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Computer games are increasingly used for purposes beyondmere entertainment, and current hi-tech simulators can provide quite,
naturalistic contexts for purposes such as traffic education. One of the critical concerns in this area is the validity or transferability
of acquired skills from a simulator to the real world context. In this paper, we present our work in which we compared driving
in the real world with that in the simulator at two levels, that is, by using performance measures alone, and by combining
psychophysiological measures with performance measures. For our study, we gathered data using questionnaires as well as by
logging vehicle dynamics, environmental conditions, video data, and users’ psychophysiologicalmeasurements. For the analysis, we
used several novel approaches such as scatter plots to visualize driving tasks of different contexts and to obtain vigilance estimators
from electroencephalographic (EEG) data in order to obtain important results about the differences between the driving in the two
contexts. Our belief is that both experimental procedures and findings of our experiment are very important to the field of serious
games concerning how to evaluate the fitness of driving simulators and measure driving performance.

1. Introduction

There is a growing interest to use simulators for educational
and training purposes by using traditional entertainment
oriented and personal computers based gaming platforms,
which are commonly referred to as serious games [1–3]. For
instance, according to SWOV [4], about 150 driving simula-
tors were used for basic driver training in 2010 in the Nether-
lands. Although driving simulators bringmany advantages to
driver training, such as safe practice environment and unlim-
ited repetition, there is a question of validity, that is, whether
the competence or performance obtained in the simulator
is valid in real world driving. To our knowledge, little
research has focused on this question (e.g., [5]) because of
reasons such as the risk of testing the skills in the real world,
higher costs and efforts required in such research, and
methodological weaknesses. Addressing this problem, this
research has evaluated the equivalence between driving in

the real world and driving in a simulator at two levels of
enquiry: by using performance measures alone and by com-
bining psychophysiologicalmeasureswith performancemea-
sures.

For our investigation, we involved experienced drivers
and collected data about both real world driving and driving
in a mid-range driving simulator. The data were gathered
in various forms, that is, quantitative data related to vehicle
dynamics (e.g., steering angle), environment conditions (e.g.,
vehicle speed), and driver’s psychophysiological signals (i.e.,
electroencephalographic and heart rate), questionnaire data,
and video data. In the first level of analysis, we compared
tasks of real world driving and driving in the simulator using
simple graphs as well as using scatter plots, and we found
interesting results such as drivers’ perceptions about driving
vary greatly in the two driving contexts. For analyzing elec-
troencephalographic (EEG) data, we proposed an improved
technique to overcome the limitations and challenges, such as
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artifacts due to movements of subjects, less accurate equip-
ment, and the fact that there are no psychological indices
to directly associate the EEG features with. The purpose of
the second level of analysis was to capture hidden physio-
logical influences on drivers’ performance in the two driving
contexts. As a result, we were able to confirm the findings of
the previous level of analysis and to infer further findings to
compare driving in the two driving contexts. Although our
approach cannot handle issues of transfer of learning in terms
of describing implications for traffic education based on com-
parisons between simulator and real world driving, we are
convinced that our research provides important findings for
simulator based traffic education concerning how to evaluate
fitness of driving simulators and measure driving perfor-
mance.

The paper is organized as follows. Section 2 discusses the
use, such as benefits and requirements, of driving simulators
for traffic education, factors that might be affecting the per-
ceived realism of drivers and their performance in such
learning environments, and the three types of measures—
performance, physiological, and subjective—that can be con-
sidered to compare the difference between driving in the
real world and driving in a simulator. Section 3 of the paper
presents the methodology which includes the justification of
our approach, the experimental setup, and the procedure of
analysis of performance measures and psychophysiological
measures. The results are presented in Section 4. In the
discussion section (Section 5), we discuss the findings of
the experiment in greater detail. Finally, in Section 6, we
conclude by presenting a summary of the findings, limitations
of our approach, and suggestions for future work.

2. Related Work

2.1. Driving Simulators for Traffic Education. Driving simu-
lators offer many advantages to traffic education. According
to Fuller (as interpreted in [4]), they offer faster exposition
to a wide variety of traffic situations, improved possibilities
for feedback from different perspectives, unlimited repeti-
tion of educational moments, computerized and objective
assessments, demonstration of maneuvers, and safe practice
environment. They also allow factors closely related to self-
efficacy to be adjusted or altered which have a direct effect
on the perception of task difficulty, motivation, and locus of
control [6], as well as allowing researchers to analyze risky
scenarios without endangering a participant [7]. A previous
study showed that a game-based simulation can be used to
improve traffic safety variables such as speed, use of turn
signal and rear-view mirrors, headway distance, and lane
change behavior [1].However, this study has not validated the
effects of such learning in real world driving.

Apart from the technical quality, the other important
requirements of a simulator for training purposes are the
quality of the simulator’s lessons, appropriateness of instruc-
tion and feedback, and adaptability of simulator lessons to the
pace and learning style of the individual learner [4]. Although
all these requirements are met, simulation is still an imitation
of reality that is far from being perfect. This specific issue
links to situated and distributed cognition which identifies

the importance of conducting learning in a meaningful and
supportive context, and it identifies problems of transfer if the
learning environment deviates considerably from reality [4,
6]. However, attributed to self-efficacy theory, [6] identifies
that:

if self-efficacy for driving a car in real life is
promoted by driving in a simulator, by making
the driver more attentive, judicious, and so forth,
as reflected in an actual improvement of perfor-
mance, then there is learning above the limitations
of the simulator.

Moreover, recalling that all simulators are models of what
they are simulating, Gee [8] argues that

Models and modeling are important to learning
because, although people learn from their inter-
preted experience, models and modeling allow
specific aspects of experience to be interrogated
and used for problem solving in ways that lead
from concreteness to abstractness.

2.2. Vigilance, the Nature of Task, and Driving Performance.
The previous topic has identified driving simulators as more
advantageous learning environments for traffic education,
but expecting the learning drivers’ active participation during
the learning cycle. However, it is equally important to have a
look at factors that might be affecting the perceived realism
of drivers and their performance in such learning environ-
ments, such as the vigilance and how the nature of the task
might be affecting them.

Vigilance, also called sustained attention, refers to the
ability of organisms to maintain their focus of attention
and to remain alert to stimuli over prolonged periods of
time [9]. However, vigilance tends to decline, a phenomenon
called vigilance decrement, resulting in substantial failures in
human performance. For instance, road accidents are often
caused by failures of vigilance in drivers [10].

Traditionally, vigilance decrement has been conceived as
a decline in arousal as a result of low cognitive demands.
A theoretical position that supports this view is called the
arousal theory which suggests an “inverted-U” shaped rela-
tionship between arousal and task performance [11, 12], that
is, task performance is poor when arousal is either too weak
or too strong. However, this theory has failed to explain high-
stress levels associated with vigilance and underestimated the
nature of vigilance task. On the contrary, more recent studies
indicate that an individual’s vigilance depends on mental
resources that can be allocated to a task [9, 13]. Since we are
investigating drivers’ performance in two different driving
contexts, it is worth to elaborate how vigilance is associated
with the driving environment and performance of drivers.

Studies investigating the vigilance of drivers report that
driving under decreased levels of vigilance will cause longer
reaction time, attention decline, and deficits in information
processing and will ultimately increase the risks of accidents
[10, 11, 14]. As discussed by Thiffault and Bergeron [11], there
are two broad conceptions of vigilance: one is associated with
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physiological processes which have influence on alertness
and wakefulness, and the other is associated with informa-
tion processing and sustained attention. The same can be
understood from the multimodal nature of emotion [15, 16].
Factors influencing the physiological states that underlie vig-
ilance and alertness can be categorized into endogenous and
exogenous [11, 17]. Endogenous factors, such as time of day,
duration of task, and sleep-related problems, are associated
with long-term fluctuations of alertness and affect the basic
preparation state of the individual. However, exogenous fac-
tors are determined by the individual’s interactions with the
road environment such as its monotony and low traffic den-
sity, and they have an impact on the driving performance by
affecting alertness, information processing, and arousal.
Since our research mainly focuses on the exogenous factors,
that is, each individual’s interaction with the two types of
road environments, it is important to elaborate the discussion
within that scope, such as relations between road scene,
speed, vigilance, and driving performance.

The role of speed in the above relationship can be
described in the following manner. Driving is a visual task
in which the peripheral vision plays a major role [18]. The
quality of the useful visual field depends on several factors
including the information processed in the peripheral area,
foveal cognitive load, and age of the individual. A complex
road scene (with road signs, obstacles, pedestrians, numerous
vehicles, junctions, etc.) results in an increased spatial density,
which ultimately decreases the useful visual field leading to
a decreased driving performance. Speed, on the other hand,
increases the amount of information to be processed per time
unit, called the temporal density. According to Rogé et al.
[18], there is no direct relationship between the speed and the
driver’s useful visual field; that is, the useful visual field
deteriorates when the speed is increased. However, speed
depends on the type of road (highway, city traffic, etc.) as well
as drivers’ adaptation to the road infrastructure by adjusting
speed to minimize the effects of mental workload induced
by the speed [11, 18]. Road infrastructure has implications to
driver’s vigilance as well; that is, monotony as a result of low
sensory stimulation and low stimulus variation leads to
decreased levels of arousal and alertness. Furthermore, the
driver’s useful visual field deteriorates with the prolongation
of a monotonous task [18]. Therefore, it is important to
consider the quality of the road scene (monotony) as well
as the driver’s state (vigilance) when taking into account the
influences of speed on the driving performance.

2.3. Evaluating User Experience and Performance of Drivers.
In general, the literature suggests three types of measures to
evaluate the equivalence between driving in the real world
and driving in a simulator: performance, physiological, and
subjective measures [5, 11, 14, 17–20]. Performance measures
evaluate physical and behavioral changes (e.g., vehicle speed,
lane changing behavior, steering wheel variance, and head
movements) and capture how well the user is performing a
given task. Physiological changes (e.g., heart-rate variability
(HRV), galvanic skin response (GSR), electrooculogram
(EOG) signals, and electroencephalographic (EEG) signals)
can capture a broad range of aspects of human cognition

and related processes. Although psychophysiological indices
offer several advantages over other methods, they can bring
confusions when interpreting the readings [21]. Finally, sub-
jective measures are those that capture the user’s subjective
assessment of certain aspects using techniques like ques-
tionnaire and interviews. However, subjective measures are
considered problematic because of the unreliability of self-
reported emotional information and requirement to inter-
rupt the experience [22].

Numerous studies have used one or a combination of the
aforementioned measures when evaluating user experience
and performance of drivers in any given context or for
comparing those measures between different contexts. For
example, Backlund et al. [1] report on a study that has evalu-
ated a game-based driving simulator using questionnaire and
interview data to capture opinions and attitudes from both
students and instructors, and capture performance measures
such as speed, headway distance, and lane change behavior.
Another study [7] in which an eye tracker was used to detect
distraction examined driver responses in a rear-end crash
scenario during which the driver of the following car was dis-
tractedwith a secondary task. Yet, another study [20] has esti-
mated the driver’s cognitive load based on the physiological
pupillometric data (pupil diameter change) and driving per-
formance data (variance of lane position and steering wheel
angle). Nevertheless, these studies lack data enabling direct
comparisons between driving in the real world and driving
in a simulator and proper interpretations of results, which is
something we wish to complement.

3. Method

3.1. Our Approach. Engen et al. [19] indicate three different
types of environments in which traffic related experiments
can be conducted alongwith their specific drawbacks: driving
simulator, test track, and real traffic. Driving simulators lack
the realism and the possibility to produce feelings of real
danger. Test tracks lack the danger of interaction with other
vehicles, and real trafficmay be dangerous and hence not fea-
sible for experiments. Moreover, it is unethical to expose sub-
jects to risk in instrumented vehicles in potentially dangerous
situations in test tracks or in real traffic. Since the aim of
this paper is to evaluate the equivalence between driving in
the real world and driving in a simulator, but taking into
account the constraints and limitations of each of the driving
environments mentioned before, we decided to involve only
driving instructors in our experiment.The decision to involve
driving instructorswas alsomotivated by another reason, that
is, to get an expertise perspective whichminimizes the effects
of noisy situational dispositions when involving humans in
experiments as described thereafter.

Dreyfus [23] presents two concepts, based on Merleau-
Ponty’s Phenomenology of Perception, that are associated
with intelligent behavior, learning, and skillful action, that is,
the intentional arc and the tendency toward achieving amax-
imum grip. A skilled agent’s skills are stored as more refined
dispositions to respond to the solicitations of more and more
refined perceptions of the current situation. As a result, the
agent’s body tends to respond to these solicitations in such
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a way to bring the current situation closer to the agent’s sense
of an optimal gestalt, called the maximum grip. These allow
experts, once immersed in theworld of their skillful activities,
not only to see what needs to be done, but also to do it intu-
itively and immediately. A study byGilleade et al. [24] reports
that novice players are more sensitive to challenges in game
play than experienced players, which was observed in their
physiological signals. However, age has a negative effect to the
useful visual field, which may result in the driver neglecting
some elements of information present in the road traffic [18].
Therefore, in identifying expertise we tried to limit our
participants to middle aged drivers with a driving experience
of at least about ten years. However, as we experienced diffi-
culties in finding a large group of driving instructors alone in
our experiment, we involved a group of regular drivers who
have already obtained their driving licenses and had a similar
amount of driving experience. Yet, this group did not get
involved in real world driving as we found that it is difficult
to continue the experiment in the real world environment
involving a large number of individuals due to limited
resources. Therefore, in our analysis, we tried to justify our
selection based on the similarities of the measurements of
driving instructors and regular drivers in the simulator
context before proceeding to further analysis.

The simulator we involved in our study is a mid-range
driving simulator (see Section 3.3 for details). At the begin-
ning of our study, we assumed that the driver who drives in
the simulator (also called the proband)will behave in at least a
very similarmanner as if he/she is driving a real car. However,
this may not be the case as it depends on how well it can
imitate the reality along with scenarios and physical behavior.
Many advanced driving simulators are built satisfying these
requirements to higher degrees (see [25]), but they are
extremely expensive. However, the mid-range simulator used
in the experiment can imitate scenarios and physical behavior
to a satisfying degree. Since modeling of road scenes and
reaching high fidelity are out of the scope of our study, we
used thematically similar road scenes tomimic the real world
circumstances, that is, highway and city traffic. Finally, we
carefully planned the real world driving sessions duringmin-
imal traffic conditions of the day to make the real world and
simulator traffic conditions approximately similar. Since we
analyzed the driving behavior at two levels and considered
situations of which the temporal resolution is low rather than
instantaneous events, we deem that the difference between
the road scenes is not substantial given that the traffic condi-
tions are approximately similar. Indeed, the aim of our study
is to evaluate the equivalence between driving in the real
world and driving in a simulator already knowing that the two
driving contexts are different in a number of ways while still
being similar in theme and purpose. Moreover, as discussed
in Section 2.1, there are implications of user experience in a
carefully designed simulator for real world problem solving
as it facilitatesmodel-based thinking and learning beyond the
limitations of the simulator promoted by a greater degree of
self-efficacy.

In Section 2.3 we discussed different types of measures to
evaluate the equivalence between different types of driving
contexts along with their specific drawbacks. Our approach

is different from others in such a way that we first evalu-
ated the driving behavior in two contexts based on perfor-
mance measures alone and extended our analysis to involve
psychophysiological measures. In other words, we analyzed a
selected set of performancemeasures (e.g., speed and steering
wheel movement) and we tried to infer possible motiva-
tions behind the variations of those measures based on
psychophysiological measures (i.e., EEG based vigilance esti-
mators). This type of analysis was possible in our study as we
were interested in situations in which the temporal resolution
is low; for example a driver may decide to drive faster in
straight road segments, rather than instantaneous events,
such as a driver looking in the side mirrors. Our approach
allows us not only to evaluate the equivalence between the
two contexts on drivers’ consciously decided and physically
observable actions, but also onunconscious andunseen influ-
ences on those actions. Another strong side of our approach
is that we analyzed the data considering both grouping effects
as well as individual differences.

3.2. Participants. A total of 14 healthy participants (mean
age = 39.1 years and SD = 10.2 years; eight males and six
females) took part in the experiment after providing a
written statement of informed consent.The participants were
recruited within two driver categories: driving instructors
from a well known driving school (27–56 years; mean age =
40.9 years and SD = 11.5 years; five males and three females)
and regular drivers within the university staff (26–51 years;
mean age = 36.7 years and SD = 8.4 years; three males and
three females). The driving instructors had been recruited by
the driving school after considering their outstanding driving
performance and number of years of driving (mean driving
years = 23.6 and SD = 13.6). The regular drivers had compar-
ative driving experience (mean driving years = 18.2 and SD =
8.3). After each experiment, each participant received a free
lunch and refreshments as compensation for their involve-
ment in the experiment.

3.3. Equipment and Tools. The experiment involved the mid-
range driving simulator in the University of Skövde, Sweden
[1]. It uses a real car with automatic transmission as a game
control surrounded by seven screens. The screens cover
the whole field of view for the driver, including the parts
covered by the rear-view mirrors (220 × 30 degrees for-
ward and 60 × 30 degrees rear). The physical feedback
is comprised of sound vibrations and the car’s fan also
helps to create an illusion of movement. The sceneries and
relevant physical behavior are generated by two differ-
ent game engines: VDrift (http://vdrift.net/) and OGRE
(http://www.ogre3d.org/). VDrift is a free and open source
driving simulator in which the physical behavior is mainly
inspired by Vamos automotive simulation framework (http://
vamos.sourceforge.net/). OGRE is a scene-oriented, flexible
3D engine from which sceneries can be generated by inte-
grating physical behavior using physics wrappers. Numerous
studies have been conducted to evaluate the simulator’s
feasibility as a learning tool [1] and fitness for providing a
higher sense of self-efficacy [6].
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In our experiment we captured physical performance
data in the following way. For the real car we used three linear
string potentiometers (http://www.advantagemotorsports
.com/) which we attached to brake and gas pedals and to
the steering shaft. The status of each pot was sampled 20
times a second by an ATMega16 microcontroller which was
recognized by the PC as a USB joystick. The speed of the
car was derived based on readings from a GPS sensor. In
the simulator, the car was equipped with two linear slider
potentiometers attached to the brake and gas pedals and
sampled at a rate of 100 times a second by an ATMega32
microcontroller in order to feed to the PC. However, for the
steering we used a tooth wheel from a ball mouse which was
attached to the steering rod near the front left wheel of the
car, which has been already designed to automatically strive
to have the wheels in a straight position when no one is
driving the car.The rotation of the tooth wheel was read by an
ATMega16microcontroller and fed to the PC. Although there
are certain differences in the sensors we used for capturing
data in the two cars, we normalized the values of those
sensors before sending the data to the recording software.
For instance, in both cars, the reading of the gas pedal is zero
when the gas pedal is at rest and one when it is fully pushed.
The speed of the car in the simulator was obtained from the
game engine itself. In addition to physical performance data,
two cameras provided the frontal field of view and view of
the subject in both cars.

Although most features of the two cars were similar, they
had different transmission systems, that is, the real car had
manual transmission where the car in the simulator had
automatic transmission. We consider this to have minimal
effect on the experimental conditions as driving instructors
are used to both types of transmission systems and the
specific variables we considered for the analysis (e.g., car
speed and steering wheel movement) are to a greater degree
independent of the type of transmission. Apart from the
above sensors, driver’s physiological data were captured using
a low-cost sports heart rate monitor with chest belt—the
Polar WearLink + transmitter with Bluetooth (http://www
.polar.fi/) and Emotiv EPOC neurofeedback headset (http://
www.emotiv.com/). The Emotiv EPOC headset is a low-cost
alternative to highly expensive clinical type EEG equipment,
but it uses 14 sensors and two references to capture EEG
potentials following international 10–20 locations as well as
providing two-axis gyro data for detecting head movements,
namely, gyro𝑥 and gyro𝑦. It has several other benefits such as
wireless data transmission and being easy to setup. However,
it has limitations as well, such as that it does not cover some
important scalp positions, high signal-to-noise ratio, and
lower sampling rate. Nevertheless, much research [26–28]
reports the successful use of Emotiv EPOC neurofeedback
headset to capture EEG signals for research purposes.

Captured data (vehicle dynamics, environmental condi-
tions, and subject’s physiological signals) were saved at their
corresponding capturing points (personal computers) as well
as in a central point as an effort to minimize risk of loss of
data and synchronization errors.

The analysis was primarily carried out in Matlab
[29] and graphs were obtained using Microsoft Excel.

Electroencephalographic (EEG) data was analyzed involving
both Matlab and EEGLAB [30], which is an interactive Mat-
lab toolbox for processing continuous and event-related EEG,
EMG, and other electrophysiological data using independent
component analysis (ICA), time/frequency analysis (TFA),
and othermethods. For comparingmeans of different groups,
a balanced one-way ANOVA (Analysis of Variance) was used
which is also available inMatlab as a function. ANOVA offers
a greater flexibility for comparing means of even more than
two groups which is not possible with Student’s 𝑡-test [31,
page 115].

3.4. Data Collection during Driving Tasks. Each driving
instructor participated in the real world driving session and
two driving sessions in the simulator, whereas each regular
driver participated in two driving sessions in the simulator
only. The real world driving session was approximately 20
minutes long in which the subject first drove on a road in
city traffic until he/she reached a highway, next drove in the
highway for several minutes, and finally drove back using
the same route. In the simulator, each subject drove in the
OGRE-based highway traffic track having levels of increasing
difficulties for about 10minutes, in VDriftMonaco track (city
area like track, but no traffic) for about 5 minutes, and finally
in VDrift LeMans track (landscape like track, but no traffic)
for about 5 minutes. Figure 1 shows screenshots of the two
driving environments and the three tracks of the simulator
driving session. Table 1 shows the naming convention used
in naming the tracks of each driving session and number of
participants within each category of drivers who took part in
driving on those tracks.

Each subject completed a questionnaire in a quiet office
soon after each session of driving. In the questionnaire each
subject had to answer questions about their driving experi-
ence, disturbances, and several other aspects, most of which
were in 5-point Likert-type scale where 0 is not at all and 4
is extremely. However, only the question about disturbances
from different sources of the questionnaire was considered in
the analysis of this study.

3.5. Analysis of Performance Data. As indicated earlier, we
captured four types of performancemeasures, that is, speed of
the car, steeringwheel angle, gas pressure, and brake pressure.
The speed of the car was recorded in km/h whereas the other
three action variables were converted into the normalized
scale [0, 1]. Subsequently, the captured data were prepro-
cessed to fix discontinuities and to synchronize between
different data streams. Finally, segments of data have been
identified based on the driving track boundaries noted in the
corresponding video recordings. Figure 2 shows the variation
of the four variables during one of the tracks.

Based on the four types of performance measures identi-
fied, we predicted a set of eight variables for further analysis:
means of speed, means of steer, means of gas, means of brake,
SDs of speed, SDs of steer, SDs of gas, and SDs of brake.
This decision was partially motivated by the literature that
suggests the use of steering wheel movement (SWM) for
estimating the alertness level of drivers (e.g., [11]). The values
for the above variables were calculated in the following way
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(a) (b)

(c) (d) (e)

Figure 1: Screenshots of (a) the real world driving; (b) driving in the simulator; (c) OGRE-based highway traffic track; (d) VDrift Monaco
track; and (e) VDrift LeMans track.

Table 1: Naming convention used in labeling different driving tasks.

Track Description Driving instructors Regular drivers
RW.Tr.11 City traffic driving of onwards trip in the real world 8 0
RW.Tr.21 Highway driving of onwards trip in the real world 8 0
RW.Tr.22 Highway driving of the return trip in the real world 8 0
RW.Tr.13 City traffic driving of return trip in the real world 8 0
Sim1.Tr.30 Driving in the simulator in the in the highway traffic track during the first session 5 6
Sim1.Tr.41 Driving in the simulator in the VDrift Monaco track during the first session 7 4
Sim1.Tr.51 Driving in the simulator in the VDrift LeMans track during the first session 6 5
Sim2.Tr.30 Driving in the simulator in the in the highway traffic track during the second session 6 6
Sim2.Tr.41 Driving in the simulator in the VDrift Monaco track during the second session 6 5
Sim2.Tr.51 Driving in the simulator in the VDrift LeMans track during the second session 7 6

for instance, means of speed of a driver group is calculated
by averaging each member driver’s mean speed values of a
given driving track where as SDs of speed of a driver group is
calculated by averaging each member driver’s standard devi-
ation of speed values of a given driving track.

3.6. Analysis of Electroencephalographic (EEG) Data. The
literature suggests differentways to analyze and interpret EEG
data such as event related potentials (ERP) and power spectra
analysis [32, 33]. For instance, theta rhythms intermittent in
the band 6 to 7Hz of <15 𝜇V in the frontal and frontocentral
head regions are believed to be facilitated by emotions,

focused concentration, and during mental tasks [33]. How-
ever, we were unable to conduct our analysis based on the
above frequently used techniques because our equipment had
limitations caused by various artifacts, that is, higher ampli-
tude and different shaped signals caused by sources such
as bodymovements, eye-movements, impedance fluctuation,
cable movements [32], and synchronization errors. Although
the literature indicates certain techniques such as Inde-
pendent Component Analysis (ICA) [30, 34] for removing
artifacts, we could not succeed in our preliminary attempts
with using ICA due to lesser number of EEG channels in the
equipment.Therefore, we decided to use a different technique
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Figure 2: Variation of the four performance measures during one
of the tracks (Tr.11) of a subject. Please note that the values of steer,
gas, and brake were magnified 50 times for the illustration purpose.

as described therafter. This method was partially motivated
by the literature which suggests the use of EEG features with
minute-scale smoothing for deriving vigilance estimators [14,
35, 36].

First, for each individual EEG recording, which consists
of 14 channels of EEG data, we obtained the band powers
for each of the seven frequency bands, that is, delta (1–4Hz),
theta (4–7Hz), alpha1 (7–10Hz), alpha2 (10–13Hz), beta1 (13–
22Hz), beta2 (22–30Hz), and gamma (30–45Hz), which
ultimately resulted in 98 (i.e., 14 ∗ 7) band power components
per each recording. Furthermore, for the aforementioned
calculation, we involved the EEGLAB and the fast Fourier
transformation (FFT) algorithm, and the band powers were
calculated for consecutive one second durations of each
component. However, as the band powers still contain noisy
segments due to artifacts in the original EEG channels, we
used the following technique to eliminate errors. First, in the
respective EEG data channel of which the band power com-
ponent was obtained, as well as in the gyro 𝑥 and gyro𝑦 chan-
nels of that recording, signal magnitudes that exceed the 3 ∗
sigma (i.e., 3∗ standard deviation) level were identified. Next,
a particular segment of the respective band power component
was labeled as bad if at least one of the channels (within the
respective band power channel or gyro 𝑥 and gyro 𝑦 chan-
nels) had already reported it as bad (i.e., that exceeded the 3 ∗
sigmaboundary). Finally, noisy segmentswere replaced using
interpolation, which is based on adjacent band power values.
After eliminating bad segments from band power compo-
nents, each component was smoothed using the LOESS alg-
orithm (local regression using weighted linear least squares
and a second degree polynomial model) available in Matlab
with approximately 30 seconds of time span. These band
power components were treated as vigilance estimators, with
the exception that only certain components can be associated
with actual vigilance of drivers. Figure 3 shows a vigilance
estimator derived from an EEG recording.
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Figure 3: EEG-based vigilance estimator (derived from F3-Delta).

Once EEG features (i.e., vigilance estimators) were
extracted from each recording, as the next step, each EEG fea-
ture was processed to find up to six peaks, which are highest,
and up to six valleys, which are lowest, within each feature
waveform. Next, of each peak and valley of a given feature
waveform, the corresponding values of a given driving vari-
able (i.e., speed, steer, gas, and brake) were obtained. How-
ever, before extracting the values, driving variables were
smoothed to match a similar degree of smoothing span as of
EEG features which is about 30 seconds. Smoothing of data
has helped to leave out noise or other rapid changes in data.

After obtaining driving variable values at peaks and
valleys of EEG features, ANOVA 𝐹-tests were performed
to check whether means are different between a particular
driving variable’s values at peaks and valleys. For instance,
ANOVA 𝐹-test for comparing the mean speed of peaks
(44.6 km/h) and mean speed of valleys (51.2 km/h) at O2-
beta of Tr.11 yielded that the means are significantly different
(𝑃 value = 0.03). As the next step, the average values of
peaks and valleys were obtained for each frequency band by
considering only those values of which the means are signif-
icantly different (i.e., 𝑃 < 0.05) between peaks and valleys.
For instance, the above calculation has yielded the mean
speed values 43.2 km/h and 50.9 km/h, respectively, for peaks
and valleys of the delta band of Tr.11. Since we have not
observedmuch difference between the values we obtained for
each frequency band of a given track (e.g., SD = 1.7 and 0.8,
respectively, of the peaks and valleys of Tr.11), we obtained
the averages of the values. For instance, the mean speed
values of peaks and valleys are 42.7 km/h and 51.3 km/h,
respectively, for Tr.11. We used these values when associating
with corresponding performance measures (see Section 4.2).

4. Results

As we have already discussed in Section 3.5, we have pre-
dicted eight variables based on the four performance mea-
sures, that is, means of speed, means of steer, means of gas,
means of brake, SDs of speed, SDs of steer, SDs of gas, and
SDs of brake. However, most effective variables have to be
recognized within those variables as not all variables are
equally important when differentiating between the driving



8 International Journal of Computer Games Technology

Table 2: Multiway ANOVA 𝐹-test values for testing the effects of
multiple factors.

Variable Driver type Driving session Driving track
𝐹(1,68) 𝐹(1,68) 𝐹(2,68)

Means of speed 0.96 2.37 13.6∗∗∗

Means of steer 0.99 0.92 24.7∗∗∗

Means of gas 2.62 1.06 101∗∗∗

Means of brake 0.01 0.35 1.04
SDs of speed 2.10 2.52 4.85∗

SDs of steer 1.77 0.20 14.6∗∗∗

SDs of gas 0.76 1.85 3.71∗

SDs of brake 0.12 0.71 1.38
∗, ∗∗, ∗∗∗Significant differences at P < 0.05, P < 0.01, and P < 0.001,
respectively.

behaviors of the two contexts. However, as the first step, it
has been required to check whether the driving behavior of
driving instructors and regular drivers can be considered as
similar or not, so that, if similar, we get eight participants for
the real world driving and 14 participants for the simulator
driving. ANOVA 𝐹-tests for comparing ages and experience
between the two groups have showed that there is no
significant difference between the ages (𝐹(1, 12) = 0.57; 𝑃 =
0.46) or experience (𝐹(1, 11) = 0.71; 𝑃 = 0.42). Table 2
shows multiway ANOVA 𝐹-test values for comparing means
of each driving variable for testing the effects of driver type,
driving session, and driving track. The test was performed
considering only the data of the simulator driving experiment
because the conditions were similar for both types of drivers
in the simulator.

According to Table 2, there is no significant main effect
for driver type or driving session. Therefore, the two driver
categories have been considered as one category (i.e., as
licensed drivers) and the two sessions have been considered
as one continuous session for further analysis. However,
Table 2 reveals that there is a significant main effect for driv-
ing track (𝑃-values < 0.05, except two variables). Therefore,
based on the 𝑃-values that are lowest (i.e., 𝑃 < 0.001),
means of speed, means of steer, means of gas, and SDs of
steer have been recognized as the most effective variables
for differentiating the driving behavior of different driving
tracks. However, to clarify the finding further, we prepared
the following graphs (Figure 4) for each identified variable.

According to Figure 4, the patterns of means of steer and
SDs of steer are to a significant degree identical, whereas the
other two variables, that is, means of speed and means of gas,
have distinguishing patterns. Therefore, we decided to con-
sider only SDs of steer for our further analysis while leaving
means of steer out. Our decision is partially motivated by the
literature which reports successful use of steering wheel
movement as discussed in the Section 3.1. After knowing that
the driver type or the driving session does not play a sig-
nificant role, but the driving track, and identifying the most
effective variables, we proceeded to compare driving behavior
of the two contexts. However, before that, we compared how
the subjects have perceived the two environments subjected

Table 3: Comparing disturbances from different sources in the two
driving contexts.

Source of disturbance
Real world
driving [0, 4]

M (SD)

Driving in the
simulator [0, 4]

M (SD)
EEG headset 1.4 (0.9) 1 (1.1)
Heart rate sensing equipment 0.3 (0.5) 0.4 (0.8)
Video recording equipment 0.5 (0.8) 0.3 (0.5)
Other equipment 0.9 (1.1) 0.9 (1.3)
Presence of researchers 0.5 (0.8) 0.4 (0.7)
When people talk 0.1 (0.4) 0.4 (1.0)

to their differences from different sources of disturbances due
to experimental conditions (Table 3).

According to Table 3, none of the considered sources of
disturbances has significantly disturbed the subjects as the
mean values and standard deviations are very low. Moreover,
both environments seem to be similar as the values are very
similar in the two contexts.

4.1. Comparing Driving Behavior of the Two Contexts Based
on Performance Measures. Figure 5 contains three graphs
representing the behavior of each identified variable over
different driving tracks of the two contexts.

As it can be seen in Figure 5, in general, standard devi-
ations are higher in the tracks of the simulator context than
these of the real world context of all three variables.Moreover,
values of means of gas and SDs of steer are higher in the
tracks of the simulator context than these of the real world
context. Since implications of the above analysis are not very
clear, scatter plots were prepared between means of gas and
means of speed as well as SDs of steer and means of speed
considering the values of each individual driver (Figure 6).

As it can be seen in both graphs of Figure 6, different
clusters can be identified for each driving track except similar
driving behaviors between Tr.11 and Tr.13 and between Tr.21
and Tr.22. Moreover, both graphs confirm that deviations
(spread) of driving behaviors are higher in the tracks of
the simulator context than these of the real world context.
Apart from that, driving behavior of the real world context
is attributed with lower values of means of gas and SDs of
steering.

4.2. Comparing Driving Behavior of the Two Contexts Based
on Both Performance and Psychophysiological Measures.
Although psychophysiological data has been collected in two
ways, that is, EEG and heart rate, we were unable to incor-
porate heart rate-based measures into the analysis because
we observed abnormalities of data due to some technical
problem in the equipment. For the analysis of EEG data we
used a novel technique (see Section 3.6). Table 4 contains
values obtained for peaks and valleys as well as mean values
and standard deviations of each of the four performance
measures and tracks of the two contexts. Figure 7 is a
graphical representation of the values in Table 4.
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Figure 5: Values of means of speed (MSP), means of gas (MGS), and SDs of steer (SDST) in different tracks of the real world driving and
driving in the simulator and standard deviations based error bars.

As it can be seen in Figure 7(a), means of speed (uncon-
ditioned) lies between the lines of mean speed at peaks and at
valleys, andmean speed at valleys is above the two.Moreover,
the distances between the lines of valleys and peaks are closer
to each other, and means of speed is closer to mean speed at

valleys in the tracks of real world driving than these of the
simulator.

Figure 7(b) shows the graph between means of steer
(unconditioned) and mean steer at peaks and at valleys.
Although the graph shows a similar pattern as of Figure 7(a),
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Figure 6: Scatter plots (a) between means of gas (MGS) and means of speed (MSP) and (b) between SDs of steer (SDST) and means of speed
(MSP).

that is, means of steer lies between the lines of mean steer at
peaks and at valleys, the line of peaks is above the line of
valleys.

Although Figure 7(c) shows a similar pattern as of the
other two, that is, the line of means of gas lies between the
lines of peaks and valleys, the lines of peaks and valleys have
crossed each other at certain driving tasks. When inspecting
the behavior of these crossings, it can be seen that Tr.22 and
Tr.30 driving tasks can be categorized as similar, both of
which are associated with highway driving but in different
contexts.

Finally, the lines of Figure 7(d) have a similar behavior as
these of Figure 7(c) but an inverted behavior of the lines of
peaks and valleys.

5. Discussion

In our study we evaluated the equivalence between driving
in the real world and driving in a simulator at two levels,
that is, using performance measures alone and by combining
psychophysiological measures with performance measures.
For the real world experiment, we involved eight driving
instructors from a driving school and a car equipped with
sensors to capture data about steering, gas and brake pres-
sures, and speed. However, we involved eight additional
drivers, who were regular drivers from the university, for the
driving experiment in the simulator. Our analysis has shown
that there is no significant difference (i.e., 𝑃 > 0.05) between
ages and experience of the two groups we involved, so we
treated them as equal. The simulator too was equipped with
sensors to capture similar data as of real world driving
experiment. However, each participant participated in two
sessions in the simulator but on two different occasions.
Additional equipment was used to capture EEG data and
heart rate of participants.

For the analysis, we predicted eight variables based on the
four performance measures considered in the study, that is,
means of speed, means of steer, means of gas, means of brake,
SDs of speed, SDs of steer, SDs of gas, and SDs of brake.
Based on the differences of the values of those variables in
the simulator context, we were able to infer that the session
does not have a significant influence on the driving behavior
but driving track does. Moreover, the results confirmed that
there is no difference between the two types of drivers we
involved in our study. Further, we were able to identify means
of speed, means of gas, and SDs of steer as the three most
effective variables for differentiating the driving behavior of
different driving tracks. So we used these findings as a basis
when comparing the driving behavior between the two differ-
ent contexts. A comparison between the possible sources of
disturbances of the two experimental conditions, such as the
mere presence of others, has revealed that both conditions are
at least approximately similar.

In our analysis, in which we used only the performance
measures, we found that the scatter plots between means of
gas and means of speed as well as SDs of steer and means of
speed are most effective when comparing the driving behav-
ior of the real world and simulator contexts. In both scatter
plots, the points representing different driving tasks (tracks)
have been formed into different patterns of clusters. However,
among those clusters, tasks of real world driving have a very
low spread compared to the tasks of simulator which is again
attributed with lower values of means of gas and SDs of
steering. These results indicate an important aspect of simu-
lator driving: people perceive the simulator as a more relaxed
environment for experimenting with their skills, whereas
in the real world they behave in a very restricted manner.
Since this analysis does not reveal how people perceive the
seriousness of their driving in the two contexts, we combined
the psychophysiological features with performance measures
in the second level of analysis.
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Figure 7: Graphical representations of the values at peaks and valleys of EEG vigilance estimators and means and standard deviations (as
error bars) of the four performance measures: (a) speed, (b) steer, (c) gas, and (d) brake.

For analyzing EEG we used a method as indicated in the
literature as a way to derive vigilance estimators from EEG
data, but after improving its usefulness by associating its fea-
tures with performance measures. This process has provided
two values per variable, that is, values associated with high
vigilance situations and values associated with low vigilance
situations. The first result of this analysis, the graph between
the mean speed values at peaks and at valleys and means
of speed, indicates that drivers have maintained their mean
speed within the limits of the speed levels that are associated
with high and low vigilance levels. Moreover, it suggests that
driving in low speeds is more vigilant than that at high speeds
from the fact that the line of mean speed at peaks lies beneath
the line of mean speed at valleys. Apart from that, driving in
the simulator seems to be emotionally more relaxed than the
real world driving as the distance between the lines of valleys
and peaks is lesser in the tasks of simulator. However, drivers
have tried to maintain their vigilance at a low level by driving
in sufficiently high-speed levels in the real world which is

indicated by closer distances between the lines of means of
speed and mean speed at valleys.

Although the graph between the mean steer values at
peaks and at valleys and means of steer shows a similar pat-
tern as does speed, the line of peaks is above the line of valleys,
which suggests that higher degree of steering is associated
with higher level of vigilance. Moreover, simulator driving
tasks seem to be emotionally more relaxed than real world
driving tasks as the distances between the lines of peaks and
valleys of simulator driving tasks are less than these of real
world driving tasks. Another observation is that the mean
steering values are higher in the simulator than the values
of real world driving, which may indicate the differences
between the tracks of real world driving and driving in the
simulator.

The graphs of the other two measures, gas and brake,
show somewhat similar patterns; that is, the lines of peaks
and valleys have crossed each other at certain driving tasks.
The graph of the measure for gas indicates that accelerating
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is more vigilant especially in the highway tracks of both con-
texts, but not in other tracks. This result can be explained in
the following way: there is no need for a higher degree of gas
on the highway, and accelerating can cause more stress as the
speed increases. However, the graph of the measure for brake
indicates that braking is less vigilant on the highway track of
real world driving, while it is not on the other tracks of both
contexts. This result can be explained as braking is required
especially when there are disturbances such as other traffic
and bends in the road which is true for all tracks except
the highway track of real world driving. It is also observed
that real world driving is attributed to a lower degree of gas
and a higher degree of brake, whereas simulator driving is
attributed to a higher degree of gas, except highway driving,
and lower degree of brake. These results suggest the desire to
drive in a relaxed mood in the simulator context.

Apart from the above findings, it is our belief that the
zone between the lines of peaks and valleys, especially in the
graph of speed, can be equated to the flow zone of Csikszent-
mihályi’s flow theory, which states that strong involvement in
a task (flow) occurs when the skills of an individualmatch the
challenge of a task [22, 37, 38]. If our assumption is true, the
challenging levels offered by certain tasks of real world driv-
ing are approximately similar to certain tasks of driving in the
simulator. Further, the differences in the speed levels of
different tasks can be explained in conjunction with the
complexity of the road scene, that is, differences in the spatial
and temporal density, as we have discussed in Section 2.2. For
instance, speed level is higher on the highway track of real
world than on the city traffic track. However, there are
similarities of certain speed levels between the tasks of real
world driving and driving in the simulator which may imply
road scenes of similar complexities though we do not know
what constitutes those complexities. Yet, as the individual
differences of driving are higher in the simulator than the real
world, we cannot justify the above implications with a greater
confidence.

6. Conclusion

This paper has presented work comparing real world driving
with driving in a mid-range driving simulator at two levels,
that is, by using performance measures alone, by combining
psychophysiological measures with performance measures,
and by involving experienced drivers. The rationale behind
involving experienced drivers was to get an expert perspec-
tive which equates with the evaluation of the simulator using
a human drivingmodel. Although it was not within the scope
of the study to create models of high fidelity, we are confident
that we have achieved a substantial progress with the aims
of our study as the tasks of both contexts were thematically
similar in most conditions.

In the first level of analysis, that is, analysis of perfor-
mance measures, we were able to visualize the results in scat-
ter plots which show distinguishing differences between the
tasks of real world driving and driving in the simulator. For
instance, clusters representing individual driving tasks of real
world driving have a lower spread than the tasks of simulated
driving. We equated this result to drivers’ perception of the

simulator as a more relaxed environment for experimenting
with their skills whereas the real world offers a very restricted
driving environment. In the second level of analysis, which
combined psychophysiological measures (i.e., EEG-based
vigilance estimators) with performance measures, we were
able to capture hidden physiological influences on drivers’
performance in the two driving contexts. Results of this anal-
ysis further confirmed the findings of the previous level of
analysis and helped to infer more findings.

Although there are certain limitations of our approach,
such as low number of subjects and the fact that we did
not involve novice drivers in the experiments, our belief
is that both experimental procedures and findings of our
experiment are very important to the field of serious games
concerning how to evaluate the fitness of driving simulators
and measure driving performance.
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