his.sePublications
Change search
Link to record
Permanent link

Direct link
BETA
Publications (10 of 36) Show all publications
Jiang, Y., Jeusfeld, M. A., Atif, Y., Ding, J., Brax, C. & Nero, E. (2018). A Language and Repository for Cyber Security of Smart Grids. In: Selmin Nurcan, Pontus Johnson (Ed.), 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC 2018): . Paper presented at 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC), Stockholm, Sweden, October 16-19, 2018 (pp. 164-170). Los Alamitos, CA: IEEE
Open this publication in new window or tab >>A Language and Repository for Cyber Security of Smart Grids
Show others...
2018 (English)In: 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC 2018) / [ed] Selmin Nurcan, Pontus Johnson, Los Alamitos, CA: IEEE, 2018, p. 164-170Conference paper, Published paper (Refereed)
Abstract [en]

Power grids form the central critical infrastructure in all developed economies. Disruptions of power supply can cause major effects on the economy and the livelihood of citizens. At the same time, power grids are being targeted by sophisticated cyber attacks. To counter these threats, we propose a domain-specific language and a repository to represent power grids and related IT components that control the power grid. We apply our tool to a standard example used in the literature to assess its expressiveness.

Place, publisher, year, edition, pages
Los Alamitos, CA: IEEE, 2018
Series
Proceedings (IEEE International Enterprise Distributed Object Computing Conference), ISSN 2325-6354, E-ISSN 2325-6362
Keywords
cyber security, enterprise architecture, domain-specific language, taxonomy
National Category
Computer and Information Sciences
Research subject
Distributed Real-Time Systems; Information Systems
Identifiers
urn:nbn:se:his:diva-16403 (URN)10.1109/EDOC.2018.00029 (DOI)2-s2.0-85059076918 (Scopus ID)978-1-5386-4139-2 (ISBN)
Conference
2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC), Stockholm, Sweden, October 16-19, 2018
Projects
EU ISF Project A431.678/2016 ELVIRA
Note

Funded by EU Internal Security Funds

Available from: 2018-11-16 Created: 2018-11-16 Last updated: 2019-02-08Bibliographically approved
Jiang, Y., Atif, Y. & Ding, J. (2018). Agent Based Testbed Design for Cyber Vulnerability Assessment in Smart-Grids. In: : . Paper presented at CySeP summer school 2018/SWITIS, CySeP, 2018.
Open this publication in new window or tab >>Agent Based Testbed Design for Cyber Vulnerability Assessment in Smart-Grids
2018 (English)Conference paper, Poster (with or without abstract) (Other academic)
Abstract [en]

Smart grid employs Information and Communication Technology (ICT) infrastructure and network connectivity to optimize efficiency and deliver new functionalities. This evolution is associated with an increased risk for cybersecurity threats that may hamper smart grid operations. Power utility providers need tools for assessing risk of prevailing cyberthreats over ICT infrastructures. The need for frameworks to guide the development of these tools is essential to define and reveal vulnerability analysis indicators. We propose a data-driven approach for designing testbeds to allow the simulation of cyberattacks in order to evaluate the vulnerability and the impact of cyber threat attacks. The proposed framework uses data reported from multiple smart grid components at different smart grid architecture layers, including physical, control, and cyber layers. The multi-agent based framework proposed in this paper would analyze the conglomeration of these data reports to assert malicious attacks.

National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
INF303 Information Security; Distributed Real-Time Systems
Identifiers
urn:nbn:se:his:diva-16069 (URN)
Conference
CySeP summer school 2018/SWITIS, CySeP, 2018
Projects
ELVIRA (http://www.his.se/en/Research/informatics/Distributed-Real-Time-Systems/Infrastructure-resilience/)
Available from: 2018-08-22 Created: 2018-08-22 Last updated: 2018-11-21Bibliographically approved
Maamar, Z., Baker, T., Faci, N., Ugljanin, E., Atif, Y., Al-Khafajiy, M. & Sellami, M. (2018). Cognitive Computing Meets The Internet of Things. In: Leszek Maciaszek, Marten van Sinderen (Ed.), Proceedings of the 13th International Conference on Software Technologies: . Paper presented at 13th International Conference on Software Technologies, ICSOFT, Porto, Portugal, July 26-28, 2018 (pp. 741-746). SciTePress
Open this publication in new window or tab >>Cognitive Computing Meets The Internet of Things
Show others...
2018 (English)In: Proceedings of the 13th International Conference on Software Technologies / [ed] Leszek Maciaszek, Marten van Sinderen, SciTePress, 2018, p. 741-746Conference paper, Published paper (Refereed)
Abstract [en]

This paper discusses the blend of cognitive computing with the Internet-of-Things that should result into developing cognitive things. Today’s things are confined into a data-supplier role, which deprives them from being the technology of choice for smart applications development. Cognitive computing is about reasoning, learning, explaining, acting, etc. In this paper, cognitive things’ features include functional and non-functional restrictions along with a 3 stage operation cycle that takes into account these restrictions during reasoning, adaptation, and learning. Some implementation details about cognitive things are included in this paper based on a water pipe case-study.

Place, publisher, year, edition, pages
SciTePress, 2018
Keywords
Business process, Cognitive computing, Internet-of-Things
National Category
Computer and Information Sciences
Research subject
Distributed Real-Time Systems
Identifiers
urn:nbn:se:his:diva-15352 (URN)10.5220/0006877507750780 (DOI)978-989-758-320-9 (ISBN)
Conference
13th International Conference on Software Technologies, ICSOFT, Porto, Portugal, July 26-28, 2018
Available from: 2018-06-06 Created: 2018-06-06 Last updated: 2018-12-20Bibliographically approved
Jiang, Y., Ding, J., Atif, Y., Jeusfeld, M., Andler, S., Lindström, B., . . . Haglund, D. (2018). Complex Dependencies Analysis: Technical Description of Complex Dependencies in Critical Infrastructures, i.e. Smart Grids. Work Package 2.1 of the ELVIRA Project. Skövde: University of Skövde
Open this publication in new window or tab >>Complex Dependencies Analysis: Technical Description of Complex Dependencies in Critical Infrastructures, i.e. Smart Grids. Work Package 2.1 of the ELVIRA Project
Show others...
2018 (English)Report (Other academic)
Abstract [en]

This document reports a technical description of ELVIRA project results obtained as part of Work-package 2.1 entitled “Complex Dependencies Analysis”. In this technical report, we review attempts in recent researches where connections are regarded as influencing factors to  IT systems monitoring critical infrastructure, based on which potential dependencies and resulting disturbances are identified and categorized. Each kind of dependence has been discussed based on our own entity based model. Among those dependencies, logical and functional connections have been analysed with more details on modelling and simulation techniques.

Place, publisher, year, edition, pages
Skövde: University of Skövde, 2018. p. 22
Series
IIT Technical Reports ; HS-IIT-TR-18-003
Keywords
Dependencies, Interdependencies, Modelling and Simulation, Influence Factors
National Category
Computer and Information Sciences Embedded Systems
Research subject
Distributed Real-Time Systems; Information Systems
Identifiers
urn:nbn:se:his:diva-15114 (URN)
Projects
ELVIRA
Note

HS-IIT-TR-18-003 This is a technical report related to the ELVIRA project www.his.se/elvira

Available from: 2018-05-02 Created: 2018-05-02 Last updated: 2019-03-05Bibliographically approved
Atif, Y., Jiang, Y., Jeusfeld, M. A., Ding, J., Lindström, B., Andler, S. F., . . . Lindström, B. (2018). Cyber-threat analysis for Cyber-Physical Systems: Technical report for Package 4, Activity 3 of ELVIRA project. Skövde: University of Skövde
Open this publication in new window or tab >>Cyber-threat analysis for Cyber-Physical Systems: Technical report for Package 4, Activity 3 of ELVIRA project
Show others...
2018 (English)Report (Other academic)
Abstract [en]

Smart grid employs ICT infrastructure and network connectivity to optimize efficiency and deliver new functionalities. This evolu- tion is associated with an increased risk for cybersecurity threats that may hamper smart grid operations. Power utility providers need tools for assessing risk of prevailing cyberthreats over ICT infrastructures. The need for frameworks to guide the develop- ment of these tools is essential to define and reveal vulnerability analysis indicators. We propose a data-driven approach for design- ing testbeds to evaluate the vulnerability of cyberphysical systems against cyberthreats. The proposed framework uses data reported from multiple components of cyberphysical system architecture layers, including physical, control, and cyber layers. At the phys- ical layer, we consider component inventory and related physi- cal flows. At the control level, we consider control data, such as SCADA data flows in industrial and critical infrastructure control systems. Finally, at the cyber layer level, we consider existing secu- rity and monitoring data from cyber-incident event management tools, which are increasingly embedded into the control fabrics of cyberphysical systems.

Place, publisher, year, edition, pages
Skövde: University of Skövde, 2018. p. 18
Series
IIT Technical Reports ; HS-IIT-TR-18-004
Keywords
vulnerability analysis, cyber-threats, cyberphysical systems, clustering, multiagent systems
National Category
Computer and Information Sciences
Research subject
Distributed Real-Time Systems; Information Systems
Identifiers
urn:nbn:se:his:diva-16092 (URN)
Projects
This research has been supported in part by the EU ISF Project A431.678/2016 ELVIRA (Threat modeling and resilience of critical infrastructures), coordinated by Polismyndigheten/Sweden
Note

I publikationen: HS-IIT-18-004

Available from: 2018-08-29 Created: 2018-08-29 Last updated: 2019-02-18Bibliographically approved
Jiang, Y., Atif, Y. & Ding, J. (2018). Data Fusion Framework for Cyber Vulnerability Assessment in Smart Grid.
Open this publication in new window or tab >>Data Fusion Framework for Cyber Vulnerability Assessment in Smart Grid
2018 (English)Other (Other academic)
Abstract [en]

Smart grid adopts ICT to enhance power-delivery management. However, these advanced technologies also introduce an increasing amount of cyber threats. Cyber threats occur because of vulnerabilities throughout smart-grid layers. Each layer is distinguished by typical data flows. For example, power-data stream flows along the physical layer; command data are pushed to and pulled from sensor-control devices, such as RTUs and PLCs. Vulnerabilities expose these data flows to cyber threat via communication networks, such as local control network, vendor network, corporate network and the wider internet. Thus, these data could be used to analyse vulnerabilities against cyber threats. After data collection, data analysis and modelling techniques would be used for vulnerability assessment.

National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Distributed Real-Time Systems; INF303 Information Security
Identifiers
urn:nbn:se:his:diva-16070 (URN)
Available from: 2018-08-22 Created: 2018-08-22 Last updated: 2018-09-10Bibliographically approved
Atif, Y. & Chou, C. (2018). Digital Citizenship: Innovations in Education, Practice, and Pedagogy. Educational Technology & Society, 21(1), 152-154
Open this publication in new window or tab >>Digital Citizenship: Innovations in Education, Practice, and Pedagogy
2018 (English)In: Educational Technology & Society, ISSN 1176-3647, E-ISSN 1436-4522, Vol. 21, no 1, p. 3p. 152-154Article in journal, Editorial material (Refereed) Published
Abstract [en]

There are still disparities in technology-access despite economic pressures and widespread promises to overcome them. The induced digital gap defines the degree of digital citizenship for which, unified policies have yet to be drawn at various educational levels to reduce that gap. The quest for a broad participation to develop digital citizenship competencies needs further investigations into innovative educational approaches, pedagogical methods, and routine practices that foster digital literacy, and narrows the digital divide. This special issue accumulates original theoretical and empirical research contributions across contemporary digital citizenship perspectives. The final selection of the papers explores digital citizenship concepts such as ethics, digital literacy and participation, in various contexts to develop opportunities for a wider engagement in social actions. The international perspectives of contributing authors shed lights on digital citizenship prospects across unique contexts among different nations. 

Place, publisher, year, edition, pages
International Forum of Educational Technology & Society, 2018. p. 3
Keywords
Digital citizenship, Digital literacy, Ethics, Education, Pedagogy
National Category
Pedagogy Learning Information Systems
Research subject
Distributed Real-Time Systems
Identifiers
urn:nbn:se:his:diva-14615 (URN)2-s2.0-85040624185 (Scopus ID)
Available from: 2018-01-03 Created: 2018-01-03 Last updated: 2019-01-22
Atif, Y., Jiang, Y., Lindström, B., Ding, J., Jeusfeld, M., Andler, S., . . . Haglund, D. (2018). Multi-agent Systems for Power Grid Monitoring: Technical report for Package 4.1 of ELVIRA project. Skövde: University of Skövde
Open this publication in new window or tab >>Multi-agent Systems for Power Grid Monitoring: Technical report for Package 4.1 of ELVIRA project
Show others...
2018 (English)Report (Other academic)
Abstract [en]

This document reports a technical description of ELVIRA project results obtained as part of Work- package 4.1 entitled “Multi-agent systems for power Grid monitoring”. ELVIRA project is a collaboration between researchers in School of IT at University of Skövde and Combitech Technical Consulting Company in Sweden, with the aim to design, develop and test a testbed simulator for critical infrastructures cybersecurity. This report outlines intelligent approaches that continuously analyze data flows generated by Supervisory Control And Data Acquisition (SCADA) systems, which monitor contemporary power grid infrastructures. However, cybersecurity threats and security mechanisms cannot be analyzed and tested on actual systems, and thus testbed simulators are necessary to assess vulnerabilities and evaluate the infrastructure resilience against cyberattacks. This report suggests an agent-based model to simulate SCADA- like cyber-components behaviour when facing cyber-infection in order to experiment and test intelligent mitigation mechanisms. 

Place, publisher, year, edition, pages
Skövde: University of Skövde, 2018. p. 16
Series
IIT Technical Reports ; HS-IIT-TR-18-002
Keywords
Smart grid security, Agent model, Multi-agent system
National Category
Computer and Information Sciences
Research subject
Distributed Real-Time Systems; Information Systems
Identifiers
urn:nbn:se:his:diva-15111 (URN)
Projects
Elvira project funded by EU Internal Security Fund (ISF) A431.678-2016
Note

HS-IIT-TR-18-002

Available from: 2018-05-02 Created: 2018-05-02 Last updated: 2019-03-05Bibliographically approved
Jiang, Y., Atif, Y. & Ding, J. (2018). Multi-Level Vulnerability Modeling of Cyber-Physical Systems. In: : . Paper presented at The 23rd Nordic Conference on Secure IT Systems, Oslo, Norway, November 28-30, 2018.
Open this publication in new window or tab >>Multi-Level Vulnerability Modeling of Cyber-Physical Systems
2018 (English)Conference paper, Poster (with or without abstract) (Refereed)
Abstract [en]

Vulnerability is defined as ”weakness of an asset or control that can be exploited by a threat” according to ISO/IEC 27000:2009, and it is a vital cyber-security issue to protect cyber-physical systems (CPSs) employed in a range of critical infrastructures (CIs). However, how to quantify both individual and system vulnerability are still not clear. In our proposed poster, we suggest a new procedure to evaluate CPS vulnerability. We reveal a vulnerability-tree model to support the evaluation of CPS-wide vulnerability index, driven by a hierarchy of vulnerability-scenarios resulting synchronously or propagated by tandem vulnerabilities throughout CPS architecture, and that could be exploited by threat agents. Multiple vulnerabilities are linked by boolean operations at each level of the tree. Lower-level vulnerabilities in the tree structure can be exploited by threat agents in order to reach parent vulnerabilities with increasing CPS criticality impacts. At the asset-level, we suggest a novel fuzzy-logic based valuation of vulnerability along standard metrics. Both the procedure and fuzzy-based approach are discussed and illustrated through SCADA-based smart power-grid system as a case study in the poster, with our goal to streamline the process of vulnerability computation at both asset and CPS levels.

Keywords
Vulnerability Modelling, Cyber-Physical System
National Category
Embedded Systems Other Electrical Engineering, Electronic Engineering, Information Engineering Control Engineering
Research subject
Distributed Real-Time Systems
Identifiers
urn:nbn:se:his:diva-16423 (URN)
Conference
The 23rd Nordic Conference on Secure IT Systems, Oslo, Norway, November 28-30, 2018
Projects
ELVIRA
Available from: 2018-11-22 Created: 2018-11-22 Last updated: 2018-12-20Bibliographically approved
Badidi, E., Atif, Y., Sheng, M. Z. & Maheswaran, M. (2018). On Personalized Cloud Service Provisioning for Mobile Users Using Adaptive and Context-Aware Service Composition. Computing
Open this publication in new window or tab >>On Personalized Cloud Service Provisioning for Mobile Users Using Adaptive and Context-Aware Service Composition
2018 (English)In: Computing, ISSN 0010-485X, E-ISSN 1436-5057Article in journal (Refereed) Epub ahead of print
Abstract [en]

Cloud service providers typically compose their services from a number of elementary services, which are developed in- house or built by third-party providers. Personalization of composite services in mobile environments is an interesting and challenging issue to address, given the opportunity to factor-in diverse user preferences and the plethora of mobile devices at use in multiple contexts. This work proposes a framework to address personalization in mobile cloud-service provisioning. Service personalization and adaptation may be considered at different levels, including the user profile, the mobile device in use, the context of the user and the composition specification. The user’s mobile device and external services are typical sources of context information, used in our proposed algorithm to elicit context-aware services. The selection process is guided by quality-of-context (QoC) criteria that combine cloud-service provider requirements and user preferences. Hence, the paper proposes an integrated framework for enhancing personalized mobile cloud-services, based on a composition approach that adapts context information using a common model of service metadata specification.

Place, publisher, year, edition, pages
Springer, 2018
Keywords
Personalization, Adaptive services, Mobile cloud computing, Composed services, Quality of context
National Category
Computer and Information Sciences
Research subject
Distributed Real-Time Systems
Identifiers
urn:nbn:se:his:diva-15350 (URN)10.1007/s00607-018-0631-8 (DOI)
Available from: 2018-06-06 Created: 2018-06-06 Last updated: 2018-11-12Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-7312-9089

Search in DiVA

Show all publications