Högskolan i Skövde

his.sePublikasjoner
Endre søk
Link to record
Permanent link

Direct link
Publikasjoner (10 av 35) Visa alla publikasjoner
Bae, J., Karlsson, A., Mellin, J., Ståhl, N. & Torra, V. (2019). Complex Data Analysis. In: Alan Said, Vicenç Torra (Ed.), Data science in Practice: (pp. 157-169). Springer
Åpne denne publikasjonen i ny fane eller vindu >>Complex Data Analysis
Vise andre…
2019 (engelsk)Inngår i: Data science in Practice / [ed] Alan Said, Vicenç Torra, Springer, 2019, s. 157-169Kapittel i bok, del av antologi (Fagfellevurdert)
Abstract [en]

Data science applications often need to deal with data that does not fit into the standard entity-attribute-value model. In this chapter we discuss three of these other types of data. We discuss texts, images and graphs. The importance of social media is one of the reason for the interest on graphs as they are a way to represent social networks and, in general, any type of interaction between people. In this chapter we present examples of tools that can be used to extract information and, thus, analyze these three types of data. In particular, we discuss topic modeling using a hierarchical statistical model as a way to extract relevant topics from texts, image analysis using convolutional neural networks, and measures and visual methods to summarize information from graphs.

sted, utgiver, år, opplag, sider
Springer, 2019
Serie
Studies in Big Data, ISSN 2197-6503, E-ISSN 2197-6511 ; 46
HSV kategori
Forskningsprogram
Skövde Artificial Intelligence Lab (SAIL); Distribuerade realtidssystem (DRTS)
Identifikatorer
urn:nbn:se:his:diva-16811 (URN)10.1007/978-3-319-97556-6_9 (DOI)000464719500010 ()978-3-319-97556-6 (ISBN)978-3-319-97555-9 (ISBN)
Tilgjengelig fra: 2019-04-24 Laget: 2019-04-24 Sist oppdatert: 2020-06-18bibliografisk kontrollert
Mellin, J. (2016). Systematic Generation of Risk Evaluation Systems basedon Temporal Motivational Theory. In: Vicenc Torra (Ed.), USB Proceedings of the 13th Workshop on Modeling Decisions for Artifical Intelligence  (MDAI2016): . Paper presented at Modeling Decisions for Artificial Intelligence (pp. 122-132).
Åpne denne publikasjonen i ny fane eller vindu >>Systematic Generation of Risk Evaluation Systems basedon Temporal Motivational Theory
2016 (engelsk)Inngår i: USB Proceedings of the 13th Workshop on Modeling Decisions for Artifical Intelligence  (MDAI2016) / [ed] Vicenc Torra, 2016, s. 122-132Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This paper provides a schematic, systematic and structured approach todeveloping Bayesian belief networks to assess risks in contexts dened by activities.The method ameliorates elicitation, specication and validation of expert knowledgeby reusing a schematic structures based on reasoning of risks based on the temporal motivationaltheory. The method is based on earlier work that took a rst signicant steptowards reducing the complexity of development of Bayesian belief networks by clusteringand classifying variables in Bayesian belief networks as well as associating the processwith human deciions making. It may be possible to reduce the role of a facilitiatoror even remove the facilitator altogether by using this method. The method is partiallyvalidated and further work is required on this topic.

Emneord
Bayesian belief networks, elicitation, specication, validation, temporal motivational theory
HSV kategori
Forskningsprogram
Teknik; Distribuerade realtidssystem (DRTS)
Identifikatorer
urn:nbn:se:his:diva-12941 (URN)978-99920-3-099-8 (ISBN)
Konferanse
Modeling Decisions for Artificial Intelligence
Tilgjengelig fra: 2016-09-21 Laget: 2016-09-21 Sist oppdatert: 2019-01-22bibliografisk kontrollert
Steinhauer, H. J. & Mellin, J. (2015). Automatic Early Risk Detection of Possible Medical Conditions for Usage Within an AMI-System. In: Amr Mohamed, Paulo Novais, António Pereira, Gabriel Villarrubia González, Antonio Fernández-Caballero (Ed.), Ambient Intelligence - Software and Applications: . Paper presented at 6th International Symposium on Ambient Intelligence (ISAmI 2015) (pp. 13-21). Springer Berlin/Heidelberg
Åpne denne publikasjonen i ny fane eller vindu >>Automatic Early Risk Detection of Possible Medical Conditions for Usage Within an AMI-System
2015 (engelsk)Inngår i: Ambient Intelligence - Software and Applications / [ed] Amr Mohamed, Paulo Novais, António Pereira, Gabriel Villarrubia González, Antonio Fernández-Caballero, Springer Berlin/Heidelberg, 2015, s. 13-21Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Using hyperglycemia as an example, we present how Bayesian networks can be utilized for automatic early detection of a person’s possible medical risks based on information provided by un obtrusive sensors in their living environments. The network’s outcome can be used as a basis on which an automated AMI-system decides whether to interact with the person, their caregiver, or any other appropriate party. The networks’ design is established through expert elicitation and validated using a half-automated validation process that allows the medical expert to specify validation rules. To interpret the networks’ results we use an output dictionary which is automatically generated for each individual network and translates the output probability into the different risk classes (e.g.,no risk, risk).

sted, utgiver, år, opplag, sider
Springer Berlin/Heidelberg, 2015
Serie
Advances in Intelligent Systems and Computing, ISSN 2194-5357 ; 376
Emneord
Ambient Assisted Living, Bayesian networks, Automated Diagnosis
HSV kategori
Forskningsprogram
Skövde Artificial Intelligence Lab (SAIL); Distribuerade realtidssystem (DRTS)
Identifikatorer
urn:nbn:se:his:diva-11171 (URN)10.1007/978-3-319-19695-4_2 (DOI)2-s2.0-84937501569 (Scopus ID)9783319196947 (ISBN)
Konferanse
6th International Symposium on Ambient Intelligence (ISAmI 2015)
Prosjekter
Helicopter
Tilgjengelig fra: 2015-08-06 Laget: 2015-06-18 Sist oppdatert: 2018-03-28bibliografisk kontrollert
Mellin, J. & Andler, S. F. (2015). The effect of optimizing engine control on fuel consumption and roll amplitude in ocean-going vessels: An experimental study. Skövde
Åpne denne publikasjonen i ny fane eller vindu >>The effect of optimizing engine control on fuel consumption and roll amplitude in ocean-going vessels: An experimental study
2015 (engelsk)Rapport (Annet vitenskapelig)
Abstract [en]

We use data-generated models based on data from experiments of an ocean-going vessel to study the effect of optimizing fuel consumption. The optimization is an add-on module to the existing diesel-engine fuel-injection control built by Q-TAGG R&D AB. The work is mainly a validation of knowledge-based models based on a priori knowledge from physics. The results from a simulation-based analysis of the predictive models built on data agree with the results based on knowledge-based models in a companion study. This indicates that the optimization algorithm saves fuel. We also address specific problems of adapting data to existing machine learning methods. It turns out that we can simplify the problem by ignoring the auto-correlative effects in the time series by employing low-pass filters and resampling techniques. Thereby we can use mature and robust classification techniques with less requirements on the data to demonstrate that fuel is saved compared to the full-fledged time series analysis techniques which are harder to use. The trade-off is the accuracy of the result, that is, it is hard to tell exactly how much fuel is saved. In essence, however, this process can be automated due to its simplicity. 

sted, utgiver, år, opplag, sider
Skövde: , 2015. s. 74
HSV kategori
Forskningsprogram
Teknik; Distribuerade realtidssystem (DRTS)
Identifikatorer
urn:nbn:se:his:diva-10942 (URN)
Prosjekter
“System för bränslebesparing på stora fartyg”, 2013-00301, Vinnova Forska & Väx 2013
Forskningsfinansiär
Vinnova, 2013-00301
Tilgjengelig fra: 2015-05-18 Laget: 2015-05-18 Sist oppdatert: 2019-11-12bibliografisk kontrollert
Pozzer, C., Amorim, J. A., Gustavsson, P. M., Mellin, J., Heldal, I. & Azevedo, A. T. (2014). Imprecise Computation as an Enabler for Complex and Time Critical HLA Simulation Networks. In: Proceedings of Simulation Interoperability Workshop: . Paper presented at Fall Simulation Interoperability Workshop, 2014 Fall SIW; Orlando; United States; 8 September 2014 through 12 September 2014 (pp. 171-179).
Åpne denne publikasjonen i ny fane eller vindu >>Imprecise Computation as an Enabler for Complex and Time Critical HLA Simulation Networks
Vise andre…
2014 (engelsk)Inngår i: Proceedings of Simulation Interoperability Workshop, 2014, s. 171-179Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

A trend over the past years is that simulation systems for training are being connected in simulation networks, allowing the interaction of teams spread in distributed sites. By combining interconnected simulation systems the simulation complexity increases and may affect time-critical simulation tasks in a negative way. As a consequence, the training simulation objectives may not be met. The same problem may occur when performing, for example, mission rehearsal on site, since available computation resources are usually very limited in this scenario, or for a joint fires scenario, where the large and complex functional chain (including intelligence, C2, forward observer, pilots, etc.) may overload existing resources. In this work, the technique of imprecise computation in real-time systems (ICRS) to preserve time-critical simulation tasks is presented. The ICRS technique allows time-critical tasks to produce quicker solutions for approximate results and saves computational resources. This paper discusses the main advantages of theICRS technique by a review of the commonly used optimization concepts built upon imprecise computation field. Thepaper ends with presenting a work-in-progress: an architectural solution for aligning ICRS with the High Level Architecture (HLA), standardized as the IEEE 1516-series.

Emneord
scheduling for imprecise computation, HLA, simulation, joint fires, real-time systems, integration
HSV kategori
Forskningsprogram
Teknik; Distribuerade realtidssystem (DRTS); Interaction Lab (ILAB)
Identifikatorer
urn:nbn:se:his:diva-9891 (URN)2-s2.0-84910115603 (Scopus ID)9781634393898 (ISBN)
Konferanse
Fall Simulation Interoperability Workshop, 2014 Fall SIW; Orlando; United States; 8 September 2014 through 12 September 2014
Prosjekter
Agent-orient large-scale complex virtual environments
Tilgjengelig fra: 2014-09-04 Laget: 2014-09-04 Sist oppdatert: 2023-01-03bibliografisk kontrollert
Mellin, J., Pozzer, C., Heldal, I. & Gustavsson, P. M. (2014). Using Imprecise Computation for Virtual and Constructive Simulations. In: A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, & J. A. Miller (Ed.), Proceedings of the 2014 Winter Simulation Conference: . Paper presented at 2014 Winter Simulation Conference (WSC), December 7-10, 2014, Savannah, USA (pp. 4043-4044). IEEE Press
Åpne denne publikasjonen i ny fane eller vindu >>Using Imprecise Computation for Virtual and Constructive Simulations
2014 (engelsk)Inngår i: Proceedings of the 2014 Winter Simulation Conference / [ed] A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, & J. A. Miller, IEEE Press, 2014, s. 4043-4044Konferansepaper, Poster (with or without abstract) (Fagfellevurdert)
Abstract [en]

In this work, we raise three critical questions that must be investigated to ameliorate composability ofvirtual simulation models and to enable adoption of systematic and stringent real-time techniques toenable more scalable simulation models for virtual and constructive simulation. The real-time techniquesin question enable us to separate between policies and mechanisms and, thus, the simulation engine candecide dynamically how to run the simulation given the existing resources (e.g., processor) and the goalsof the simulation (e.g., sufficient fidelity in terms of timing and accuracy). The three critical questionsare: (i) how to design efficient and effective algorithms for making dynamic simulation model designdecisions during simulation; (ii) how to map simulation entities (e.g., agents) into (real-time) tasks; and(iii) how to enable a divide and conquer approach to validating simulation models.

sted, utgiver, år, opplag, sider
IEEE Press, 2014
Emneord
virtual simulation, constructive simulation, scalability, agent-oriented, resource management
HSV kategori
Forskningsprogram
Naturvetenskap; Distribuerade realtidssystem (DRTS); Interaction Lab (ILAB)
Identifikatorer
urn:nbn:se:his:diva-10470 (URN)978-1-4799-7486-3 (ISBN)
Konferanse
2014 Winter Simulation Conference (WSC), December 7-10, 2014, Savannah, USA
Tilgjengelig fra: 2014-12-21 Laget: 2014-12-21 Sist oppdatert: 2023-01-03bibliografisk kontrollert
Berndtsson, M. & Mellin, J. (2009). Active Database, Active Database (Management) System. In: Ling Liu, M. Tamer Özsu (Ed.), Encyclopedia of Database Systems: (pp. 27-28). Springer Science+Business Media B.V.
Åpne denne publikasjonen i ny fane eller vindu >>Active Database, Active Database (Management) System
2009 (engelsk)Inngår i: Encyclopedia of Database Systems / [ed] Ling Liu, M. Tamer Özsu, Springer Science+Business Media B.V., 2009, s. 27-28Kapittel i bok, del av antologi (Annet vitenskapelig)
sted, utgiver, år, opplag, sider
Springer Science+Business Media B.V., 2009
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
urn:nbn:se:his:diva-7035 (URN)10.1007/978-0-387-39940-9_502 (DOI)978-0-387-49616-0 (ISBN)978-0-387-35544-3 (ISBN)978-0-387-39940-9 (ISBN)
Tilgjengelig fra: 2013-02-06 Laget: 2013-01-23 Sist oppdatert: 2023-06-16bibliografisk kontrollert
Berndtsson, M. & Mellin, J. (2009). Active Database Coupling Modes. In: Ling Liu, M. Tamer Özsu (Ed.), Encyclopedia of Database Systems: (pp. 33-35). Springer Science+Business Media B.V.
Åpne denne publikasjonen i ny fane eller vindu >>Active Database Coupling Modes
2009 (engelsk)Inngår i: Encyclopedia of Database Systems / [ed] Ling Liu, M. Tamer Özsu, Springer Science+Business Media B.V., 2009, s. 33-35Kapittel i bok, del av antologi (Annet vitenskapelig)
sted, utgiver, år, opplag, sider
Springer Science+Business Media B.V., 2009
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
urn:nbn:se:his:diva-7037 (URN)10.1007/978-0-387-39940-9_503 (DOI)978-0-387-49616-0 (ISBN)978-0-387-35544-3 (ISBN)978-0-387-39940-9 (ISBN)
Tilgjengelig fra: 2013-02-06 Laget: 2013-01-23 Sist oppdatert: 2023-06-16bibliografisk kontrollert
Berndtsson, M. & Mellin, J. (2009). Active Database Execution Model. In: Ling Liu, M. Tamer Özsu (Ed.), Encyclopediia of Database Systems: (pp. 35-36). Springer Science+Business Media B.V.
Åpne denne publikasjonen i ny fane eller vindu >>Active Database Execution Model
2009 (engelsk)Inngår i: Encyclopediia of Database Systems / [ed] Ling Liu, M. Tamer Özsu, Springer Science+Business Media B.V., 2009, s. 35-36Kapittel i bok, del av antologi (Annet vitenskapelig)
sted, utgiver, år, opplag, sider
Springer Science+Business Media B.V., 2009
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
urn:nbn:se:his:diva-7044 (URN)10.1007/978-0-387-39940-9_509 (DOI)978-0-387-49616-0 (ISBN)978-0-387-35544-3 (ISBN)978-0-387-39940-9 (ISBN)
Tilgjengelig fra: 2013-02-06 Laget: 2013-01-24 Sist oppdatert: 2023-06-16bibliografisk kontrollert
Berndtsson, M. & Mellin, J. (2009). Active Database Knowledge Model. In: Ling Liu, M. Tamer Özsu (Ed.), Encyclopedia of Database Systems: (pp. 36-37). Springer Science+Business Media B.V.
Åpne denne publikasjonen i ny fane eller vindu >>Active Database Knowledge Model
2009 (engelsk)Inngår i: Encyclopedia of Database Systems / [ed] Ling Liu, M. Tamer Özsu, Springer Science+Business Media B.V., 2009, s. 36-37Kapittel i bok, del av antologi (Annet vitenskapelig)
sted, utgiver, år, opplag, sider
Springer Science+Business Media B.V., 2009
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
urn:nbn:se:his:diva-7045 (URN)10.1007/978-0-387-39940-9_508 (DOI)978-0-387-49616-0 (ISBN)978-0-387-35544-3 (ISBN)978-0-387-39940-9 (ISBN)
Tilgjengelig fra: 2013-02-06 Laget: 2013-01-24 Sist oppdatert: 2023-06-16bibliografisk kontrollert
Prosjekter
HELICOPTER-HS [2013-03116_Vinnova]; Högskolan i Skövde
Organisasjoner
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0002-5223-4381