Högskolan i Skövde

his.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (6 of 6) Show all publications
Mauritsson, K. & Jonsson, T. (2024). A new mechanistic model for individual growth applied to insects under ad libitum conditions. PLOS ONE, 19(9), Article ID e0309664.
Open this publication in new window or tab >>A new mechanistic model for individual growth applied to insects under ad libitum conditions
2024 (English)In: PLOS ONE, E-ISSN 1932-6203, Vol. 19, no 9, article id e0309664Article in journal (Refereed) Published
Abstract [en]

Metabolic theories in ecology interpret ecological patterns at different levels through the lens of metabolism, typically applying allometric power scaling laws to describe rates of energy use. This requires a sound theory for metabolism at the individual level. Commonly used mechanistic growth models lack some potentially important aspects and fail to accurately capture a growth pattern often observed in insects. Recently, a new model (MGM–the Maintenance-Growth Model) was developed for ontogenetic and post-mature growth, based on an energy balance that expresses growth as the net result of assimilation and metabolic costs for maintenance and feeding. The most important contributions of MGM are: 1) the division of maintenance costs into a non-negotiable and a negotiable part, potentially resulting in maintenance costs that increase faster than linearly with mass and are regulated in response to food restriction; 2) differentiated energy allocation strategies between sexes and 3) explicit description of costs for finding and processing food. MGM may also account for effects of body composition and type of growth at the cellular level. The model was here calibrated and evaluated using empirical data from an experiment on house crickets growing under ad libitum conditions. The procedure involved parameter estimations from the literature and collected data, using statistical models to account for individual variation in parameter values. It was found that ingestion rate cannot be generally described by a simple allometry, here requiring a more complex description after maturity. Neither could feeding costs be related to ingestion rate in a simplistic manner. By the unusual feature of maintenance costs increasing faster than linearly with body mass, MGM could well capture the differentiated growth patterns of male and female crickets. Some other mechanistic growth models have been able to provide good predictions of insect growth during early ontogeny, but MGM may accurately describe the trajectory until terminated growth.

Place, publisher, year, edition, pages
Public Library of Science (PLoS), 2024
National Category
Ecology Zoology
Research subject
Ecological Modelling Group
Identifiers
urn:nbn:se:his:diva-24488 (URN)10.1371/journal.pone.0309664 (DOI)001308434600051 ()39231173 (PubMedID)2-s2.0-85203382755 (Scopus ID)
Funder
Swedish Research Council, 2018-05523
Note

CC BY 4.0

karl.mauritsson@his.se

Funding was provided by the Swedish research council, grant number 2018-05523. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Available from: 2024-09-05 Created: 2024-09-05 Last updated: 2024-12-06Bibliographically approved
Mauritsson, K. & Jonsson, T. (2024). A new mechanistic model for individual growth suggests upregulated maintenance costs when food is scarce in an insect. Ecological Modelling, 491, Article ID 110703.
Open this publication in new window or tab >>A new mechanistic model for individual growth suggests upregulated maintenance costs when food is scarce in an insect
2024 (English)In: Ecological Modelling, ISSN 0304-3800, E-ISSN 1872-7026, Vol. 491, article id 110703Article in journal (Refereed) Published
Abstract [en]

A growing animal ingests food from the environment and distributes the assimilated energy between chemical energy stored in synthesized biomass and energy spent on metabolic processes, including food processing, maintenance, activity and overhead costs for growth. Under food restriction, the growth rate is usually decreased. However, the extent of this reduction may be influenced by a potential trade-off with maintenance metabolism. The latter seems to be down-regulated under food restriction in some animals and up-regulated in others. Recently, the Maintenance-Growth Model (MGM) was developed for ontogenetic and post-mature growth, including several aspects not considered by common mechanistic growth models, most importantly the division of maintenance costs into non-negotiable and negotiable parts, where the latter can be up- or downregulated under food restriction. Using empirical data, MGM has been calibrated and successfully applied to an insect growing under ad libitum conditions. Here, the model is further calibrated to newly collected individual data for the same species growing under two different regimes of food restriction, complemented with previously collected data for food-limited cohorts. We find that two alternative model scenarios of MGM are able to generate rather good predictions of observed growth under food restriction, assuming either upregulated maintenance or decreased effective assimilation (assimilation minus energy spent on processing and searching food). We find the latter scenario least plausible, implying that the current study provides the first indication for the occurrence of upregulated maintenance in an insect species when food is scarce, an unexpected result that requires further investigation. The inclusion of maintenance regulation in MGM enables the new growth model to be used in the modelling of life-history dependent trade-offs between maintenance, growth and maturation for various other species.

Place, publisher, year, edition, pages
Elsevier, 2024
Keywords
Growth model, Metabolic rate, Maintenance, Food restriction, Insects, House cricket (Acheta domesticus)
National Category
Zoology Ecology
Research subject
Ecological Modelling Group
Identifiers
urn:nbn:se:his:diva-23695 (URN)10.1016/j.ecolmodel.2024.110703 (DOI)001217619300001 ()2-s2.0-85189037931 (Scopus ID)
Funder
Swedish Research Council, 2018-05523
Note

CC BY 4.0 DEED

Corresponding author at: Department of Bioscience, University of Skövde, Högskolevägen, Box 408, SE-541 28 Skövde, Sweden. E-mail address: karl.mauritsson@his.se (K. Mauritsson).

Funding was provided by the Swedish research council, grant number 2018-05523.

Available from: 2024-04-04 Created: 2024-04-04 Last updated: 2024-09-26Bibliographically approved
Mauritsson, K. (2024). Application of Metabolic Theory in Models for Growth of Individuals and Populations. (Doctoral dissertation). Linköping: Linköping University Electronic Press
Open this publication in new window or tab >>Application of Metabolic Theory in Models for Growth of Individuals and Populations
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Metabolic theories in ecology interpret ecological patterns at different levels (individuals, populations, communities) through the lens of metabolism, often applying allometric scaling with rates of energy use described as power functions of body mass. However, the application of metabolic theory at higher levels requires a sound theory for metabolism at the individual level.

In this thesis, metabolic theory has been developed and applied in three different contexts; 1) growth of individual organisms under food limitation, 2) life-history theory for age and size at maturity for individual organisms, and 3) population growth of marine mammals exposed to bioaccumulative toxicants through their diet.

In the first context, a new mechanistic model for individual growth was developed, based on an energy balance that expresses growth as the net result of energy assimilation from food and various metabolic costs. The model can account for effects of body composition and cellular-level growth patterns, but foremost it considers a potential trade-off between regulated maintenance and growth under food limitation. The model was successfully calibrated and validated against empirical data for an insect (house cricket) under both unlimited and limited food conditions. Interestingly, the empirical calibration indicated that the energy per unit body mass that an organism allocates to maintenance of body structures may increase as the organism grows and may also be upregulated under food limitation.

In Paper I, the maintenance-growth model (MGM), is presented, derived and demonstrated via numerical simulations and comparisons with available growth data. In Paper II and III, MGM is calibrated and evaluated against collected data for house crickets growing under unlimited and restricted food supply, respectively.

In the second context (Paper IV), it was investigated how models for individual growth and mortality can be combined with life-history theory to model plastic responses in age and size at maturity under varying resource conditions. The new growth model (MGM) was implemented to account for the trade-off between somatic maintenance and growth. It was also investigated how life-history models that predict the occurrence of maturity are affected by the presence of an overhead threshold, a minimum size that organisms must reach in order to mature and exceed in order to reproduce. It was found that the existence of an overhead threshold, that previously has been considered to be a crucial assumption for predicting realistic reaction norms for age and size at maturity, may not be crucial after all.

In the final context (Paper V), a model was developed for bioaccumulation of toxicants and their effects on survival rates, fertilities, age structure and population growth in marine mammals. Allometric scaling of biological rates were applied in the parametrisation of the model. The model was successfully calibrated and validated against empirical data for Baltic grey seals affected by PCB. The model could demonstrate that decreased female fertility (caused by a toxicant) may considerably increase bioaccumulation of the toxicant due to decreased offload from females to offspring.

Abstract [sv]

Djur tillgodogör sig energi från födan de äter och använder denna för att växa, reproducera sig och upprätthålla homeostas (en stabil inre fysisk och kemisk miljö). Ett djurs metabolism innefattar alla biokemiska reaktioner genom vilka energi och material upptas, omvandlas och används föra att bygga kroppens strukturer och upprätthålla livsprocesser. Metaboliska teorier inom ekologi analyserar ekologiska processer från ett energianvändningsperspektiv. En av de mest tillämpade teorierna, MTE (the Metabolic Theory of Ecology), utgår från det väl dokumenterade sambandet att den metaboliska hastigheten tenderar att öka med organismers kroppsmassa och kroppstemperatur, detta enligt ett någorlunda regelbundet mönster. Utifrån principen att metabolismen ger bränsle åt alla biologiska processer, använder MTE sambandet mellan metabolisk hastighet, massa och temperatur för att härleda hur andra ekologiska processer relaterar till organismers storlek och temperatur. Exempel på detta är samband för individers födointag och livslängd, populationers tillväxthastighet och olika arters påverkan på varandra i födovävar. MTE har dock kritiserats för att ge en alltför förenklad bild av metabolismen och dess relation till anda processer, med hänvisning till att den är ett resultat av många överlappande processer som kan regleras av organismen och vars hastighet varierar mellan olika vävnader och mellan olika faser i en organisms livscykel. En välgrundad metabolisk teori måste baseras på en adekvat modell för hur individer distribuerar och använder den energi de tillgodogör sig från födan medan de tillväxer eller reproducerar sig.

I detta arbete utvecklas och tillämpas metabolisk teori för tre olika områden inom ekologi; 1) individers tillväxt under födobegräsning, 2) individers ålder och storlek vid könsmognad och 3) miljögifters ackumulering och påverkan på populationer av marina däggdjur. I alla dessa spelar matematisk modellering en avgörande roll.

För att stärka grunden för metabolisk teori presenteras en ny matematisk modell för individers kroppstillväxt, både under obegränsad och begränsad födotillgång. Modellen beskriver kroppstillväxt som ett vi nettoresultat av den energi som en växande organism tillgodogör sig från födan och kostnaden för de metaboliska processer som är verksamma. Modellen tar hänsyn till ett antal aspekter som förbisetts av många tidigare modeller för individuell tillväxt, såsom effekter av kroppssammansättning, tillväxtmönster på cellnivå, olika utvecklingsmässiga stadier och organismens reglering av den energi som allokeras till underhåll av olika kroppsstrukturer på bekostnad av tillväxt. Modellen har kalibrerats mot data, erhållna från experiment utförda på för hussyrsor. Till skillnad från många tidigare modeller för individuell tillväxt, kunde den nya modellen beskriva observerade tillväxtkurvor för en insekt. Analyserna av datan genom den nya modellen gav två intressanta indikationer; energin per enhet kroppsmassa som en organism allokerar till underhåll av olika kroppsstrukturer kan dels öka allteftersom organismen växer och dels uppreglas vid födobegräsning.

Ett tillämpningsområde för metabolisk teori är livshistorieteori, studiet av hur organismer fördelar sina resurser för att överleva, växa och reproducera sig så att så att deras bidrag till framtida genpooler (mätt som total reproduktion under en hel livstid) skall bli så stor som möjlig. Storlek och ålder vid könsmognad är två av de mest avgörande egenskaperna för en organisms livslånga reproduktion och dessa kan i allmänhet anpassas utifrån omgivningens förutsättningar. En avvägning måste göras mellan en stor kropp och en tidig ålder vid könsmognad. En stor kropp resulterar vanligen i högre reproduktionstakt, men kräver längre utvecklingstid. En tidig könsmognad innebär vanligen att den reproduktiva livslängden förlängs. Omgivningens tillgång på resurser påverkar förutsättningarna för kroppstillväxt och därigenom också den tidpunkt då det är optimalt att bli könsmogen så att den totala mängden avkomma som produceras under hela livet blir maximal. I detta arbete undersöks hur storlek och ålder vid könsmognad under olika resursförhållanden kan förutsägas med hjälp av livshistorieteori då den kombineras med olika modeller för överlevnad och kroppstillväxt, däribland den nyutvecklade modellen. Man har tidigare antagit att realistiska prediktioner av storlek och ålder vid könsmognad utifrån livshistorieteori förutsätter förekomsten av en minsta kroppsstorlek som organismen måste uppnå innan könsmognad är möjlig och som måste överskridas för att reproduktion ska kunna ske. I denna studie visas dock att detta inte vii nödvändigtvis gäller organismer som uppvisar vissa typer av tillväxtmönster, exempelvis de som observerats hos hussyrsor.

Bioackumulering av gifter i organismer är ett allvarligt miljöproblem som kan analyseras genom matematisk modellering. Synnerligen utsatta är marina däggdjur som befinner sig högt upp i näringskedjan och vars kroppar har stora fettreserver dit många substanser kan bindas och bli kvar under lång tid. Här presenteras en ny matematisk modell som kan användas för att analysera bioackumulering av miljögifter och dess konsekvenser för populationer av marina däggdjur. Modellen består av tre sammanlänkade delar. Den första delmodellen beskriver hur miljögifter tar sig in honors kroppar via födan och ackumuleras eller överförs till avkomman via moderkakan och bröstmjölken. Den andra delmodellen beskriver hur miljögifter som ackumulerats i kroppen över tid orsakar skador i vävnader och hur detta påverkar individers överlevnad och antal födda ungar. Den tredje delmodellen beskriver konsekvenserna för populationens storlek och ålderssammansättning över tid. Modellen parmeteriserades för gråsälar exponerade för PCB, ett miljögift som under 70- och 80-talen orsakade allvarliga skador på reproduktiva organ och kraftigt decimerade sälpopulationerna i Östersjön. Vid bestämmandet av modellens olika parametrar användes metabolisk teori för att skala storleken hos olika effekter mellan sälar av olika kroppsstorlek. Med utgångspunkt från kända PCB-halter i sälarnas föda (fisk) lyckades modellen väl förutsäga halterna av PCB i gråsälar av olika åldrar och populationens historiska utveckling mellan 1966 och 2015. Modellen kan användas för att analysera framtida risker för populationer av marina däggdjur under olika scenarier av giftexponering och jakt.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2024. p. 68
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2400
Keywords
Metabolism, Metabolic rate, Allometric scaling, Somatic maintenance, Ontogenetic growth, Growth model, Food restriction, Insects, Life-history traits, Age at maturity, Size at maturity, Bioaccumulation, Toxicokinetics, Toxicodynamics, Population dynamics, Marine mammals
National Category
Ecology
Research subject
Ecological Modelling Group
Identifiers
urn:nbn:se:his:diva-24578 (URN)10.3384/9789180757379 (DOI)978-91-8075-736-2 (ISBN)978-91-8075-737-9 (ISBN)
Public defence
2024-10-11, G110, G Building, University of Skövde, 09:15 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2018-05523Swedish Environmental Protection AgencyBONUS - Science for a better future of the Baltic Sea region
Note

Funding agencies: The Swedish research council, grant number 2018-05523, Viltforskningsanslaget, Swedish Environmental Protection Agency, and the BONUS program BaltHealth (Art. 185).

Available from: 2024-09-26 Created: 2024-09-26 Last updated: 2024-09-30Bibliographically approved
Mauritsson, K. & Jonsson, T. (2024). Growth model predictions of tradeoff between age and size at maturity under resource limitation. American Naturalist
Open this publication in new window or tab >>Growth model predictions of tradeoff between age and size at maturity under resource limitation
2024 (English)In: American Naturalist, ISSN 0003-0147, E-ISSN 1537-5323Article in journal (Other academic) Submitted
National Category
Ecology
Research subject
Ecological Modelling Group
Identifiers
urn:nbn:se:his:diva-24585 (URN)
Available from: 2024-09-30 Created: 2024-09-30 Last updated: 2024-10-02
Mauritsson, K. & Jonsson, T. (2023). A new flexible model for maintenance and feeding expenses that improves description of individual growth in insects. Scientific Reports, 13(1), Article ID 16751.
Open this publication in new window or tab >>A new flexible model for maintenance and feeding expenses that improves description of individual growth in insects
2023 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 13, no 1, article id 16751Article in journal (Refereed) Published
Abstract [en]

Metabolic theories in ecology interpret ecological patterns at different levels through the lens of metabolism, typically applying allometric scaling to describe energy use. This requires a sound theory for individual metabolism. Common mechanistic growth models, such as ‘von Bertalanffy’, ‘dynamic energy budgets’ and the ‘ontogenetic growth model’ lack some potentially important aspects, especially regarding regulation of somatic maintenance. We develop a model for ontogenetic growth of animals, applicable to ad libitum and food limited conditions, based on an energy balance that expresses growth as the net result of assimilation and metabolic costs for maintenance, feeding and food processing. The most important contribution is the division of maintenance into a ‘non-negotiable’ and a ‘negotiable’ part, potentially resulting in hyperallometric scaling of maintenance and downregulated maintenance under food restriction. The model can also account for effects of body composition and type of growth at the cellular level. Common mechanistic growth models often fail to fully capture growth of insects. However, our model was able to capture empirical growth patterns observed in house crickets.

Place, publisher, year, edition, pages
Springer Nature, 2023
National Category
Ecology Zoology
Research subject
Ecological Modelling Group
Identifiers
urn:nbn:se:his:diva-23327 (URN)10.1038/s41598-023-43743-1 (DOI)001085340000017 ()37798309 (PubMedID)2-s2.0-85173773729 (Scopus ID)
Funder
Swedish Research Council, 2018-05523University of Skövde
Note

CC BY 4.0

Ecological Modelling Group, School of Bioscience, University of Skövde, Skövde, Sweden. email: karl.mauritsson@his.se

Funding was provided by the Swedish research council, Grant number 2018-05523.

Open access funding provided by University of Skövde.

Author correction in: Scientific Reports, Volume 13, 18808 (2023). https://doi.org/10.1038/s41598-023-45923-5

Available from: 2023-10-24 Created: 2023-10-24 Last updated: 2024-09-26Bibliographically approved
Mauritsson, K., Desforges, J.-P. & Harding, K. C. (2022). Maternal Transfer and Long-Term Population Effects of PCBs in Baltic Grey Seals Using a New Toxicokinetic–Toxicodynamic Population Model. Archives of Environmental Contamination and Toxicology, 83(4), 376-394
Open this publication in new window or tab >>Maternal Transfer and Long-Term Population Effects of PCBs in Baltic Grey Seals Using a New Toxicokinetic–Toxicodynamic Population Model
2022 (English)In: Archives of Environmental Contamination and Toxicology, ISSN 0090-4341, E-ISSN 1432-0703, Vol. 83, no 4, p. 376-394Article in journal (Refereed) Published
Abstract [en]

Empirical evidence has shown that historical exposure of polychlorinated biphenyls (PCBs) to Baltic grey seals not only severely affected individual fitness, but also population growth rates and most likely caused the retarded recovery rate of the depleted population for decades. We constructed a new model which we term a toxicokinetic–toxicodynamic (TKTD) population model to quantify these effects. The toxicokinetic sub-model describes in detail the bioaccumulation, elimination and vertical transfer from mother to offspring of PCBs and is linked to a toxicodynamic model for estimation of PCB-related damage, hazard and stress impacts on fertility and survival rates. Both sub-models were linked to a Leslie matrix population model to calculate changes in population growth rate and age structure, given different rates of PCB exposure. Toxicodynamic model parameters related to reproductive organ lesions were calibrated using published historical data on observed pregnancy rates in Baltic grey seal females. Compared to empirical data, the TKTD population model described well the age-specific bioaccumulation pattern of PCBs in Baltic grey seals, and thus, the toxicokinetic parameters, deduced from the literature, are believed to be reliable. The model also captured well the general effects of PCBs on historical population growth rates. The model showed that reduced fertility due to increased PCB exposure causes decreased vertical transfer from mother to offspring and in turn increased biomagnification in non-breeding females. The developed TKTD model can be used to perform population viability analyses of Baltic grey seals with multiple stressors, also including by-catches and different hunting regimes. The model can also be extended to other marine mammals and other contaminants by adjustments of model parameters and thus provides a test bed in silico for new substances. 

Place, publisher, year, edition, pages
Springer Nature Switzerland AG, 2022
National Category
Ecology Environmental Sciences
Research subject
Ecological Modelling Group
Identifiers
urn:nbn:se:his:diva-21983 (URN)10.1007/s00244-022-00962-3 (DOI)000869243100001 ()36242644 (PubMedID)2-s2.0-85139853349 (Scopus ID)
Funder
Swedish Environmental Protection Agency, 2021-00028BONUS - Science for a better future of the Baltic Sea region, Art. 185Swedish Research Council, 2018-05523
Note

CC BY 4.0

© 2022, The Author(s)

© 2022 Springer Nature Switzerland AG. Part of Springer Nature.

Published: 15 October 2022

Open access funding provided by University of Skövde. Funding was provided by Viltforskningsanslaget, Swedish Environmental Protection Agency (2021-00028) and the BONUS program BaltHealth (Art. 185). Mauritsson was partially supported by the Swedish research council, grant/award number 2018-05523. The authors declare that no other support were received during the preparation of the manuscript.

Available from: 2022-10-27 Created: 2022-10-27 Last updated: 2024-09-30Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0003-0097-1379

Search in DiVA

Show all publications