizations will increase the competitiveness of the manufacturing industry. This paper discusses three different aspects of production innovation in the context of the needs and preferences of information for Operator 4.0. Conclusively, product innovations can be applied in the manufacturing processes, and thus becoming process innovations, but the implementation of such innovations require organizational innovations.

Place, publisher, year, edition, pages
Amsterdam: IOS Press, 2020
Series
Advances in Transdisciplinary Engineering, ISSN 2352-751X, E-ISSN 2352-7528 ; 13
Keywords
Production innovation, human-centred production, information dissemination, Industry 4.0, Operator 4.0
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
User Centred Product Design
Identifiers
urn:nbn:se:his:diva-19328 (URN)10.3233/ATDE200159 (DOI)001180173900019 ()2-s2.0-85098650326 (Scopus ID)978-1-64368-146-7 (ISBN)978-1-64368-147-4 (ISBN)
Conference
9th Swedish Production Symposium (SPS2020), 7-8 October 2020, Jönköping, Sweden
Funder
Vinnova, 2018-05026
Note

CC BY-NC 4.0

This work has been made possible with the support from VINNOVA in the project VIVA - the Virtual Vehicle Assembler, and by the participating organizations. This support is gratefully acknowledged.

Available from: 2020-12-16 Created: 2020-12-16 Last updated: 2024-05-16Bibliographically approved
Projects
VIVA - the Virtual Vehicle Assembler [2018-05026]; ; Publications
Iriondo Pascual, A. (2023). Simulation-based multi-objective optimization of productivity and worker well-being. (Doctoral dissertation). Skövde: University of SkövdeHanson, L., Högberg, D., Brolin, E., Billing, E., Iriondo Pascual, A. & Lamb, M. (2022). Current Trends in Research and Application of Digital Human Modeling. In: Nancy L. Black; W. Patrick Neumann; Ian Noy (Ed.), Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021): Volume V: Methods & Approaches. Paper presented at 21st Congress of the International Ergonomics Association (IEA 2021), 13-18 June (pp. 358-366). Cham: SpringerGarcia Rivera, F., Högberg, D., Lamb, M. & Perez Luque, E. (2022). DHM supported assessment of the effects of using an exoskeleton during work. International Journal of Human Factors Modelling and Simulation, 7(3/4), 231-246Hanson, L., Högberg, D., Iriondo Pascual, A., Brolin, A., Brolin, E. & Lebram, M. (2022). Integrating Physical Load Exposure Calculations and Recommendations in Digitalized Ergonomics Assessment Processes. In: Amos H. C. Ng; Anna Syberfeldt; Dan Högberg; Magnus Holm (Ed.), SPS2022: Proceedings of the 10th Swedish Production Symposium. Paper presented at 10th Swedish Production Symposium (SPS2022), Skövde, April 26–29 2022 (pp. 233-239). Amsterdam; Berlin; Washington, DC: IOS PressIriondo Pascual, A., Högberg, D., Syberfeldt, A., Brolin, E., Perez Luque, E., Hanson, L. & Lämkull, D. (2022). Multi-objective Optimization of Ergonomics and Productivity by Using an Optimization Framework. In: Nancy L. Black; W. Patrick Neumann; Ian Noy (Ed.), Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021): Volume V: Methods & Approaches. Paper presented at 21st Congress of the International Ergonomics Association (IEA 2021), 13-18 June, 2021 (pp. 374-378). Cham: SpringerGarcía Rivera, F., Lamb, M., Högberg, D. & Brolin, A. (2022). The Schematization of XR Technologies in the Context of Collaborative Design. In: Amos H. C. Ng; Anna Syberfeldt; Dan Högberg; Magnus Holm (Ed.), SPS2022: Proceedings of the 10th Swedish Production Symposium. Paper presented at 10th Swedish Production Symposium (SPS2022), Skövde, April 26–29 2022 (pp. 520-529). Amsterdam; Berlin; Washington, DC: IOS PressGarcia Rivera, F., Brolin, A., Perez Luque, E. & Högberg, D. (2021). A Framework to Model the Use of Exoskeletons in DHM Tools. In: Julia L. Wright; Daniel Barber; Sofia Scataglini; Sudhakar L. Rajulu (Ed.), Advances in Simulation and Digital Human Modeling: Proceedings of the AHFE 2021 Virtual Conferences on Human Factors and Simulation, and Digital Human Modeling and Applied Optimization, July 25-29, 2021, USA. Paper presented at AHFE International Conference on Human Factors and Simulation and the AHFE International Conference on Digital Human Modeling and Applied Optimization, 2021, Virtual, Online, 25 July 2021 - 29 July 2021, USA (pp. 312-319). Cham: SpringerPerez Luque, E., Högberg, D., Iriondo Pascual, A., Lämkull, D. & Garcia Rivera, F. (2020). Motion Behavior and Range of Motion when Using Exoskeletons in Manual Assembly Tasks. In: Kristina Säfsten; Fredrik Elgh (Ed.), SPS2020: Proceedings of the Swedish Production Symposium, October 7–8, 2020. Paper presented at 9th Swedish Production Symposium (SPS2020), 7-8 October 2020, Jönköping, Sweden (pp. 217-228). Amsterdam: IOS PressBrolin, E., Högberg, D. & Hanson, L. (2020). Skewed Boundary Confidence Ellipses for Anthropometric Data. In: Lars Hanson, Dan Högberg, Erik Brolin (Ed.), DHM2020: Proceedings of the 6th International Digital Human Modeling Symposium, August 31 – September 2, 2020. Paper presented at 6th International Digital Human Modeling Symposium, August 31 – September 2, 2020, Skövde, Sweden (pp. 18-27). Amsterdam: IOS PressReinhard, R., Mårdberg, P., García Rivera, F., Forsberg, T., Berce, A., Mingji, F. & Högberg, D. (2020). The Use and Usage of Virtual Reality Technologies in Planning and Implementing New Workstations. In: Lars Hanson; Dan Högberg; Erik Brolin (Ed.), DHM2020: Proceedings of the 6th International Digital Human Modeling Symposium, August 31 – September 2, 2020. Paper presented at Proceedings of the 6th International Digital Human Modeling Symposium, August 31 – September 2, 2020, Skövde, Sweden (pp. 388-397). Amsterdam: IOS Press
Synergy Virtual Ergonomics (SVE) [20180167]; University of Skövde; Publications
Iriondo Pascual, A. (2023). Simulation-based multi-objective optimization of productivity and worker well-being. (Doctoral dissertation). Skövde: University of SkövdeHanson, L., Högberg, D., Brolin, E., Billing, E., Iriondo Pascual, A. & Lamb, M. (2022). Current Trends in Research and Application of Digital Human Modeling. In: Nancy L. Black; W. Patrick Neumann; Ian Noy (Ed.), Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021): Volume V: Methods & Approaches. Paper presented at 21st Congress of the International Ergonomics Association (IEA 2021), 13-18 June (pp. 358-366). Cham: SpringerGarcia Rivera, F., Högberg, D., Lamb, M. & Perez Luque, E. (2022). DHM supported assessment of the effects of using an exoskeleton during work. International Journal of Human Factors Modelling and Simulation, 7(3/4), 231-246Marshall, R., Brolin, E., Summerskill, S. & Högberg, D. (2022). Digital Human Modelling: Inclusive Design and the Ageing Population (1ed.). In: Sofia Scataglini; Silvia Imbesi; Gonçalo Marques (Ed.), Internet of Things for Human-Centered Design: Application to Elderly Healthcare (pp. 73-96). Singapore: Springer NatureIriondo Pascual, A., Lind, A., Högberg, D., Syberfeldt, A. & Hanson, L. (2022). Enabling Concurrent Multi-Objective Optimization of Worker Well-Being and Productivity in DHM Tools. In: Amos H. C. Ng; Anna Syberfeldt; Dan Högberg; Magnus Holm (Ed.), SPS2022: Proceedings of the 10th Swedish Production Symposium. Paper presented at 10th Swedish Production Symposium (SPS2022), Skövde, April 26–29 2022 (pp. 404-414). Amsterdam; Berlin; Washington, DC: IOS PressIriondo Pascual, A., Smedberg, H., Högberg, D., Syberfeldt, A. & Lämkull, D. (2022). Enabling Knowledge Discovery in Multi-Objective Optimizations of Worker Well-Being and Productivity. Sustainability, 14(9), Article ID 4894. Lamb, M., Brundin, M., Perez Luque, E. & Billing, E. (2022). Eye-Tracking Beyond Peripersonal Space in Virtual Reality: Validation and Best Practices. Frontiers in Virtual Reality, 3, Article ID 864653. Hanson, L., Högberg, D., Iriondo Pascual, A., Brolin, A., Brolin, E. & Lebram, M. (2022). Integrating Physical Load Exposure Calculations and Recommendations in Digitalized Ergonomics Assessment Processes. In: Amos H. C. Ng; Anna Syberfeldt; Dan Högberg; Magnus Holm (Ed.), SPS2022: Proceedings of the 10th Swedish Production Symposium. Paper presented at 10th Swedish Production Symposium (SPS2022), Skövde, April 26–29 2022 (pp. 233-239). Amsterdam; Berlin; Washington, DC: IOS PressIriondo Pascual, A., Högberg, D., Syberfeldt, A., Brolin, E., Perez Luque, E., Hanson, L. & Lämkull, D. (2022). Multi-objective Optimization of Ergonomics and Productivity by Using an Optimization Framework. In: Nancy L. Black; W. Patrick Neumann; Ian Noy (Ed.), Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021): Volume V: Methods & Approaches. Paper presented at 21st Congress of the International Ergonomics Association (IEA 2021), 13-18 June, 2021 (pp. 374-378). Cham: SpringerGarcía Rivera, F., Lamb, M., Högberg, D. & Brolin, A. (2022). The Schematization of XR Technologies in the Context of Collaborative Design. In: Amos H. C. Ng; Anna Syberfeldt; Dan Högberg; Magnus Holm (Ed.), SPS2022: Proceedings of the 10th Swedish Production Symposium. Paper presented at 10th Swedish Production Symposium (SPS2022), Skövde, April 26–29 2022 (pp. 520-529). Amsterdam; Berlin; Washington, DC: IOS Press
Organisations

Search in DiVA

Show all publications