Högskolan i Skövde

his.sePublications
Change search
Link to record
Permanent link

Direct link
Högberg, Dan, ProfessorORCID iD iconorcid.org/0000-0003-4596-3815
Publications (10 of 154) Show all publications
Lind, A., Iriondo Pascual, A., Hanson, L., Högberg, D., Lämkull, D. & Syberfeldt, A. (2024). Multi-objective optimisation of a logistics area in the context of factory layout planning. Production & Manufacturing Research, 12(1), Article ID 2323484.
Open this publication in new window or tab >>Multi-objective optimisation of a logistics area in the context of factory layout planning
Show others...
2024 (English)In: Production & Manufacturing Research, ISSN 2169-3277, Vol. 12, no 1, article id 2323484Article in journal (Refereed) Published
Abstract [en]

The manufacturing factory layout planning process is commonly supported by the use of digital tools, enabling creation and testing of potential layouts before being realised in the real world. The process relies on engineers’ experience and inputs from several cross-disciplinary functions, meaning that it is subjective, iterative and prone to errors and delays. To address this issue, new tools and methods are needed to make the planning process more objective, efficient and able to consider multiple objectives simultaneously. This work suggests and demonstrates a simulation-based multi-objective optimisation approach that assists the generation and assessment of factory layout proposals, where objectives and constraints related to safety regulations, workers’ well-being and walking distance are considered simultaneously. The paper illustrates how layout planning for a logistics area can become a cross-disciplinary and transparent activity, while being automated to a higher degree, providing objective results to facilitate informed decision-making.

Place, publisher, year, edition, pages
Taylor & Francis Group, 2024
Keywords
factory layout, logistics area, multi-objective optimisation, simulation
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
User Centred Product Design; Virtual Production Development (VPD); VF-KDO
Identifiers
urn:nbn:se:his:diva-23640 (URN)10.1080/21693277.2024.2323484 (DOI)
Funder
Knowledge Foundation, 20200044Knowledge Foundation, 2018-0011
Note

CC BY 4.0

CONTACT Andreas Lind andreas.lind@his.se Global Industrial Development, Scania CV AB, Södertälje, Sweden

The authors appreciatively thank the support of Scania CV AB, the research school Smart Industry Sweden (20200044) and the research project Virtual Factories with Knowledge-Driven Optimisation (2018-0011) funded by the Knowledge Foundation via the University of Skövde. With this support the research was made possible.

The work was supported by the Stiftelsen för Kunskaps- och Kompetensutveckling [20200044]; Stiftelsen för Kunskaps- och Kompetensutveckling [2018-0011].

Available from: 2024-02-29 Created: 2024-02-29 Last updated: 2024-02-29Bibliographically approved
Lind, A., Hanson, L., Högberg, D., Lämkull, D., Mårtensson, P. & Syberfeldt, A. (2023). Digital support for rules and regulations when planning and designing factory layouts. Procedia CIRP, 120, 1445-1450
Open this publication in new window or tab >>Digital support for rules and regulations when planning and designing factory layouts
Show others...
2023 (English)In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 120, p. 1445-1450Article in journal (Refereed) Published
Abstract [en]

Factory layouts are frequently planned and designed in virtual environments, based on the experience of the layout planner. This planning and design process depends on information from several cross-disciplinary activities performed by several functions and experts, e.g., product development, manufacturing process planning, resource descriptions, ergonomics, and safety. Additionally, the layout planner also needs to consider applicable rules and regulations. This experience-based and manual approach to plan and design factory layouts, considering a multitude of inputs and parameters, is a cumbersome iterative process with a high risk of human error and faulty inputs and updates. The general trend in industry is to automate and assist users with their tasks and activities, deriving from concepts such as Industry 4.0 and Industry 5.0. This paper presents and demonstrates how digital support for rules and regulations can assist layout planners in factory layout work. The objective is to support the layout planner in accounting for area/volume reservations required to comply with rules and regulations for workers and equipment in the factory layout. This is a step in a wider initiative to provide enhanced digital support to layout planners, making the layout planning and design process more objective and efficient, and bridge gaps between cross-disciplinary planning and design activities.

Place, publisher, year, edition, pages
Elsevier, 2023
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
User Centred Product Design; Virtual Production Development (VPD); VF-KDO
Identifiers
urn:nbn:se:his:diva-23532 (URN)10.1016/j.procir.2023.09.191 (DOI)2-s2.0-85184599288 (Scopus ID)
Funder
Knowledge Foundation
Note

CC BY-NC-ND 4.0 DEED

Corresponding author: E-mail address: andreas.lind@scania.com

The authors appreciatively thank the support from Scania CV AB, the research school Smart Industry Sweden, and the VF-KDO (Virtual Factories with Knowledge-Driven Optimization) project funded by the Knowledge Foundation in Sweden; this support made the research possible.

Available from: 2024-01-15 Created: 2024-01-15 Last updated: 2024-02-22Bibliographically approved
Lind, A., Hanson, L., Högberg, D., Lämkull, D. & Syberfeldt, A. (2023). Extending and demonstrating an engineering communication framework utilising the digital twin concept in a context of factory layouts. International Journal of Services Operations and Informatics, 12(3), 201-224
Open this publication in new window or tab >>Extending and demonstrating an engineering communication framework utilising the digital twin concept in a context of factory layouts
Show others...
2023 (English)In: International Journal of Services Operations and Informatics, ISSN 1741-539X, E-ISSN 1741-5403, Vol. 12, no 3, p. 201-224Article in journal (Refereed) Published
Abstract [en]

The factory layout is frequently planned in virtual environments, based on the experience of software tool users. This planning process is cumbersome and iterative to collect the necessary information, with a high risk of faulty inputs and updates. The digital twin concept has been introduced in order to speed up information sharing within a company; it relies on connectivity. However, the concept is often misunderstood as just a 3D model of a virtual object, not including connectivity. The aim of this paper is to present an extended virtual and physical engineering communication framework including four concepts: digital model, digital pre-runner, digital shadow, and digital twin. The four concepts are demonstrated and described in order to facilitate understanding how data exchange between virtual and physical objects can work in the future and having up-to date virtual environments enables simulating, analysing, and improving on more realistic and accurate datasets.

Place, publisher, year, edition, pages
InderScience Publishers, 2023
Keywords
digital model, digital pre-runner, digital shadow, digital twin, factory layout
National Category
Production Engineering, Human Work Science and Ergonomics Other Computer and Information Science Information Systems Media and Communication Technology
Research subject
User Centred Product Design; Virtual Production Development (VPD); VF-KDO
Identifiers
urn:nbn:se:his:diva-22481 (URN)10.1504/IJSOI.2023.132345 (DOI)2-s2.0-85166580963 (Scopus ID)
Funder
Knowledge Foundation
Note

CC BY 4.0

This paper is a revised and expanded version of a paper entitled ‘Evaluating a digital twin concept for an automatic up-to-date factory layout setup’ presented at 10th Swedish Production Symposium (SPS2022), Skövde, Sweden, 26–29 April, 2022.

The authors gratefully thank the support of Scania CV AB, the Research School Smart Industry Sweden, and the VF-KDO Project (Virtual Factories with Knowledge-Driven Optimization) funded by the Knowledge Foundation in Sweden; this support made the research possible.

Available from: 2023-05-02 Created: 2023-05-02 Last updated: 2024-02-22Bibliographically approved
Holm, M., Ng, A. H. C., Högberg, D. & Syberfeldt, A. (Eds.). (2023). Special Issue: Digital Transformation Towards a Sustainable Human Centric and Resilient Production. Paper presented at Swedish Production Symposium 2022. InderScience Publishers
Open this publication in new window or tab >>Special Issue: Digital Transformation Towards a Sustainable Human Centric and Resilient Production
2023 (English)Collection (editor) (Refereed)
Abstract [en]

The realisation of a successful product requires collaboration between developers andproducers, taking account of stakeholder value, reinforcing the contribution of industry tosociety and enhancing the wellbeing of workers while respecting planetary boundaries.Founded in 2006, the Swedish Production Academy (SPA) aims to drive and developproduction research and education and to increase cooperation within the production area.SPA initiated and hosts the conference Swedish Production Symposium. This specialissue is based on invited papers from the 10th Swedish Production Symposium(SPS2022), held in Skövde, Sweden, from 26–29 April 2022. The overall theme forSPS2022 was ‘Industry 5.0 transformation – towards a sustainable, human-centric, andresilient production’.As stated by the European Commission the vision of Industry 5.0 recognises societalgoals. It goes beyond a techno-economic vision, industrial value chains and growthaiming for the industry to become a resilient provider of prosperity, respecting ourplanets boundaries, and placing the industrial worker, her well-being, at the centre of theproduction process.In this special issue, we set out to explore the transition to a resilient, sustainable andhuman centric industry. The first paper explores the need for a joint strategical vision thatinclude technology (selection, development, and implementation), organisation(structure, agility, management, stakeholder collaborations, work environment) andpeople (skills and competences, participation, innovation and creative collaborativeculture, and change readiness), to achieve a resilient and sustainable production systemeffectively and efficiently. The second paper discusses how reconfigurable manufacturingsystems can enable sustainable manufacturing and circularity, achieving highresponsiveness and cost efficiency. The third paper, a synthesis of universal workplacedesign in assembly, explores how human assembly workplaces can be designed in abetter way in regard to inclusion of diverse worker populations. The fourth paperdiscusses different meanings of digital transformation in manufacturing industry fromboth a theoretical and industrial perspective. The fifth paper explores challenges to designa product service system at an SME as an approach to support transition to Industry 5.0.The concluding paper in this special issue discusses a knowledge extraction platform forreproducible decision support based on data from multi-objective experiments.The organiser of SPS2022 has found these six outstanding papers to perfectly alignwith the theme ‘Industry 5.0 transformation’ and express their gratitude to theEditor-in-Chief of IJMR for accepting them for publication in this special issue.

Place, publisher, year, edition, pages
InderScience Publishers, 2023
Series
International Journal of Manufacturing Research, ISSN 1750-0591, E-ISSN 1750-0605 ; Vol. 18(4)
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
VF-KDO; User Centred Product Design; Virtual Production Development (VPD)
Identifiers
urn:nbn:se:his:diva-23455 (URN)
Conference
Swedish Production Symposium 2022
Available from: 2023-12-12 Created: 2023-12-12 Last updated: 2023-12-27Bibliographically approved
Mårdberg, P., Högberg, D., Carlson, J. S. & Söderberg, R. (2023). Towards Enhanced Functionality and Usability of Giving Manikin Task Instructions in a DHM Tool. In: Sofia Scataglini; Gregor Harih; Wim Saeys; Steven Truijen (Ed.), Advances in Digital Human Modeling: Proceedings of the 8th International Digital Human Modeling Symposium, 4-6 September 2023, Antwerp, Belgium. Paper presented at 8th International Digital Human Modeling Symposium, 4-6 September 2023, Antwerp, Belgium (pp. 44-51). Cham: Springer
Open this publication in new window or tab >>Towards Enhanced Functionality and Usability of Giving Manikin Task Instructions in a DHM Tool
2023 (English)In: Advances in Digital Human Modeling: Proceedings of the 8th International Digital Human Modeling Symposium, 4-6 September 2023, Antwerp, Belgium / [ed] Sofia Scataglini; Gregor Harih; Wim Saeys; Steven Truijen, Cham: Springer, 2023, p. 44-51Conference paper, Published paper (Refereed)
Abstract [en]

There are many approaches on how to make digital manikins replicate how real humans perform tasks. The manikin motions can, for instance, be computed by algorithms based on task instructions from the DHM tool user. In this study, we investigate possibilities for improving the task instruction language used in the DHM software tools. The study focuses on identifying opportunities and challenges for how the task instruction language can be improved, and the goal of the study is to establish research questions and to create a research roadmap. The aims of the research questions and associated research and development are: (i) to make it easier to give task instructions; (ii) to reduce the variance in simulations results between different DHM tool users; and (iii) to improve the trustworthiness of the simulation results, related to issues such as manikin behavior and estimated motion times. The potential approaches that have been identified, and will be elaborated and discussed in this paper, with the DHM software tool IPS IMMA as base, are: (i) to enable the DHM tool user to give task instructions on a higher abstraction level than today; (ii) to incorporate functionality to automatically represent likely human behavior; and (iii) to improve the accuracy of time estimation of task performance. 

Place, publisher, year, edition, pages
Cham: Springer, 2023
Series
Lecture Notes in Networks and Systems, ISSN 2367-3370, E-ISSN 2367-3389 ; 744
Keywords
Digital Human Modelling, Instruction Language, Intelligence, Simulation, Virtual Assembly, Behavioral research, Computer aided software engineering, Computer simulation languages, Computer software, E-learning, Virtual prototyping, Virtual reality, Abstraction level, Digital human models, Research and development, Research questions, Research roadmap, Software-tools, Modeling languages
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
User Centred Product Design
Identifiers
urn:nbn:se:his:diva-23291 (URN)10.1007/978-3-031-37848-5_5 (DOI)2-s2.0-85171969344 (Scopus ID)978-3-031-37850-8 (ISBN)978-3-031-37848-5 (ISBN)
Conference
8th International Digital Human Modeling Symposium, 4-6 September 2023, Antwerp, Belgium
Funder
Vinnova
Note

© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Correspondence Address: P. Mårdberg; Geometry and Motion Planning Group, Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Göteborg, 41288, Sweden; email: peter.mardberg@fcc.chalmers.se

This work was carried out within the VINNOVA-funded projects PLENUM and TIMEBLY. It is also part of the Sustainable Production Initiative and the Production Area of Advance at Chalmers University of Technology.

Available from: 2023-10-05 Created: 2023-10-05 Last updated: 2023-10-06Bibliographically approved
Lind, A., Elango, V., Hanson, L., Högberg, D., Lämkull, D., Mårtensson, P. & Syberfeldt, A. (2023). Virtual-Simulation-Based Multi-Objective Optimization of an Assembly Station in a Battery Production Factory. Systems, 11(8), Article ID 395.
Open this publication in new window or tab >>Virtual-Simulation-Based Multi-Objective Optimization of an Assembly Station in a Battery Production Factory
Show others...
2023 (English)In: Systems, E-ISSN 2079-8954, Vol. 11, no 8, article id 395Article in journal (Refereed) Published
Abstract [en]

The planning and design process of manufacturing factory layouts is commonly performed using digital tools, enabling engineers to define and test proposals in virtual environments before implementing them physically. However, this approach often relies on the experience of the engineers involved and input from various cross-disciplinary functions, leading to a time-consuming and subjective process with a high risk of human error. To address these challenges, new tools and methods are needed. The Industry 5.0 initiative aims to further automate and assist human tasks, reinforcing the human-centric perspective when making decisions that influence production environments and working conditions. This includes improving the layout planning process by making it more objective, efficient, and capable of considering multiple objectives simultaneously. This research presents a demonstrator solution for layout planning using digital support, incorporating a virtual multi-objective optimization approach to consider safety regulations, area boundaries, workers’ well-being, and walking distance. The demonstrator provides a cross-disciplinary and transparent approach to layout planning for an assembly station in the context of battery production. The demonstrator solution illustrates how layout planning can become a cross-disciplinary and transparent activity while being automated to a higher degree, providing results that support decision-making and balance cross-disciplinary requirements.

Place, publisher, year, edition, pages
MDPI, 2023
Keywords
multi-objective, optimization, simulation, Industry 5.0, factory layout
National Category
Production Engineering, Human Work Science and Ergonomics Robotics
Research subject
Virtual Production Development (VPD); User Centred Product Design; VF-KDO
Identifiers
urn:nbn:se:his:diva-23075 (URN)10.3390/systems11080395 (DOI)001056657200001 ()2-s2.0-85169108939 (Scopus ID)
Funder
Knowledge Foundation
Note

CC BY 4.0

Correspondence: andreas.lind@scania.com

This research was funded by Scania CB AB and the Knowledge Foundation via the University of Skövde, the research project Virtual Factories with Knowledge-Driven Optimization (2018-0011), and the industrial graduate school Smart Industry Sweden (20200044).

Available from: 2023-08-04 Created: 2023-08-04 Last updated: 2024-02-22Bibliographically approved
Perez Luque, E., Brolin, E., Högberg, D. & Lamb, M. (2022). Challenges for the Consideration of Ergonomics in Product Development in the Swedish Automotive Industry – An Interview Study. In: DESIGN2022: . Paper presented at DESIGN2022, 17th International Design Conference, May, 23-26, 2022, Croatia (pp. 2165-2174). Cambridge University Press, 2
Open this publication in new window or tab >>Challenges for the Consideration of Ergonomics in Product Development in the Swedish Automotive Industry – An Interview Study
2022 (English)In: DESIGN2022, Cambridge University Press, 2022, Vol. 2, p. 2165-2174Conference paper, Published paper (Refereed)
Abstract [en]

This paper presents an interview study aiming to understand the state of the art of how ergonomics designers work in the vehicle development process within the Swedish automotive industry. Ten ergonomic designers from seven different companies participated in the interview study. Results report the ergonomics designers' objectives, workflow, tools, challenges, and ideal work performance tool. We identify four main gaps and research directions that can enhance the current challenges: human behavior predictions, simulation tool usability, ergonomics evaluations, and integration between systems.

Place, publisher, year, edition, pages
Cambridge University Press, 2022
Series
Proceedings of the Design Society, E-ISSN 2732-527X ; Volume 2 - May 2022
Keywords
vehicle, ergonomics, human-centred design, simulation-based design, digital human modelling
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
User Centred Product Design; Interaction Lab (ILAB)
Identifiers
urn:nbn:se:his:diva-22133 (URN)10.1017/pds.2022.219 (DOI)2-s2.0-85131373032 (Scopus ID)
Conference
DESIGN2022, 17th International Design Conference, May, 23-26, 2022, Croatia
Funder
Knowledge Foundation
Note

estela.perez.luque@his.se

This work has been made possible with the support from Knowledge Foundation in the project ADOPTIVE-Automated Design and Optimisation of Vehicle Ergonomics and participating organizations. This support is gratefully acknowledged.

Available from: 2022-12-16 Created: 2022-12-16 Last updated: 2023-01-17Bibliographically approved
Hanson, L., Högberg, D., Brolin, E., Billing, E., Iriondo Pascual, A. & Lamb, M. (2022). Current Trends in Research and Application of Digital Human Modeling. In: Nancy L. Black; W. Patrick Neumann; Ian Noy (Ed.), Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021): Volume V: Methods & Approaches. Paper presented at 21st Congress of the International Ergonomics Association (IEA 2021), 13-18 June (pp. 358-366). Cham: Springer
Open this publication in new window or tab >>Current Trends in Research and Application of Digital Human Modeling
Show others...
2022 (English)In: Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021): Volume V: Methods & Approaches / [ed] Nancy L. Black; W. Patrick Neumann; Ian Noy, Cham: Springer, 2022, p. 358-366Conference paper, Published paper (Refereed)
Abstract [en]

The paper reports an investigation conducted during the DHM2020 Symposium regarding current trends in research and application of DHM in academia, software development, and industry. The results show that virtual reality (VR), augmented reality (AR), and digital twin are major current trends. Furthermore, results show that human diversity is considered in DHM using established methods. Results also show a shift from the assessment of static postures to assessment of sequences of actions, combined with a focus mainly on human well-being and only partly on system performance. Motion capture and motion algorithms are alternative technologies introduced to facilitate and improve DHM simulations. Results from the DHM simulations are mainly presented through pictures or animations.

Place, publisher, year, edition, pages
Cham: Springer, 2022
Series
Lecture Notes in Networks and Systems, ISSN 2367-3370, E-ISSN 2367-3389 ; 223
Keywords
Digital Human Modeling, Trends, Research, Development, Application
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
User Centred Product Design; Interaction Lab (ILAB); VF-KDO
Identifiers
urn:nbn:se:his:diva-19959 (URN)10.1007/978-3-030-74614-8_44 (DOI)2-s2.0-85111461730 (Scopus ID)978-3-030-74613-1 (ISBN)978-3-030-74614-8 (ISBN)
Conference
21st Congress of the International Ergonomics Association (IEA 2021), 13-18 June
Funder
Knowledge Foundation, 20180167Vinnova, 2018-05026Knowledge Foundation, 20200003
Note

© 2022

Available from: 2021-06-22 Created: 2021-06-22 Last updated: 2023-08-16Bibliographically approved
Hanson, L., Högberg, D., Brolin, A., Brolin, E., Lebram, M., Iriondo Pascual, A., . . . Delfs, N. (2022). Design concept evaluation in digital human modeling tools. In: Proceedings of the 7th International Digital Human Modeling Symposium (DHM 2022), August 29–30, 2022, Iowa City, Iowa, USA: . Paper presented at 7th International Digital Human Modeling Symposium (DHM 2022), August 29–30, 2022, Iowa City, Iowa, USA. The conference was followed by the Iowa Virtual Human Summit 2022. (pp. 1-9). University of Iowa Press, 7, Article ID 4.
Open this publication in new window or tab >>Design concept evaluation in digital human modeling tools
Show others...
2022 (English)In: Proceedings of the 7th International Digital Human Modeling Symposium (DHM 2022), August 29–30, 2022, Iowa City, Iowa, USA, University of Iowa Press, 2022, Vol. 7, p. 1-9, article id 4Conference paper, Published paper (Refereed)
Abstract [en]

In the design process of products and production systems, the activity to systematically evaluate initial alternative design concepts is an important step. The digital human modeling (DHM) tools include several different types of assessment methods in order to evaluate product and production systems. Despite this, and due to the fact that a DHM tool in essence is a computer-supported design and analysis tool, none of the DHM tools provide the functionality to, in a systematic way, use the results generated in the DHM tool to compare design concepts between each other. The aim of this paper is to illustrate how a systematic concept evaluation method is integrated in a DHM tool, and to exemplify how it can be used to systematically assess design alternatives. Pugh´s method was integrated into the IPS software with LUA scripting to systematically compare design concepts. Four workstation layout concepts were generated by four engineers. The four concepts were systematically evaluated with two methods focusing on human well-being and two methods focusing on system performance and cost. The result is very promising. The demonstrator illustrates that it is possible to perform a systematic concept evaluation based on human well-being, overall system performance, and other parameters, where some of the data is automatically provided by the DHM tool and other data manually. The demonstrator can also be used to evaluate only one design concept, where it provides the software user and the decision maker with an objective and visible overview of the success of the design proposal from the perspective of several evaluation methods.

Place, publisher, year, edition, pages
University of Iowa Press, 2022
Keywords
IPS IMMA, ergonomics, simulation, design, evaluation
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
User Centred Product Design; Interaction Lab (ILAB); VF-KDO
Identifiers
urn:nbn:se:his:diva-21828 (URN)10.17077/dhm.31747 (DOI)978-0-9840378-4-1 (ISBN)
Conference
7th International Digital Human Modeling Symposium (DHM 2022), August 29–30, 2022, Iowa City, Iowa, USA. The conference was followed by the Iowa Virtual Human Summit 2022.
Note

Copyright © 2022 the author(s) 

Available from: 2022-09-20 Created: 2022-09-20 Last updated: 2023-08-16Bibliographically approved
Brolin, E., Delfs, N., Rebas, M., Karlsson, T., Hanson, L. & Högberg, D. (2022). Development of body shape data based digital human models for ergonomics simulations. In: Proceedings of the 7th International Digital Human Modeling Symposium (DHM 2022), August 29–30, 2022, Iowa City, Iowa, USA: . Paper presented at 7th International Digital Human Modeling Symposium (DHM 2022), August 29–30, 2022, Iowa City, Iowa, USA. The conference was followed by the Iowa Virtual Human Summit 2022. (pp. 1-9). University of Iowa Press, 7, Article ID 13.
Open this publication in new window or tab >>Development of body shape data based digital human models for ergonomics simulations
Show others...
2022 (English)In: Proceedings of the 7th International Digital Human Modeling Symposium (DHM 2022), August 29–30, 2022, Iowa City, Iowa, USA, University of Iowa Press, 2022, Vol. 7, p. 1-9, article id 13Conference paper, Published paper (Refereed)
Abstract [en]

This paper presents the development of body-shape-data-based digital human models, i.e. manikins, for ergonomics simulations. In digital human modeling (DHM) tools, it is important that the generated manikin models are accurate and representative for different body sizes and shapes as well as being able to scale and move during motion simulations. The developed DHM models described in this paper are based on body scan data from the CAESAR anthropometric survey. The described development process consists of six steps and includes alignment of body scans, fitting of template mesh through homologous body modeling, statistical prediction of body shape, joint centre prediction, adjustment of posture to T-pose, and, finally, generation of a relation between predicted mesh and manikin mesh. The implemented method can be used to create any type of manikin size that can be directly used in a simulation. To evaluate the results, a comparison was done of original body scans and statistically predicted meshes generated in an intermediary step, as well as the resulting DHM manikins. The accuracy of the statistically predicted meshes are relatively good, even though differences can be seen, mostly related to postural differences and differences around smaller areas with distinct shapes. The biggest differences between the final manikin models and the original scans can be found in the shoulder and abdominal areas, in addition to the significantly different initial posture that the manikin models have. To further improve and evaluate the generated manikin models, additional body scan data sets that include more diverse postures would be useful. DHM tool functionality could also be improved to enable evaluation of the accuracy of the generated manikin models, possibly resulting in DHM tools that are more compliant with standard documents. At the same time, standard documents might need to be updated in some aspects to include more three-dimensional accuracy analysis.

Place, publisher, year, edition, pages
University of Iowa Press, 2022
Keywords
Anthropometry, 3D body scanning, body shape, statistical body model, joint centre
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
User Centred Product Design
Identifiers
urn:nbn:se:his:diva-21829 (URN)10.17077/dhm.31759 (DOI)978-0-9840378-4-1 (ISBN)
Conference
7th International Digital Human Modeling Symposium (DHM 2022), August 29–30, 2022, Iowa City, Iowa, USA. The conference was followed by the Iowa Virtual Human Summit 2022.
Note

Copyright © 2022 the author(s) 

Available from: 2022-09-20 Created: 2022-09-20 Last updated: 2022-10-17Bibliographically approved
Projects
SUMMIT – SUstainability, sMart Maintenance and factory design Testbed; Publications
Iriondo Pascual, A., Högberg, D., Syberfeldt, A., Brolin, E. & Hanson, L. (2020). Application of Multi-objective Optimization on Ergonomics in Production: A Case Study. In: Massimo Di Nicolantonio; Emilio Rossi; Thomas Alexander (Ed.), Advances in Additive Manufacturing, Modeling Systems and 3D Prototyping: Proceedings of the AHFE 2019 International Conference on Additive Manufacturing, Modeling Systems and 3D Prototyping, July 24-28, 2019, Washington D.C., USA. Paper presented at International Conference on Applied Human Factors and Ergonomics (AHFE), Washington D.C, USA, July 24-28, 2019 (pp. 584-594). Springer, 975Perez Luque, E., Högberg, D., Iriondo Pascual, A., Lämkull, D. & Garcia Rivera, F. (2020). Motion Behavior and Range of Motion when Using Exoskeletons in Manual Assembly Tasks. In: Kristina Säfsten; Fredrik Elgh (Ed.), SPS2020: Proceedings of the Swedish Production Symposium, October 7–8, 2020. Paper presented at 9th Swedish Production Symposium (SPS2020), 7-8 October 2020, Jönköping, Sweden (pp. 217-228). Amsterdam: IOS PressReinhard, R., Mårdberg, P., García Rivera, F., Forsberg, T., Berce, A., Mingji, F. & Högberg, D. (2020). The Use and Usage of Virtual Reality Technologies in Planning and Implementing New Workstations. In: Lars Hanson; Dan Högberg; Erik Brolin (Ed.), DHM2020: Proceedings of the 6th International Digital Human Modeling Symposium, August 31 – September 2, 2020. Paper presented at Proceedings of the 6th International Digital Human Modeling Symposium, August 31 – September 2, 2020, Skövde, Sweden (pp. 388-397). Amsterdam: IOS PressGarcia Rivera, F., Brolin, E., Syberfeldt, A., Högberg, D., Iriondo Pascual, A. & Perez Luque, E. (2020). Using Virtual Reality and Smart Textiles to Assess the Design of Workstations. In: Kristina Säfsten, Fredrik Elgh (Ed.), SPS2020: Proceedings of the Swedish Production Symposium, October 7–8, 2020. Paper presented at 9th Swedish Production Symposium (SPS2020), October 7–8, 2020  (pp. 145-154). Amsterdam: IOS Press, 13
MOSIM – Modular Simulation of Natural Human Motions; ; Publications
Iriondo Pascual, A. (2023). Simulation-based multi-objective optimization of productivity and worker well-being. (Doctoral dissertation). Skövde: University of SkövdeIriondo Pascual, A., Lind, A., Högberg, D., Syberfeldt, A. & Hanson, L. (2022). Enabling Concurrent Multi-Objective Optimization of Worker Well-Being and Productivity in DHM Tools. In: Amos H. C. Ng; Anna Syberfeldt; Dan Högberg; Magnus Holm (Ed.), SPS2022: Proceedings of the 10th Swedish Production Symposium. Paper presented at 10th Swedish Production Symposium (SPS2022), Skövde, April 26–29 2022 (pp. 404-414). Amsterdam; Berlin; Washington, DC: IOS PressIriondo Pascual, A., Smedberg, H., Högberg, D., Syberfeldt, A. & Lämkull, D. (2022). Enabling Knowledge Discovery in Multi-Objective Optimizations of Worker Well-Being and Productivity. Sustainability, 14(9), Article ID 4894. Iriondo Pascual, A., Högberg, D., Syberfeldt, A., Brolin, E., Perez Luque, E., Hanson, L. & Lämkull, D. (2022). Multi-objective Optimization of Ergonomics and Productivity by Using an Optimization Framework. In: Nancy L. Black; W. Patrick Neumann; Ian Noy (Ed.), Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021): Volume V: Methods & Approaches. Paper presented at 21st Congress of the International Ergonomics Association (IEA 2021), 13-18 June, 2021 (pp. 374-378). Cham: SpringerIriondo Pascual, A., Högberg, D., Lämkull, D., Perez Luque, E., Syberfeldt, A. & Hanson, L. (2021). Optimization of Productivity and Worker Well-Being by Using a Multi-Objective Optimization Framework. IISE Transactions on Occupational Ergonomics and Human Factors, 9(3-4), 143-153Iriondo Pascual, A., Högberg, D., Syberfeldt, A., García Rivera, F., Pérez Luque, E. & Hanson, L. (2020). Implementation of Ergonomics Evaluation Methods in a Multi-Objective Optimization Framework. In: Lars Hanson, Dan Högberg, Erik Brolin (Ed.), DHM2020: Proceedings of the 6th International Digital Human Modeling Symposium, August 31 - September 2, 2020. Paper presented at 6th International Digital Human Modeling Symposium, August 31 - September 2, 2020, Skövde, Sweden (pp. 361-371). Amsterdam: IOS PressLjung, O., Iriondo Pascual, A., Högberg, D., Delfs, N., Forsberg, T., Johansson, P., . . . Hanson, L. (2020). Integration of Simulation and Manufacturing Engineering Software - Allowing Work Place Optimization Based on Time and Ergonomic Parameters. In: Lars Hanson; Dan Högberg; Erik Brolin (Ed.), DHM2020: Proceedings of the 6th International Digital Human Modeling Symposium, August 31 - September 2, 2020. Paper presented at 6th International Digital Human Modeling Symposium, August 31 - September 2, 2020, Skövde, Sweden (pp. 342-347). Amsterdam: IOS PressIriondo Pascual, A., Högberg, D., Syberfeldt, A., Brolin, E. & Hanson, L. (2020). Optimizing Ergonomics and Productivity by Connecting Digital Human Modeling and Production Flow Simulation Software. In: Kristina Säfsten; Fredrik Elgh (Ed.), SPS2020: Proceedings of the Swedish Production Symposium, October 7–8, 2020. Paper presented at Swedish Production Symposium, October 7–8, 2020 (pp. 193-204). Amsterdam: IOS Press
Virtual factories with knowledge-driven optimization (VF-KDO); University of Skövde; Publications
Nourmohammadi, A., Fathi, M. & Ng, A. H. C. (2024). Balancing and scheduling human-robot collaborated assembly lines with layout and objective consideration. Computers & industrial engineering, 187, Article ID 109775. Lind, A., Iriondo Pascual, A., Hanson, L., Högberg, D., Lämkull, D. & Syberfeldt, A. (2024). Multi-objective optimisation of a logistics area in the context of factory layout planning. Production & Manufacturing Research, 12(1), Article ID 2323484. Barrera Diaz, C. A., Nourmohammadi, A., Smedberg, H., Aslam, T. & Ng, A. H. C. (2023). An Enhanced Simulation-Based Multi-Objective Optimization Approach with Knowledge Discovery for Reconfigurable Manufacturing Systems. Mathematics, 11(6), Article ID 1527. Lind, A., Hanson, L., Högberg, D., Lämkull, D., Mårtensson, P. & Syberfeldt, A. (2023). Digital support for rules and regulations when planning and designing factory layouts. Procedia CIRP, 120, 1445-1450Redondo Verdú, C., Sempere Maciá, N., Strand, M., Holm, M., Schmidt, B. & Olsson, J. (2023). Enhancing Manual Assembly Training using Mixed Reality and Virtual Sensors. Paper presented at 17th CIRP Conference on Intelligent Computation in Manufacturing Engineering - CIRP ICME '23, Gulf of Naples, Italy, 12 - 14 July 2023. Procedia CIRPLind, A., Hanson, L., Högberg, D., Lämkull, D. & Syberfeldt, A. (2023). Extending and demonstrating an engineering communication framework utilising the digital twin concept in a context of factory layouts. International Journal of Services Operations and Informatics, 12(3), 201-224Danielsson, O., Syberfeldt, A., Holm, M. & Thorvald, P. (2023). Integration of Augmented Reality Smart Glasses as Assembly Support: A Framework Implementation in a Quick Evaluation Tool. International Journal of Manufacturing Research, 18(2), 144-164Smedberg, H. & Bandaru, S. (2023). Interactive knowledge discovery and knowledge visualization for decision support in multi-objective optimization. European Journal of Operational Research, 306(3), 1311-1329Smedberg, H. (2023). Knowledge discovery for interactive decision support and knowledge-driven optimization. (Doctoral dissertation). Skövde: University of SkövdeSmedberg, H., Bandaru, S., Riveiro, M. & Ng, A. H. C. (2023). Mimer: A web-based tool for knowledge discovery in multi-criteria decision support. IEEE Computational Intelligence Magazine
VIVA - the Virtual Vehicle Assembler [2018-05026]; ; Publications
Iriondo Pascual, A. (2023). Simulation-based multi-objective optimization of productivity and worker well-being. (Doctoral dissertation). Skövde: University of SkövdeHanson, L., Högberg, D., Brolin, E., Billing, E., Iriondo Pascual, A. & Lamb, M. (2022). Current Trends in Research and Application of Digital Human Modeling. In: Nancy L. Black; W. Patrick Neumann; Ian Noy (Ed.), Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021): Volume V: Methods & Approaches. Paper presented at 21st Congress of the International Ergonomics Association (IEA 2021), 13-18 June (pp. 358-366). Cham: SpringerGarcia Rivera, F., Högberg, D., Lamb, M. & Perez Luque, E. (2022). DHM supported assessment of the effects of using an exoskeleton during work. International Journal of Human Factors Modelling and Simulation, 7(3/4), 231-246Hanson, L., Högberg, D., Iriondo Pascual, A., Brolin, A., Brolin, E. & Lebram, M. (2022). Integrating Physical Load Exposure Calculations and Recommendations in Digitalized Ergonomics Assessment Processes. In: Amos H. C. Ng; Anna Syberfeldt; Dan Högberg; Magnus Holm (Ed.), SPS2022: Proceedings of the 10th Swedish Production Symposium. Paper presented at 10th Swedish Production Symposium (SPS2022), Skövde, April 26–29 2022 (pp. 233-239). Amsterdam; Berlin; Washington, DC: IOS PressIriondo Pascual, A., Högberg, D., Syberfeldt, A., Brolin, E., Perez Luque, E., Hanson, L. & Lämkull, D. (2022). Multi-objective Optimization of Ergonomics and Productivity by Using an Optimization Framework. In: Nancy L. Black; W. Patrick Neumann; Ian Noy (Ed.), Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021): Volume V: Methods & Approaches. Paper presented at 21st Congress of the International Ergonomics Association (IEA 2021), 13-18 June, 2021 (pp. 374-378). Cham: SpringerGarcía Rivera, F., Lamb, M., Högberg, D. & Brolin, A. (2022). The Schematization of XR Technologies in the Context of Collaborative Design. In: Amos H. C. Ng; Anna Syberfeldt; Dan Högberg; Magnus Holm (Ed.), SPS2022: Proceedings of the 10th Swedish Production Symposium. Paper presented at 10th Swedish Production Symposium (SPS2022), Skövde, April 26–29 2022 (pp. 520-529). Amsterdam; Berlin; Washington, DC: IOS PressGarcia Rivera, F., Brolin, A., Perez Luque, E. & Högberg, D. (2021). A Framework to Model the Use of Exoskeletons in DHM Tools. In: Julia L. Wright; Daniel Barber; Sofia Scataglini; Sudhakar L. Rajulu (Ed.), Advances in Simulation and Digital Human Modeling: Proceedings of the AHFE 2021 Virtual Conferences on Human Factors and Simulation, and Digital Human Modeling and Applied Optimization, July 25-29, 2021, USA. Paper presented at AHFE International Conference on Human Factors and Simulation and the AHFE International Conference on Digital Human Modeling and Applied Optimization, 2021, Virtual, Online, 25 July 2021 - 29 July 2021, USA (pp. 312-319). Cham: SpringerPerez Luque, E., Högberg, D., Iriondo Pascual, A., Lämkull, D. & Garcia Rivera, F. (2020). Motion Behavior and Range of Motion when Using Exoskeletons in Manual Assembly Tasks. In: Kristina Säfsten; Fredrik Elgh (Ed.), SPS2020: Proceedings of the Swedish Production Symposium, October 7–8, 2020. Paper presented at 9th Swedish Production Symposium (SPS2020), 7-8 October 2020, Jönköping, Sweden (pp. 217-228). Amsterdam: IOS PressBrolin, E., Högberg, D. & Hanson, L. (2020). Skewed Boundary Confidence Ellipses for Anthropometric Data. In: Lars Hanson, Dan Högberg, Erik Brolin (Ed.), DHM2020: Proceedings of the 6th International Digital Human Modeling Symposium, August 31 – September 2, 2020. Paper presented at 6th International Digital Human Modeling Symposium, August 31 – September 2, 2020, Skövde, Sweden (pp. 18-27). Amsterdam: IOS PressReinhard, R., Mårdberg, P., García Rivera, F., Forsberg, T., Berce, A., Mingji, F. & Högberg, D. (2020). The Use and Usage of Virtual Reality Technologies in Planning and Implementing New Workstations. In: Lars Hanson; Dan Högberg; Erik Brolin (Ed.), DHM2020: Proceedings of the 6th International Digital Human Modeling Symposium, August 31 – September 2, 2020. Paper presented at Proceedings of the 6th International Digital Human Modeling Symposium, August 31 – September 2, 2020, Skövde, Sweden (pp. 388-397). Amsterdam: IOS Press
Synergy Virtual Ergonomics (SVE) [20180167]; University of Skövde; Publications
Iriondo Pascual, A. (2023). Simulation-based multi-objective optimization of productivity and worker well-being. (Doctoral dissertation). Skövde: University of SkövdeHanson, L., Högberg, D., Brolin, E., Billing, E., Iriondo Pascual, A. & Lamb, M. (2022). Current Trends in Research and Application of Digital Human Modeling. In: Nancy L. Black; W. Patrick Neumann; Ian Noy (Ed.), Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021): Volume V: Methods & Approaches. Paper presented at 21st Congress of the International Ergonomics Association (IEA 2021), 13-18 June (pp. 358-366). Cham: SpringerGarcia Rivera, F., Högberg, D., Lamb, M. & Perez Luque, E. (2022). DHM supported assessment of the effects of using an exoskeleton during work. International Journal of Human Factors Modelling and Simulation, 7(3/4), 231-246Marshall, R., Brolin, E., Summerskill, S. & Högberg, D. (2022). Digital Human Modelling: Inclusive Design and the Ageing Population (1ed.). In: Sofia Scataglini; Silvia Imbesi; Gonçalo Marques (Ed.), Internet of Things for Human-Centered Design: Application to Elderly Healthcare (pp. 73-96). Singapore: Springer NatureIriondo Pascual, A., Lind, A., Högberg, D., Syberfeldt, A. & Hanson, L. (2022). Enabling Concurrent Multi-Objective Optimization of Worker Well-Being and Productivity in DHM Tools. In: Amos H. C. Ng; Anna Syberfeldt; Dan Högberg; Magnus Holm (Ed.), SPS2022: Proceedings of the 10th Swedish Production Symposium. Paper presented at 10th Swedish Production Symposium (SPS2022), Skövde, April 26–29 2022 (pp. 404-414). Amsterdam; Berlin; Washington, DC: IOS PressIriondo Pascual, A., Smedberg, H., Högberg, D., Syberfeldt, A. & Lämkull, D. (2022). Enabling Knowledge Discovery in Multi-Objective Optimizations of Worker Well-Being and Productivity. Sustainability, 14(9), Article ID 4894. Lamb, M., Brundin, M., Perez Luque, E. & Billing, E. (2022). Eye-Tracking Beyond Peripersonal Space in Virtual Reality: Validation and Best Practices. Frontiers in Virtual Reality, 3, Article ID 864653. Hanson, L., Högberg, D., Iriondo Pascual, A., Brolin, A., Brolin, E. & Lebram, M. (2022). Integrating Physical Load Exposure Calculations and Recommendations in Digitalized Ergonomics Assessment Processes. In: Amos H. C. Ng; Anna Syberfeldt; Dan Högberg; Magnus Holm (Ed.), SPS2022: Proceedings of the 10th Swedish Production Symposium. Paper presented at 10th Swedish Production Symposium (SPS2022), Skövde, April 26–29 2022 (pp. 233-239). Amsterdam; Berlin; Washington, DC: IOS PressIriondo Pascual, A., Högberg, D., Syberfeldt, A., Brolin, E., Perez Luque, E., Hanson, L. & Lämkull, D. (2022). Multi-objective Optimization of Ergonomics and Productivity by Using an Optimization Framework. In: Nancy L. Black; W. Patrick Neumann; Ian Noy (Ed.), Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021): Volume V: Methods & Approaches. Paper presented at 21st Congress of the International Ergonomics Association (IEA 2021), 13-18 June, 2021 (pp. 374-378). Cham: SpringerGarcía Rivera, F., Lamb, M., Högberg, D. & Brolin, A. (2022). The Schematization of XR Technologies in the Context of Collaborative Design. In: Amos H. C. Ng; Anna Syberfeldt; Dan Högberg; Magnus Holm (Ed.), SPS2022: Proceedings of the 10th Swedish Production Symposium. Paper presented at 10th Swedish Production Symposium (SPS2022), Skövde, April 26–29 2022 (pp. 520-529). Amsterdam; Berlin; Washington, DC: IOS Press
ADOPTIVE – Automated Design & Optimisation of Vehicle Ergonomics [20200003]; University of Skövde; Publications
Perez Luque, E., Brolin, E., Högberg, D. & Lamb, M. (2022). Challenges for the Consideration of Ergonomics in Product Development in the Swedish Automotive Industry – An Interview Study. In: DESIGN2022: . Paper presented at DESIGN2022, 17th International Design Conference, May, 23-26, 2022, Croatia (pp. 2165-2174). Cambridge University Press, 2Hanson, L., Högberg, D., Brolin, E., Billing, E., Iriondo Pascual, A. & Lamb, M. (2022). Current Trends in Research and Application of Digital Human Modeling. In: Nancy L. Black; W. Patrick Neumann; Ian Noy (Ed.), Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021): Volume V: Methods & Approaches. Paper presented at 21st Congress of the International Ergonomics Association (IEA 2021), 13-18 June (pp. 358-366). Cham: SpringerMarshall, R., Brolin, E., Summerskill, S. & Högberg, D. (2022). Digital Human Modelling: Inclusive Design and the Ageing Population (1ed.). In: Sofia Scataglini; Silvia Imbesi; Gonçalo Marques (Ed.), Internet of Things for Human-Centered Design: Application to Elderly Healthcare (pp. 73-96). Singapore: Springer NatureKolbeinsson, A., Brolin, E. & Lindblom, J. (2021). Data-Driven Personas: Expanding DHM for a Holistic Approach. In: Julia L. Wright; Daniel Barber; Sofia Scataglini; Sudhakar L. Rajulu (Ed.), Advances in Simulation and Digital Human Modeling: Proceedings of the AHFE 2021 Virtual Conferences on Human Factors and Simulation, and Digital Human Modeling and Applied Optimization, July 25-29, 2021, USA. Paper presented at International Conference on Applied Human Factors and Ergonomics (AHFE 2021), USA, July 25-29, 2021. (pp. 296-303). Springer, 264Brolin, E., Högberg, D. & Hanson, L. (2020). Skewed Boundary Confidence Ellipses for Anthropometric Data. In: Lars Hanson, Dan Högberg, Erik Brolin (Ed.), DHM2020: Proceedings of the 6th International Digital Human Modeling Symposium, August 31 – September 2, 2020. Paper presented at 6th International Digital Human Modeling Symposium, August 31 – September 2, 2020, Skövde, Sweden (pp. 18-27). Amsterdam: IOS PressBrolin, E., Högberg, D. & Nurbo, P. (2020). Statistical Posture Prediction of Vehicle Occupants in Digital Human Modelling Tools. In: Vincent G. Duffy (Ed.), Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Posture, Motion and Health: 11th International Conference, DHM 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, July 19–24, 2020, Proceedings, Part I. Paper presented at 11th International Conference, DHM 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, July 19–24, 2020 (pp. 3-17). Cham: Springer
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0003-4596-3815

Search in DiVA

Show all publications