Open this publication in new window or tab >>Show others...
2018 (English)Report (Other academic)
Abstract [en]
Smart grid employs ICT infrastructure and network connectivity to optimize efficiency and deliver new functionalities. This evolu- tion is associated with an increased risk for cybersecurity threats that may hamper smart grid operations. Power utility providers need tools for assessing risk of prevailing cyberthreats over ICT infrastructures. The need for frameworks to guide the develop- ment of these tools is essential to define and reveal vulnerability analysis indicators. We propose a data-driven approach for design- ing testbeds to evaluate the vulnerability of cyberphysical systems against cyberthreats. The proposed framework uses data reported from multiple components of cyberphysical system architecture layers, including physical, control, and cyber layers. At the phys- ical layer, we consider component inventory and related physi- cal flows. At the control level, we consider control data, such as SCADA data flows in industrial and critical infrastructure control systems. Finally, at the cyber layer level, we consider existing secu- rity and monitoring data from cyber-incident event management tools, which are increasingly embedded into the control fabrics of cyberphysical systems.
Place, publisher, year, edition, pages
Skövde: University of Skövde, 2018. p. 18
Series
IIT Technical Reports ; HS-IIT-TR-18-004
Keywords
vulnerability analysis, cyber-threats, cyberphysical systems, clustering, multiagent systems
National Category
Computer and Information Sciences
Research subject
Distributed Real-Time Systems; Information Systems
Identifiers
urn:nbn:se:his:diva-16092 (URN)
Projects
This research has been supported in part by the EU ISF Project A431.678/2016 ELVIRA (Threat modeling and resilience of critical infrastructures), coordinated by Polismyndigheten/Sweden
Note
I publikationen: HS-IIT-18-004
2018-08-292018-08-292023-01-02Bibliographically approved