his.sePublications
Change search
Link to record
Permanent link

Direct link
BETA
Publications (10 of 19) Show all publications
Jiang, Y., Jeusfeld, M. A., Atif, Y., Ding, J., Brax, C. & Nero, E. (2018). A Language and Repository for Cyber Security of Smart Grids. In: Selmin Nurcan, Pontus Johnson (Ed.), 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC 2018): . Paper presented at 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC), Stockholm, Sweden, October 16-19, 2018 (pp. 164-170). Los Alamitos, CA: IEEE
Open this publication in new window or tab >>A Language and Repository for Cyber Security of Smart Grids
Show others...
2018 (English)In: 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC 2018) / [ed] Selmin Nurcan, Pontus Johnson, Los Alamitos, CA: IEEE, 2018, p. 164-170Conference paper, Published paper (Refereed)
Abstract [en]

Power grids form the central critical infrastructure in all developed economies. Disruptions of power supply can cause major effects on the economy and the livelihood of citizens. At the same time, power grids are being targeted by sophisticated cyber attacks. To counter these threats, we propose a domain-specific language and a repository to represent power grids and related IT components that control the power grid. We apply our tool to a standard example used in the literature to assess its expressiveness.

Place, publisher, year, edition, pages
Los Alamitos, CA: IEEE, 2018
Series
Proceedings (IEEE International Enterprise Distributed Object Computing Conference), ISSN 2325-6354, E-ISSN 2325-6362
Keywords
cyber security, enterprise architecture, domain-specific language, taxonomy
National Category
Computer and Information Sciences
Research subject
Distributed Real-Time Systems; Information Systems
Identifiers
urn:nbn:se:his:diva-16403 (URN)10.1109/EDOC.2018.00029 (DOI)2-s2.0-85059076918 (Scopus ID)978-1-5386-4139-2 (ISBN)
Conference
2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC), Stockholm, Sweden, October 16-19, 2018
Projects
EU ISF Project A431.678/2016 ELVIRA
Note

Funded by EU Internal Security Funds

Available from: 2018-11-16 Created: 2018-11-16 Last updated: 2019-02-08Bibliographically approved
Jiang, Y., Atif, Y. & Ding, J. (2018). Agent Based Testbed Design for Cyber Vulnerability Assessment in Smart-Grids. In: : . Paper presented at CySeP summer school 2018/SWITIS, CySeP, 2018.
Open this publication in new window or tab >>Agent Based Testbed Design for Cyber Vulnerability Assessment in Smart-Grids
2018 (English)Conference paper, Poster (with or without abstract) (Other academic)
Abstract [en]

Smart grid employs Information and Communication Technology (ICT) infrastructure and network connectivity to optimize efficiency and deliver new functionalities. This evolution is associated with an increased risk for cybersecurity threats that may hamper smart grid operations. Power utility providers need tools for assessing risk of prevailing cyberthreats over ICT infrastructures. The need for frameworks to guide the development of these tools is essential to define and reveal vulnerability analysis indicators. We propose a data-driven approach for designing testbeds to allow the simulation of cyberattacks in order to evaluate the vulnerability and the impact of cyber threat attacks. The proposed framework uses data reported from multiple smart grid components at different smart grid architecture layers, including physical, control, and cyber layers. The multi-agent based framework proposed in this paper would analyze the conglomeration of these data reports to assert malicious attacks.

National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
INF303 Information Security; Distributed Real-Time Systems
Identifiers
urn:nbn:se:his:diva-16069 (URN)
Conference
CySeP summer school 2018/SWITIS, CySeP, 2018
Projects
ELVIRA (http://www.his.se/en/Research/informatics/Distributed-Real-Time-Systems/Infrastructure-resilience/)
Available from: 2018-08-22 Created: 2018-08-22 Last updated: 2018-11-21Bibliographically approved
Jiang, Y., Ding, J., Atif, Y., Jeusfeld, M., Andler, S., Lindström, B., . . . Haglund, D. (2018). Complex Dependencies Analysis: Technical Description of Complex Dependencies in Critical Infrastructures, i.e. Smart Grids. Work Package 2.1 of the ELVIRA Project. Skövde: University of Skövde
Open this publication in new window or tab >>Complex Dependencies Analysis: Technical Description of Complex Dependencies in Critical Infrastructures, i.e. Smart Grids. Work Package 2.1 of the ELVIRA Project
Show others...
2018 (English)Report (Other academic)
Abstract [en]

This document reports a technical description of ELVIRA project results obtained as part of Work-package 2.1 entitled “Complex Dependencies Analysis”. In this technical report, we review attempts in recent researches where connections are regarded as influencing factors to  IT systems monitoring critical infrastructure, based on which potential dependencies and resulting disturbances are identified and categorized. Each kind of dependence has been discussed based on our own entity based model. Among those dependencies, logical and functional connections have been analysed with more details on modelling and simulation techniques.

Place, publisher, year, edition, pages
Skövde: University of Skövde, 2018. p. 22
Series
IIT Technical Reports ; HS-IIT-TR-18-003
Keywords
Dependencies, Interdependencies, Modelling and Simulation, Influence Factors
National Category
Computer and Information Sciences Embedded Systems
Research subject
Distributed Real-Time Systems; Information Systems
Identifiers
urn:nbn:se:his:diva-15114 (URN)
Projects
ELVIRA
Note

HS-IIT-TR-18-003 This is a technical report related to the ELVIRA project www.his.se/elvira

Available from: 2018-05-02 Created: 2018-05-02 Last updated: 2019-03-05Bibliographically approved
Atif, Y., Jiang, Y., Jeusfeld, M. A., Ding, J., Lindström, B., Andler, S. F., . . . Lindström, B. (2018). Cyber-threat analysis for Cyber-Physical Systems: Technical report for Package 4, Activity 3 of ELVIRA project. Skövde: University of Skövde
Open this publication in new window or tab >>Cyber-threat analysis for Cyber-Physical Systems: Technical report for Package 4, Activity 3 of ELVIRA project
Show others...
2018 (English)Report (Other academic)
Abstract [en]

Smart grid employs ICT infrastructure and network connectivity to optimize efficiency and deliver new functionalities. This evolu- tion is associated with an increased risk for cybersecurity threats that may hamper smart grid operations. Power utility providers need tools for assessing risk of prevailing cyberthreats over ICT infrastructures. The need for frameworks to guide the develop- ment of these tools is essential to define and reveal vulnerability analysis indicators. We propose a data-driven approach for design- ing testbeds to evaluate the vulnerability of cyberphysical systems against cyberthreats. The proposed framework uses data reported from multiple components of cyberphysical system architecture layers, including physical, control, and cyber layers. At the phys- ical layer, we consider component inventory and related physi- cal flows. At the control level, we consider control data, such as SCADA data flows in industrial and critical infrastructure control systems. Finally, at the cyber layer level, we consider existing secu- rity and monitoring data from cyber-incident event management tools, which are increasingly embedded into the control fabrics of cyberphysical systems.

Place, publisher, year, edition, pages
Skövde: University of Skövde, 2018. p. 18
Series
IIT Technical Reports ; HS-IIT-TR-18-004
Keywords
vulnerability analysis, cyber-threats, cyberphysical systems, clustering, multiagent systems
National Category
Computer and Information Sciences
Research subject
Distributed Real-Time Systems; Information Systems
Identifiers
urn:nbn:se:his:diva-16092 (URN)
Projects
This research has been supported in part by the EU ISF Project A431.678/2016 ELVIRA (Threat modeling and resilience of critical infrastructures), coordinated by Polismyndigheten/Sweden
Note

I publikationen: HS-IIT-18-004

Available from: 2018-08-29 Created: 2018-08-29 Last updated: 2019-02-18Bibliographically approved
Jiang, Y., Atif, Y. & Ding, J. (2018). Data Fusion Framework for Cyber Vulnerability Assessment in Smart Grid.
Open this publication in new window or tab >>Data Fusion Framework for Cyber Vulnerability Assessment in Smart Grid
2018 (English)Other (Other academic)
Abstract [en]

Smart grid adopts ICT to enhance power-delivery management. However, these advanced technologies also introduce an increasing amount of cyber threats. Cyber threats occur because of vulnerabilities throughout smart-grid layers. Each layer is distinguished by typical data flows. For example, power-data stream flows along the physical layer; command data are pushed to and pulled from sensor-control devices, such as RTUs and PLCs. Vulnerabilities expose these data flows to cyber threat via communication networks, such as local control network, vendor network, corporate network and the wider internet. Thus, these data could be used to analyse vulnerabilities against cyber threats. After data collection, data analysis and modelling techniques would be used for vulnerability assessment.

National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Distributed Real-Time Systems; INF303 Information Security
Identifiers
urn:nbn:se:his:diva-16070 (URN)
Available from: 2018-08-22 Created: 2018-08-22 Last updated: 2018-09-10Bibliographically approved
Atif, Y., Jiang, Y., Lindström, B., Ding, J., Jeusfeld, M., Andler, S., . . . Haglund, D. (2018). Multi-agent Systems for Power Grid Monitoring: Technical report for Package 4.1 of ELVIRA project. Skövde: University of Skövde
Open this publication in new window or tab >>Multi-agent Systems for Power Grid Monitoring: Technical report for Package 4.1 of ELVIRA project
Show others...
2018 (English)Report (Other academic)
Abstract [en]

This document reports a technical description of ELVIRA project results obtained as part of Work- package 4.1 entitled “Multi-agent systems for power Grid monitoring”. ELVIRA project is a collaboration between researchers in School of IT at University of Skövde and Combitech Technical Consulting Company in Sweden, with the aim to design, develop and test a testbed simulator for critical infrastructures cybersecurity. This report outlines intelligent approaches that continuously analyze data flows generated by Supervisory Control And Data Acquisition (SCADA) systems, which monitor contemporary power grid infrastructures. However, cybersecurity threats and security mechanisms cannot be analyzed and tested on actual systems, and thus testbed simulators are necessary to assess vulnerabilities and evaluate the infrastructure resilience against cyberattacks. This report suggests an agent-based model to simulate SCADA- like cyber-components behaviour when facing cyber-infection in order to experiment and test intelligent mitigation mechanisms. 

Place, publisher, year, edition, pages
Skövde: University of Skövde, 2018. p. 16
Series
IIT Technical Reports ; HS-IIT-TR-18-002
Keywords
Smart grid security, Agent model, Multi-agent system
National Category
Computer and Information Sciences
Research subject
Distributed Real-Time Systems; Information Systems
Identifiers
urn:nbn:se:his:diva-15111 (URN)
Projects
Elvira project funded by EU Internal Security Fund (ISF) A431.678-2016
Note

HS-IIT-TR-18-002

Available from: 2018-05-02 Created: 2018-05-02 Last updated: 2019-03-05Bibliographically approved
Jiang, Y., Atif, Y. & Ding, J. (2018). Multi-Level Vulnerability Modeling of Cyber-Physical Systems. In: : . Paper presented at The 23rd Nordic Conference on Secure IT Systems, Oslo, Norway, November 28-30, 2018.
Open this publication in new window or tab >>Multi-Level Vulnerability Modeling of Cyber-Physical Systems
2018 (English)Conference paper, Poster (with or without abstract) (Refereed)
Abstract [en]

Vulnerability is defined as ”weakness of an asset or control that can be exploited by a threat” according to ISO/IEC 27000:2009, and it is a vital cyber-security issue to protect cyber-physical systems (CPSs) employed in a range of critical infrastructures (CIs). However, how to quantify both individual and system vulnerability are still not clear. In our proposed poster, we suggest a new procedure to evaluate CPS vulnerability. We reveal a vulnerability-tree model to support the evaluation of CPS-wide vulnerability index, driven by a hierarchy of vulnerability-scenarios resulting synchronously or propagated by tandem vulnerabilities throughout CPS architecture, and that could be exploited by threat agents. Multiple vulnerabilities are linked by boolean operations at each level of the tree. Lower-level vulnerabilities in the tree structure can be exploited by threat agents in order to reach parent vulnerabilities with increasing CPS criticality impacts. At the asset-level, we suggest a novel fuzzy-logic based valuation of vulnerability along standard metrics. Both the procedure and fuzzy-based approach are discussed and illustrated through SCADA-based smart power-grid system as a case study in the poster, with our goal to streamline the process of vulnerability computation at both asset and CPS levels.

Keywords
Vulnerability Modelling, Cyber-Physical System
National Category
Embedded Systems Other Electrical Engineering, Electronic Engineering, Information Engineering Control Engineering
Research subject
Distributed Real-Time Systems
Identifiers
urn:nbn:se:his:diva-16423 (URN)
Conference
The 23rd Nordic Conference on Secure IT Systems, Oslo, Norway, November 28-30, 2018
Projects
ELVIRA
Available from: 2018-11-22 Created: 2018-11-22 Last updated: 2018-12-20Bibliographically approved
Jeusfeld, M. A., Jiang, Y., Ding, J., Atif, Y., Haglund, D. & Brax, C. (2018). Taxonomy of Events and Components in the Power Grid: Technical description for work packages 3.1 and 3.2 of the ELVIRA Project. Skövde: University of Skövde
Open this publication in new window or tab >>Taxonomy of Events and Components in the Power Grid: Technical description for work packages 3.1 and 3.2 of the ELVIRA Project
Show others...
2018 (English)Report (Other academic)
Abstract [en]

This document reports a technical description of ELVIRA project results obtained as part of Work-package 3.1&3.2 entitled “Taxonomy of Critical Infrastructure (Taxonomy of events + Taxonomy of CI component and relationship)”. ELVIRA project is a collaboration between researchers in School of IT at University of Skövde and Combitech Technical Consulting Company in Sweden, with the aim to design, develop and test a testbed simulator for critical infrastructures cybersecurity.

Place, publisher, year, edition, pages
Skövde: University of Skövde, 2018. p. 25
Series
IIT Technical Reports ; HS-IIT-TR-18-001
Keywords
taxonomy, cyber-security, power grid, events, Nordic32
National Category
Computer and Information Sciences
Research subject
Distributed Real-Time Systems; Information Systems
Identifiers
urn:nbn:se:his:diva-14699 (URN)
Projects
ELVIRA
Note

HS-IIT-TR-18-001 This is a technical report related to the ELVIRA project www.his.se/elvira

Available from: 2018-01-31 Created: 2018-01-31 Last updated: 2019-03-05Bibliographically approved
Ding, J., Atif, Y., Andler, S. F., Lindström, B. & Jeusfeld, M. (2017). CPS-based Threat Modeling for Critical Infrastructure Protection. Performance Evaluation Review, 45(2), 129-132
Open this publication in new window or tab >>CPS-based Threat Modeling for Critical Infrastructure Protection
Show others...
2017 (English)In: Performance Evaluation Review, ISSN 0163-5999, E-ISSN 1557-9484, Vol. 45, no 2, p. 129-132Article in journal (Refereed) Published
Abstract [en]

Cyber-Physical Systems (CPSs) are augmenting traditionalCritical Infrastructures (CIs) with data-rich operations. Thisintegration creates complex interdependencies that exposeCIs and their components to new threats. A systematicapproach to threat modeling is necessary to assess CIs’ vulnerabilityto cyber, physical, or social attacks. We suggest anew threat modeling approach to systematically synthesizeknowledge about the safety management of complex CIs andsituational awareness that helps understanding the nature ofa threat and its potential cascading-effects implications.

Place, publisher, year, edition, pages
ACM Publications, 2017
Keywords
CPS, threat modeling, Critical Infrastructure Protection
National Category
Computer and Information Sciences
Research subject
Distributed Real-Time Systems; Information Systems; INF303 Information Security
Identifiers
urn:nbn:se:his:diva-14245 (URN)10.1145/3152042.3152080 (DOI)2-s2.0-85041405430 (Scopus ID)
Projects
EU ISF project: Elvira
Funder
EU, European Research Council
Available from: 2017-10-23 Created: 2017-10-23 Last updated: 2018-06-01Bibliographically approved
Atif, Y., Ding, J., Lindström, B., Jeusfeld, M., Andler, S. F., Yuning, J., . . . Gustavsson, P. M. (2017). Cyber-Threat Intelligence Architecture for Smart-Grid Critical Infrastructures Protection. In: : . Paper presented at The International Conference on Critical Information Infrastructures Security, CRITIS 2017, Lucca, Italy, October 8-13, 2017.
Open this publication in new window or tab >>Cyber-Threat Intelligence Architecture for Smart-Grid Critical Infrastructures Protection
Show others...
2017 (English)Conference paper, Poster (with or without abstract) (Refereed)
Abstract [en]

Critical infrastructures (CIs) are becoming increasingly sophisticated with embedded cyber-physical systems (CPSs) that provide managerial automation and autonomic controls. Yet these advances expose CI components to new cyber-threats, leading to a chain of dysfunctionalities with catastrophic socio-economical implications. We propose a comprehensive architectural model to support the development of incident management tools that provide situation-awareness and cyber-threats intelligence for CI protection, with a special focus on smart-grid CI. The goal is to unleash forensic data from CPS-based CIs to perform some predictive analytics. In doing so, we use some AI (Artificial Intelligence) paradigms for both data collection, threat detection, and cascade-effects prediction. 

Keywords
critical infrastructures, cyber-threat, situation awareness, smart-grid, machine-learning, artificial intelligence, multi-agent systems
National Category
Computer Sciences Embedded Systems Energy Systems Remote Sensing Infrastructure Engineering
Research subject
Distributed Real-Time Systems; Information Systems
Identifiers
urn:nbn:se:his:diva-14516 (URN)
Conference
The International Conference on Critical Information Infrastructures Security, CRITIS 2017, Lucca, Italy, October 8-13, 2017
Projects
ELVIRA
Available from: 2017-11-28 Created: 2017-11-28 Last updated: 2018-02-01Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-8927-0968

Search in DiVA

Show all publications