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The identification of learning mechanisms for locomotion has been the subject of much
research for some time but many challenges remain. Dynamic systems theory (DST) offers
a novel approach to humanoid learning through environmental interaction. Reinforcement
learning (RL) has offered a promising method to adaptively link the dynamic system to the
environment it interacts with via a reward-based value system. In this paper, we propose
a model that integrates the above perspectives and applies it to the case of a humanoid
(NAO) robot learning to walk the ability of which emerges from its value-based interaction
with the environment. In the model, a simplified central pattern generator (CPG) architec-
ture inspired by neuroscientific research and DST is integrated with an actor-critic approach
to RL (cpg-actor-critic). In the cpg-actor-critic architecture, least-square-temporal-difference
based learning converges to the optimal solution quickly by using natural gradient learn-
ing and balancing exploration and exploitation. Futhermore, rather than using a traditional
(designer-specified) reward it uses a dynamic value function as a stability indicator that
adapts to the environment. The results obtained are analyzed using a novel DST-based
embodied cognition approach. Learning to walk, from this perspective, is a process of
integrating levels of sensorimotor activity and value.

Keywords: reinforcement learning, humanoid walking, central pattern generators, actor-critic, dynamical systems
theory, embodied cognition, value system

1. INTRODUCTION
In recent years, with increasingly reforming ideas about how loco-
motion should be understood in a way that it is a result of the
interaction of dynamical systems, bio-inspired approaches are
attracting a lot of attention. Scientists claim that locomotion
including its development or adaptivity emerges when the neural
structure or the body with proper morphology interacts with the
environment under the laws of physics (Pfeifer and Bongard, 2006;
Ijspeert, 2008). Hence, the focus of investigating locomotive capa-
bilities of artificial or biological agents should be shifted from
how each body part moves in a kinematic chain to a generic
view pertaining to how controllers (or neural systems), body, and
environment interact as a complete dynamic system.

Recently, cutting-edge work in robotics shows the importance
of the abovementioned ideas. According to Ijspeert, Central Pat-
tern Generators (CPGs), the bio-inspired neural structures discov-
ered in the middle of the last century (Hooper, 2001), work as a link
connecting the sensori-motor level to the Mesencephalic Loco-
motor Region (MLR) in the brainstem which controls vertebrate
locomotion. Thus, many robots under control of CPGs show their
own adaptive behaviors when interacting with the environment
(Fumiya et al., 2002; Pfeifer and Bongard, 2006; Degallier et al.,
2011). A CPG network is a neural controller which can show adap-
tive network behaviors given sensory feedback. On the other hand,
body flexibility, namely the so-called soft robotics, has been high-
lighted recently as a critical element for adaptive motor capabilities
(Pfeifer and Bongard,2006). However, there is no systematic way of
evaluating flexibilities of different morphologies for locomotion.

On this basis, learning locomotion becomes more open
and challenging in terms of integrating interactive information
amongst the three parts: controllers, body, and context. Based on
the dynamic systems approach proposed by Thelen in the 1990s
from the perspective of development of cognition and action,
locomotion is a consequence of self-organization and there is no
“essence” for locomotive systems. Learning to walk is a formation
process of a gait attractor dependent on the exploration of the state
space in a dynamical system that consists of sensori-motor cou-
pling of agent and environment. The attractor is a behavioral mode
and state space is an abstract construct of space whose coordinates
define the degrees of freedom of the system’s behavior (Thelen
and Smith, 1996). However, the learning mechanism which causes
the formation of an attractor out of the state space in artificial
systems still remains unclear in spite of Thelen’s embodied the-
oretical stance. Adolph et al. (2012) posits that infants learn to
walk through thousands of time-distributed, variable attempts
including missteps and falls. She emphasizes the importance of
the temporal-difference in the learning process. From the cogni-
tive perspective, Schore (2012) indicates affective modulation is
important for infants learning to walk. Particularly, the main care-
giver plays a role as an “emotion system” outside assisting infants
to evaluate their behaviors and scaffolding their affective systems.
Pfeifer and Bongard (2006) explains locomotion learning from a
robotics angle suggesting there is a “value” system in our body
to evaluate the comfort of locomotion behaviors. Therefore, we
assume there is an agent-centered mechanism related to learn-
ing how to walk and it has to comprise these properties: (1). It
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is an interactive-affective system. (2) It is capable of finding an
optimized solution by exploring the state space through interac-
tion with the environment in a time-sensitive manner. (3) The
learning process is under control of the supervisor’s “scaffolding.”
We suggest, closely pertinent to the above three points, that reinforce-
ment learning is an appropriate choice for the implementation of
learning to walk.

Reinforcement learning (RL) has, in recent years, evolved con-
siderably especially in dealing with problems of continuous and
high-dimensional state space (Doya, 2000b; Wiering and van
Otterlo, 2012). Biologically, it sketches an interactive process of
dopamine systems and the basal ganglia which is emotion-related
(Schultz, 1998; Doya, 2000a; Graybiel Ann, 2005; Khamassi et al.,
2005; Frank and Claus, 2006; Joel et al., 2012). Grillner et al. (2005)
elucidate the functions of dopamine systems (striatum) and the
basal ganglia (pallidum) with biological grounds on motor adap-
tation and selection. Moreover, RL proffers a computational for-
mulation of learning, via the interaction of body, neural systems,
and environment, to execute behaviors that deliver satisfying con-
sequences. Grillner et al. (2007) also propose a layered architecture
including basal ganglia, CPG network, and sensory feedback which
may imply the interactive bond between CPGs and RL. In this
article, by using RL, a meaning of “scaffolding” is given by manipu-
lating the value function and update rules. Meanwhile, for the pur-
pose of endowing a humanoid with a capability of learning to walk
efficiently, the RL algorithm has to guarantee fast convergence.

Based on the above ideas and theories we propose a new archi-
tecture combining Natural Actor-Critic (NAC) and a CPG network
to achieve a “learning to walk” task on a humanoid. This is the
so-called Natural CPG-Actor-Critic. The natural actor-critic has
been proposed by Kakade (2002) and further improved and used
by Peters in the field of supervised motor learning (Peters and
Schaal, 2006, 2008). This particular RL algorithm uses natural pol-
icy gradient methods which may achieve very efficient exploration
and fast convergence of learning. Based on their ideas, Nakamura
et al. (2007) proposed a natural CPG-Actor-Critic approach and
implemented it with a 2D1-simulated stick walker in MATLAB.
At the present time, the natural CPG-Actor-Critic has not been
implemented on a humanoid platform. The reasons are clear:
firstly, there exists no functional 3D CPG walking model that
does not depend on inverse kinematics even though the motion
of roll direction is of importance to walking (Collins et al., 2001).
Nakamura’s work fully adopted Taga’s model (Taga, 1998) which
similarly works on a 2D-simulated stick walker. Secondly, Taga’s
model is very complicated involving a very high-dimensional
and difficult-to-reduce state space. This is why state value esti-
mates take a long time to converge. Finally, the stick walker
contacts the ground in an entirely different way to humanoids
with foot interaction so that the body dynamics also differ. This
is a morphology-related reason. Thus, in this article, we try to
use another sensor-driven CPG architecture to avoid the prob-
lems faced by Nakamura and colleagues (For the comparison to
Nakamura’s model, please refer to Discussion A.1).

1The 2D or 3D means a coordination system fixed on the torso of a robot. It
has three axes: X (Pitch: pointing to front), Y(Roll: pointing to right), Z(Vertical:
pointing upwards).

The main contribution of this article is to present a complete
natural CPG-Actor-Critic architecture and implement it on a 3D-
simulated humanoid by utilizing a state-of-the-art natural policy
gradient in a relatively high-dimensional state space. In this work,
it is shown not only how episodic NAC (eNAC) converges to opti-
mal solutions by exploration-exploitation batch learning but also
how eNAC helps a humanoid under control of CPGs learn to
walk by searching appropriate posture and integrating sensory
feedback. Meanwhile, by adopting a dynamic system perspective
with respect to cognitive development, RL can be understood in
a new light of state value estimates. Experiments introduced in
this article consist of two parts. The first part will focus on the
emergence of proper walking posture and integration of sensory
feedback. The second part shows how the robot learns to walk on
a slope and the relation between slope and posture change. The
aim of this work is to glean how CPGs in a natural actor-critic
architecture adapt to the environmental change in walking by bal-
ancing realization of body morphology and acquisition of sensory
feedback.

2. MATERIALS AND METHODS
In order to fully comprehend how CPG networks work with the
NAC architecture, a description of relevant theories applicable to
the proposed architecture is offered in this section. With the cpg-
actor-critic model, it is able to clearly show how the humanoid’s
body, the physical world, and neural controllers interactively cause
the emergence of an appropriate walking gait. In order to learn
walking, a proper upright standing posture is necessary. Scien-
tific research shows that human infants learn to walk after they
have learned to be able to maintain an upright posture (Kail and
Cavanaugh, 1996; Adolph et al., 2012). After learning a standing
posture, they can start to explore the world in an allocentric way.
Through exploration, infants improve their walking behaviors
(Clearfield, 2011). However, the exploration in a physical world
consists of infinite possibilities increasing the difficulties in mod-
eling this process. Thus, a limited but continuous state space has
to be constructed for the purpose of learning to walk by exploring
only in the state space of neural structure which is related to pos-
ture control and sensory feedback. Then walking can be considered
as a Partially Observable Markov Decision Process (POMDP). In
this article, we use a NAC architecture which appears as one good
solution to bridge continuous state space and action space in a fast-
learning way. We show that it can not only show the emergence
of proper walking posture but also adaptation to environmental
changes.

2.1. CENTRAL PATTERN GENERATORS
Modeling walking on a humanoid robot is a complicated task
related to designing an autonomous control mechanism for a
high degree-of-freedom (DOF) body. So the main challenge for
developing modern control strategies concerns avoiding the prob-
lem of the “curse of dimensionality” which closely pertains to a
large number of DOFs. Using CPGs, it is possible to transfer and
restrict extremely high-DOF walking in Cartesian space to a low-
dimensional sensory space of neural structure with neurophysi-
ological theories and assumptions (Geng et al., 2006; Takamitsu
et al., 2007; Endo et al., 2008).
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CPGs, as a group of presumed neurons existing in vertebrates’
spinal cord (Latash, 2008), are the neural circuits generating rhyth-
mic movement. With sensory feedback, the body or the robot
under control of CPGs interacts with the environment in an
adaptive way in which case the body dynamics are interactively
entrained into a limit cycle. This limit cycle implies the following:
firstly, structural-stability is imperative to a CPG architecture. This
means CPG architectures should be able to shift to another limit
cycle by adapting to contextual change and then recovering the
original limit cycle without external disturbance (Righetti, 2008;
Li et al., 2011). Secondly, the adaptive change of the limit cycle
that CPGs converge to is generally done by updating the output
or connection weights of CPGs. A lot of work has been done to
emphasize the importance of these two points (Inada and Ishii,
2004; Ijspeert, 2008; Li et al., 2011, 2012).

Compared to a lot of work done with engineering models based
on Zero Momentum Point (ZMP) (Lim et al., 2002; Strom et al.,
2009) to model walking, CPGs also have many advantages (Naka-
mura et al., 2007). In terms of adaptive capabilities, as engineering
models (including an accurate model of the controlled system and
the environment) need to calculate the trajectories of motion with
respect to very specific models, these models need to be recalcu-
lated or even remodeled when the context or the body changes. But,
as for CPGs, it is just a matter of updating parameters to new adap-
tation capabilities. On the other hand, CPGs are proven to be more
energy-efficient (Li et al., 2011) than those methods which need
huge computer power to calculate complicated accurate models in
each computation period.

From the perspective of the dynamic systems approach, just
because of the excellent adaptivity of a CPG or its network, CPGs
can be considered as an interface between the environment and
high-level cognitive functionalities. As abovementioned, the shift
and change of limit cycles could be viewed as results of CPGs
interfacing to the high-level control system, like the RL system in
this work.

2.1.1. Layered CPG structure
CPG structures have been explored by researchers for some time
(Orlovskii et al., 1999; Amrollah and Henaff, 2010) but the inte-
gration of sensory feedback remains an unresolved open question
to the research of CPGs without a conclusive structure. Recently, a
proper layered CPG architecture has been proposed in Rybak et al.
(2006) based on biological evidence (Amrollah and Henaff, 2010;
Figure 1).

The layered CPG concept illustrates clearly not only the func-
tions for each layer but also principles for the influence of afferent
feedback in each layer. For instance, the rhythm generator (RG)
layer is in charge of rhythm or frequency resetting depending
on feedback. The PF layer functions like a network to keep syn-
chronization of motorneuron activities as well as phase transition
without altering the RG layer according to afferent feedback. The
motorneuron level is an integrator where downward outputs and
sensory feedback are fused together (details in Figure 1).

Based on this CPG structure, we propose a layered CPG archi-
tecture in our work which fulfills functions of each layer (Figure 2).
In the structure, the four-cell recurrent network based on symmet-
ric group theory (Golubitsky and Stewart, 2004) has the capability

to be structurally stable (Righetti, 2008). It is of importance that
this network can model the dynamics of different locomotion gaits
(including walking, trotting, running, and crawling) by altering its
connection weights and properties of each cell (Righetti, 2008).
Crawling and walking on different humanoids have been imple-
mented (Righetti and Ijspeert, 2006; Lee et al., 2011; Li et al., 2011).
With this network, it keeps the synchronization of each oscilla-
tor cell within a specific phase difference by using typical negative
neural connection (ipsilateral) and positive connection (contralat-
eral) to keep ipsilateral oscillation out of phase and contralateral
oscillation in phase. Each cell of the four-cell network is modeled
with a Hopf oscillator (Equation 1–3) which is different from the
one used in Nakamura’s model (details in Discussion A.1).

żi = a
(
m − z2

i + s2
i

)
zi − ωi si (1)

ṡi = a
(
m − z2

i + s2
i

)
si + ωizi +

∑
j

aij sj (2)

wi = 2× π

(
ωup

1+ e−100si
+

ωdown

1+ e100si

)
(3)

where the zi is the output of the Hopf Oscillator and si is the
internal state. m is the amplitude and a is the convergence rate.
ωi is the internal weight in this coupled oscillator. It is usually set
to 1. sj is the output of the other cells except cell i and αij is the
external weight (from cell j) of the four-cell network. Meanwhile,
ωi also represents the frequency of this oscillator. Interestingly,
by changing values of ωup and ωdown, you can change the dura-
tion of increase and decrease rate of the oscillator. For example,
in our work ωup= 5ωdown, the oscillation increases 5 times faster
than decreases. This relation is derived from the experimental data
by Hallemans et al. (2006) about joint kinematic trajectories of
walking children. m and a are set to be 1 and 5 in our experiment.

If we assume the motorneurons work to integrate the inter-
nal oscillation and external sensory feedback, the whole physical
system including the neural controller can be expressed like this:

ẋ = F (x , τ) (4)

where x denotes the state of the physical system, whose compo-
nents are, for example, sensory angles of joints, and the dot (·)
denotes the time derivative. τ denotes the control signal (torque
or trajectory) from the controller, and F(x,τ) represents the vec-
tor field of the system dynamics. Then the motorneuron can be
modeled by the firing neural structure (Buono and Palacios, 2004;
Endo et al., 2008; Li et al., 2012), the dynamics of which can be
given by:

ςẏEi = −yEi + IEi

τEi = GE
(
yEi
)

(5)

ςẏFi = −yFi + IFi

τFi = GF
(
yFi
)

(6)

where yEi and yFi, IEi and IFi, ζ,τEi and τFi represent the state, input,
damping constants (equal to 10 in our work), and the output of
ith extensor and flexor motorneuron, respectively (if no exception,
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FIGURE 1 | Schematic illustration of the three-level central pattern
generator (CPG) concept:The locomotor CPG consists of a
half-center rhythm generator (RG), a pattern formation (PF)
network and a motorneuron layer. Rhythmic generator layer (yellow
area): this layer contains oscillators which generate rhythmic signals as
the input to the PF layer. PF layer (red area: only three neurons are
drawn with others neglected): The PF network contains interneuron
populations, each of which provides excitation to multiple synergistic

motorneuron pools (diamonds) and is connected with other PF
populations via a network of inhibitory connections. It mediates
rhythmic input from the RG to motorneurons and distributes it among
the motorneuron pools. The network also synchronizes the oscillatory
output of each interneuron. The motorneuron layer: It integrates the
muscle sensory feedback and activation of PF network outputs. The
extensor and flexor motorneurons together determine the output to
the muscles (Rybak et al., 2006).

all the E and F in the lowerscripts represent extensor and flexor in
this article). GE and GF are both activation functions, for example
the sigmoid function. The input IEi and IFi are given by:

IEi =
∑

j

VEij zj +
∑

k

WEik XEk (7)

IFi =
∑

j

VFij zj +
∑

k

WFik XFk (8)

where zj is the jth output of PF layer (the four-cell network). VEij

and VFij are the connection weights from PF layer to motorneu-
ron layer. XEk and XFk are the kth sensory feedback from sensory
neurons in vector XE and XF weighted by the connection weight
WEik and WFik. Then the final output of the controller is given by:

τi = TEiτEi + TFiτFi +Wpi Xpi (9)

where τi is the ith output of CPGs and TEi, TFi are the connection
weight. Xpi is the ith term in posture control vector Xp weighted
by connection weight Wpi.

2.1.2. Sensor neurons
The sensor neuron mechanism representing local reflex of mus-
cles is very important for motorneurons (Latash, 2008). It has been
proved to be biologically existent (Endo et al., 2008) and useful for
robotic walking applications (Endo et al., 2008; Nassour et al.,
2011). The general sensor neuron model is given by a sigmoid
function:

ρsn =
1

1 = ea(θthreshold−θinput )
(10)

where ρsn is the output of a sensor neuron. a is the sensitivity of a
sensor neuron. θthreshold and θinput are the threshold and the input
of a sensor neuron. The input can be raw or postprocessed sensor
data and the threshold can be zero or a certain value depending
on types of sensor neurons. The idea of using sensor neurons is to
normalize the input of all the sensors and use them with different
purposes (details see Appendix A).

According to existing robotic applications of CPGs, each CPG
is used to control one joint of a robot. Each sensory connec-
tion weight (like WEik and WFik) of each CPG is determined
by the corresponding joint it controls and its specific sensory
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input. In the layered structure implemented on the physical robot
NAO (Li et al., 2012), the 4-cell network is applied to a layered
CPG architecture with manually tuned weights and it represents
cognitive-related prior knowledge about the fundamental proper-
ties of walking. For example, as one property this network owns,
the anti-phase contralateral leg movement is useful for walking.
There is evidence suggesting that this typical movement is formed
over many months of early infancy before infants learn to walk
(Kail and Cavanaugh, 1996; Thelen and Smith, 1996). The main
focus for learning to walk is shifted from learning very basic walk-
ing prerequisites to learning how each joint is coordinated with
the whole-body and adaptively reacts to environmental change.
Then RL proffers a very nice blueprint.

2.2. NAC MODEL
Actor-critic is a very typical but popular RL method broadly used
in recent years (Kimura and Kobayashi, 1998; Sato and Ishii, 1998;
Orlovskii et al., 1999; Sutton et al., 2000). In a typical implementa-
tion, an actor is a controller which emits actions or action-related
control signals to a physical system. According to a certain policy, it
observes the states of a physical system and determines the control
signals on the basis of the states. A critic is a functional part which
evaluates the states of a physical system and updates the controller
and control policies. As a typical RL learning mechanism, it can

Zi

X

V

W

Motorneurons

Xp

TiETiF

Wp

FIGURE 2 | CPG controller (Top: the four-cell network) and its layered
structure. Yellow circles represent a coupled RG group corresponding to
yellow area in Figure 1. The round-headed and sharp-headed arrows
represent negative (−1) and positive (+1) connection weights (for details,
please refer to text.) The four-cell network (purple-framed area) fulfills the
function of the PF layer. The two diamonds represent the motorneuron layer
which integrates sensory feedback and upper-layer outputs. V, W, Wp are
weight vectors which integrate PF-layer outputs, sensory feedback and
posture control terms respectively. TEi and TFi are the strength weights of
extensor and flexor.

be adapted by using some other updating rules. For example, the
convergence of an actor-critic model based normal policy gradient
approach is achieved in (Konda and Tsitsiklis, 2003) and a math-
ematical convergence of actor-critic is proved in (Dotan et al.,
2008). The convergence of the actor-critic model with the nat-
ural policy gradient has been proved by Peters and Schaal (2008).
Moreover, it has been proved to be faster than the normal “vanilla”
policy gradient (Peters, 2007).

2.2.1. Natural CPG-actor-critic model
Natural CPG-Actor-Critic is an autonomous RL learning frame-
work used for CPG network based on Actor-Critic learning with
the natural policy gradient. It was proposed by Nakamura in 2007
and successfully implemented on Taga’s stick walker in Matlab
simulation (Taga, 1998; Nakamura et al., 2007). We adopted his
approach but with an entirely different CPG architecture, learning
schema, and basic RL algorithm (for details, refer to discussion).
Since the output of our CPG model is based on the input of PF
layer and the states of sensory feedback and posture control terms,
a CPG is an adaptive controller whose output is dependent on
all these inputs. As a matter of fact, the layered architecture pro-
posed in our work can be viewed as a feed-forward neural network
(Figure 3) where the posture control works as a bias. As a normal
gradient approach used for the feed-forward neural network, the
backpropagation approach is not suitable for our work. Firstly, the
backpropagation normal gradient is too slow and cannot avoid the
“plateau”problem (Peters and Schaal,2008). Secondly, it needs a lot
of computation and large storage for precedent states. Therefore,
the natural gradient approach is adopted as it has been proved
to be more efficient than the backpropagation for feed-forward
neural networks by Amari (1998) who proposed natural gradient.

Compared to Nakamura’s model, our model is naturally sep-
arated into two parts: the basic CPG and the actor part (details
in Figure 3 and Discussion A.1). This is similar to Nakamura’s
separation of his CPG model. The basic CPG part composed of
an oscillatory network is to keep the phase relation and oscilla-
tion of the whole CPG as a core. The actor outputs the control
signals based on its input. It covers two important functions of

Zi

Vi

X

Wi

Xp

Wpi

Zi

Vi

X

Wi

Xp

Wpi

basic

actor

FIGURE 3 |The feed-forward two-layer neural network as the core of
the CPG network. The yellow area is the basic CPG part with fixed
connection weights and the green area functions for the output integration
of sensor neurons and posture control.
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a CPG: sensory feedback fusion and posture control (Orlovskii
et al., 1999). The RL updating rule can be applied to this part to
change the weights, leading to involvement of the adaptive change
of the CPG controller based on interaction when a robot walks. RL
state space is given as X, a vector including all the sensory feedback
and posture control terms. The action space is given by U which
comprises all the control signals. The input and output of the CPG
can be adapted to:

X ∼
{

XE , XF , Xp
}

, U ∼
{

UE , UF , Up
}

IEi = Ibasic
Ei + Iactor

Ei (11)

IFi = Ibasic
Fi + Iactor

Fi (12)

UEi = Iactor
Ei =

∑
k

WEik XEk (13)

UEi = Iactor
Fi =

∑
k

WFi XFi (14)

Upi =WpiXpi (15)

W ∼ {WE , WF , WP }

where Ibasic
Ei and Ibasic

Fi are the ith pair of the output of fixed basic
CPG. UE and UF are vectors containing control signals emitted
by the actor to the controller. Upi is the ith element of a vector
Up including posture control terms. UEi and UFi are the ith terms
in UE and UF. W is a vector for all the connection weights. WE,
WF, and Wp are vectors of connection weights for sensory feed-
back and posture control terms. Then the RL problem could be
expressed as:

U ∼ π (U, X) (16)

where π is the stationary policy of the RL algorithm. Clearly, all
the states X include two parts. XE and XF are called observable
states. Xp is called unobservable states. They are assistive states
which are provided to help the robot learn a proper posture. As
our idea is to learn through interaction and to sense the body
through peripheral systems, there is no full observability for the
whole-body states. This condition is different from Nakamura et al.
(2007) application. Hence, the whole control system is regarded
as a POMDP. It is indicated that the actor determines the control
signals sent to CPGs according to a static policy and CPGs act
with the physical system. Then the critic evaluates the locomotion
under control of CPGs changed by the actor and update the policy
in the actor. This is the so-called CPG-Actor-Critic. Used with the
natural policy gradient, it is called natural CPG-Actor-Critic. As
a proper architecture for RL learning, we need to avoid a prob-
lem of RL “the curse of dimensionality.” In order to reduce the
dimensionality of the CPG controller, internal weights of the 4-
cell network and VEij, VFij (1,−1) are all fixed as primitive inputs of
CPGs. This is different from Nakamura et al. (2007) idea of using
an internal connection from the basic CPG (). The reason for not
having internal connection weights is our flexible 4-cell network
has already been endowed with prior knowledge or capabilities
to keep synchronization and to reshape the output of oscillators.
However, this prior knowledge must be learned in Nakamura’s

work. Meanwhile, using a sensory-driven CPG means there can-
not be so much sensory feedback as the number of sensors on a
given humanoid is always limited. Nakamura has full observability
in state space of the accurate Taga walker but he only uses a subset
of the available sensors. Since the aim of our work is to implement
this architecture on a real humanoid to understand mechanisms
of posture control and sensory feedback integration, a trial-and-
error learning mechanism based on batch RL is needed (details in
Discussion A.1).

2.2.2. Learning algorithm
The policy gradient (PG) approach is very useful for parameter-
ized motor modeling. Peters summarizes and compares different
PG approaches, including finite difference, likelihood ratio meth-
ods, and REINFORCE (Peters, 2007). It is concluded that the aim
of the gradient approach is to find the correct updating direction of
policy parameters in order to maximize expected reward. Assum-
ing the stationary policy is πθ(x, u) which can determine action
space u based on state space x with a static distribution dπ(x), the
immediate reward is r(x, u), and then the expected reward J (θ)
can be written as:

J (θ) =

∫
x

dπ (x)

∫
u
πθ (u|x) r (x, u) dxdu (17)

where the policy πθ(x, u) is derivable at the policy parameters θ,
namely 5θπ

θ exists. For maximizing expected reward J (θ) with
respect to θ, policy gradient will find the steepest increase direc-
tion 5θJ = J (θ+5θ)− J (θ) to update the search policy πθ(x, u)
until it converges. For this purpose, the update rule of the policy
gradient can be expressed as:

θn+1 = θn + α∇θJ |θ=θn (18)

where n represents the nth step of update and α is the learning rate
(equal to 0.01). If we directly take the 1st derivative of J (θ) with
respect to θ, the gradient is given by:

∇θJ (θ) =

∫
x

dπ (x)

∫
u
∇θπ

θ (u|x) r (x, u) dxdu (19)

=

∫
x

dπ (x)

∫
u
πθ (u|x)∇θ log

(
πθ (u|x)

)
r (x, u) dxdu

(20)

where 5θ is the 1st derivative. This is the so-called normal gra-
dient. If we use this gradient to update the policy, it is very slow
to find the best policy for the maximization of expected reward.
Therefore, the steepest gradient (natural policy gradient) is applied
to our model. The adaptation of Equation 20 is at the core of the
natural PG method. According to Peters’ (2007) proof, the natural
gradient is given by:

θn+1 = θn + αF−1
θ ∇θJ |θ=θn (21)

Fθ =

∫
T

πθ
∇θ log πθ

∇θ log πθdθ (22)

where F is the Fisher Matrix (FM). Multiplied by FM, the nor-
mal policy gradient is changed to the steepest one (here, all the
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x,u are neglected for simplification reason). On the basis of policy
gradient theorem (Peters, 2007), the PG could also be modified to:

∇θJ (θ) =

∫
x

dπ (x)

∫
u
∇θπ

θ (u|x)
(
Qπ (x, u)− b (x)

)
dxdu

(23)
where Q(x,u) is the action-state function and b(x) is a baseline
which is a regularized term used to avoid large variance of gra-
dient. With the theory of compatible function approximation,
it is possible to apply basis functions 5θlog T(πθ(u|x)) to lin-
early approximate Qπ(x, u)− b(x), then the above Equation 23
is adapted to:

∇θJ (θ) =

∫
x

dπ (x)

∫
x
πθ (u|x)∇θ log

(
πθ (u|x)

)
×∇θlogT

(
πθ (u|x)

)
wdxdu = Fθw (24)

where w is a weight vector of the linear approximation. Then
clearly, by replacing 5θJ(θ) in (21) with (24), the natural PG
becomes:

θn + 1 = θn + αw (25)

The RL problem is transitioned from searching the steepest
policy gradient to a normal regression problem about finding
the best approximation of Qπ(x, u)− b(x) with basis functions.
Because Qπ (x, u) = b (x) + log

(
πθ (u|x)

)
w and Qπ (x, u) =

r (x, u) + λ
∫

x’ p
(
x ′|x , u

)
V
(
x ′
)

dx ′ (where λ is the discounting
factor, x′ is the next state, p(x′|x,u) is the probability of state tran-
sition.), assume the value function is V (x)= b(x) and can be
approximated by ψT(x)v (where v is the weight vector and ψ is
the vector of basis function related to the value function; Baird,
1994). Therefore, the approximation can be re-written:

logT
(
πθ (ut |xt )

)
w +ψT (xt ) v = r (xt , ut )+ λψT (xt+1) v

+ ∈ (xt , xt+1, ut ) (26)

This is the equation for LSTD-Q(λ) at time t. Then for the
episodic learning, by summing up equation (26) with t = 1,2. . .H,
it is given by:

1

H

H∑
t=1

logT
(
πθ (ut |xt )

)
w + J =

1

H

H∑
t=1

r (xt , ut ) (27)

where J is the value-function related term considered as a constant
baseline. By means of the least square learning rule, the natural PG
w can be obtained for each episode:(

w
J

)
=

(
φφT

)−1
φR.

φt =

[
1

H

H∑
t=1

logT
(
πθ (ut |xt )

)
w,1

]
(28)

R =
1

H

H∑
t=1

r (xt , ut ) (29)

In our work, we use a monte-carlo like approach called episodic
NAC (eNAC) (Peters, 2007) to make the robot repeat the walking
episodes until it achieves final optimal performance. The eNAC is
shown in Schema 1 with pseudocode.

Schema 1

Repeat : n = 1,2 …M trials

input : policy parameterization θn

π(U|X) determines Up before starting each trial

Start the trial : obtain X0:H , left U0:H ,r 0:H for each trial from π (U|X)

Obtain the sufficient statistics

policy derivatives: φk = ∇θ log πθ (Ut |Xt )

Fisher matrix Fθ =

〈(∑H
k=0 φk

) (∑H
l=0 φl

)T
〉

Vanilla gradient g =
〈(∑H

k=0 φk

) (∑H
l=0 αl rl

)〉
Eligibility ψ =

〈(∑H
k=0 φk

)〉
General reward r̄ =

〈(∑H
l=0 αl rl

)〉
, where αl is the discount factor

Obtain natural gradient by computing

baseline b = Q
(
r̄ −ψT F−1

θ g
)

withQ = M−1
(
1+ψT (MFθ −ψψT )−1

ψ
)

When updating rule is
satisfied:

θn+1 = θn + αg

until the convergence of algorithm

where 〈·〉 means sum-up of all the previous values and current
values.

2.3. EXPERIMENTAL SETTINGS
There are 2 main experiments presented in this article. The first
one is to indicate that the proposed learning architecture can assist
the robot learning to walk from the initial standing posture. The
aim of this experiment is to prove the robot can adjust its posture
and integrate sensory feedback simultaneously in the process of
learning. The second experiment is to change the plane on which
the robot stands to different angles to see how the learning archi-
tecture adaptively seeks out proper postures and walking gaits.
By changing angles from −5˚ to +5˚, this experiment also shows
the relation between slope angles and posture change under the
influence of gravity alternation.

2.3.1. Robotic platform and the neural controller
Figure 4 shows the robot and the neural network used to imple-
ment learning. We use the popular commercialized robot NAO.
The advantages of using the NAO robot are summarized as: (1)
There are locomotion-relevant sensors mounted on the NAO
robot, such as gyro sensors which can detect acceleration of the
body center in 3D space, joint sensors which can measure angle
values, and foot pressure sensors which can sense ground contact
of feet. All these sensors are useful for learning a proper walking
gait. (2) Nao has a good firmware called Naoqi which is convenient
for users to program and organize modules working together.
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FIGURE 4 | Left:The complete architecture of cpg-actor-critic
network. The integration with specific joint names represents the
functions of motorneurons for each joint. The architecture abstractly
represents the neurophysiological structure of the brainstem where the
basal ganglia is in charge of RL, and the spinal cord is where the CPGs
are located and motorneurons. Each layer of the three-layered
architecture corresponds to different parts. The actor-critic learning

mechanism works with basal ganglia as a RL functionality. Sensor
neurons are different types of neurons which get information from
different sensors of the robot (middle). Middle: The NAO robot. Arrows
indicate the connection between the controller and the robot. Right: the
software architecture. Naoqi is working as a middleware to handle the
communication of three modules. The communicative information
between every two modules are listed above the arrow.

The layered CPG network (Figure 4 left) is used to con-
trol the NAO robot. Each output sends out position trajecto-
ries to each corresponding joint of NAO. Simultaneously, all
the CPG neurons receive inputs from different kinds of sen-
sor neurons based on the concept of sensor-driven CPG. There
are three main sensor neurons with similar sigmoid form (refer
to Appendix A): Proprioceptive (PP) sensor neurons for hips
(joint sensors), anterior extremity (AE) sensor neurons for knees
(joint sensors), and exteroceptive (ET) ankle sensor neurons
(mixture of gyro sensors and pressure sensors). The motion
of pitch direction is controlled by the CPG neural network
while the roll motion (hips and ankles) is sensor-driven by the
pitch motion (hips and ankles), respectively (Li et al., 2012;
Appendix A).

2.3.2. Software
In this work, we use a simulated environment in the Webots simu-
lator. Webots is an ODE (Open Dynamics Engine) based simulator
in which users can not only simulate physics close to the real world
but also move robots or objects and even change the environment.
This is why there is a typical feature of Webots for simulating batch
learning processes (Michel, 2004).

There are three main modules working together in the Naoqi
of Webots. The supervisor module is in charge of restarting the
simulation every episode by putting the robot in the initial posi-
tion, changing the angle of the ground, measuring the distance
the robot walks for each episode. The learning module is the main
process where the CPG architecture and the learning algorithm
are implemented. The stability indicator is a module working only
for obtaining necessary sensory information from the supervisor
module and the robot as well as calculating the immediate reward.
It is an implementation of a basal ganglia like function. It sends a
reward to the main process when activated by the learning module
(Figure 4).

3. RESULTS
3.1. EXPERIMENT 1: WALKING ON THE FLAT GROUND
3.1.1. Prerequisites
In this experiment, the robot starts to walk from the same ini-
tial default standing posture and repeats the episode which lasts
about 30 s until the algorithm converges. At the beginning of each
episode, the policy gives two posture control signals for the knee
and ankle parts as the posture change is very sensitive and should
be explored as a basis for motion. Within each episode, the pol-
icy gives the other control signals related to sensory feedback every
1.5 ms. The policy used for balancing exploration and exploitation
is given:

πθ (U, X) = N
(

U, Ū,σ
)

=
2π

σ
exp

((
U − Ū

) (
U − Ū

)T

σ2

)

where U is the output vector of the policy and Ū is the input
vector based on state space X. σ is the exploration rate which
determines the variance of U from Ū. The value of σ cannot be
so big (>0.1) that the system involves a lot of noise and it cannot
be too small (<0.01) as the system will become very insensitive
and diverges. In this experiment, for the posture control part Up,
σ= 0.05. Otherwise σ= 0.02. As 0.02 is too small for the posture
terms, a slightly bigger exploration rate is adopted. After having
the continuous control signals sent to each joint, the robot needs
to have the capability of evaluating different appearing walking
gaits. The immediate fitness of a walking gait is acquired every
1.5 ms via the reward function which indicates the gait robustness,
also called stability indicator. The stability of a walking gait should
be considered in two directions: vertically, the SI is able to detect
falling; horizontally, SI also considers the distance the robot moves.
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In this way, SI reflects a trade-off between vertical and horizontal
stability. Thus, the SI is given:

r = rheight + racc + rdistance (30)

where rheight = e25(H−Hinil ), H is the height of gravity center and
the NAO robot can detect the height based on the gyro sensor.
Hinit is the height of gravity center of the initial standing posture.
Thus, this equation detects a dynamic change of height of the body
when the robot is walking. When the robot falls, it is close to 0.
racc = 2 cos

( accX
10

)
+2 cos

( accY
22

)
, if |accX | < 25 and |accY | < 50.

Otherwise, the robot is stopped and the episode is restarted. accX
and accY are the acceleration of the robot’s X axis (Pitch) and Y
axis (Roll) of gravity center detected from the gyro sensor. For both
directions, the gyro sensor is able to detect the acceleration from
−70 to 70 which corresponds to −9.8 to +9.8 m/s2. This part is
implemented based on the inspiration of a vestibular system in the
inner-ear mechanism for keeping body balance. It senses “falling”
of the body by detecting the accelerations in 3D space (Thomas
et al., 2009). Here, as we aim to study walking on the ground, the
perpendicular acceleration is ignored. Twenty-five and 50 are the
boundary values for the robot to fall. The even cos function is used
to indicate this oscillatory motion of the walking in negative and
positive directions of each axis. rdistance= 2S and S is the walking
distance detected by the supervisor module in Webots.

After each episode, two kinds of average reward are acquired.

One is the average reward (AR) for each episode equal to
H∑

l=0
al rl

and the other is the general average reward (GAR) equal to〈
H∑

l=0
al rl

〉
M . If AR>GAR, the updating rule is satisfied. Otherwise,

the episode is regarded as a failure. The algorithm converges when
the learning process cannot find any episode which can satisfy the
update rule.

3.1.2. Experiment 1 results
For each experiment, the algorithm starts with initialized θ= 0
except that θ5= θ6= 3 as 3 is the weight value making ankle sen-
sor neurons sensitive to external disturbance. 10 independent runs
(different random seeds) were evaluated and 5 “good” results with
top-five average reward are chosen for visualization in Figure 5
(left column). We chose the one with highest average reward (run
5) to show how cpg-actor-critic finds the optimal learning gra-
dient. Actually, the key feature of cpg-actor-critic is that it can
find the best update directions of parameters quickly via balanc-
ing the exploration and exploitation. It is clearly observed that in
the very first 10 episodes, the update directions of all the para-
meters are not stable, even opposite of right directions. However,
after 10 update episodes, cpg-actor-critic can quickly find good
and smooth update paths. Interestingly, Figures 5B–E shows the
convergence of posture related parameters. In Figure 5B, θp1 and
θp2 shows the posture change of the knee and the ankle. The knee
posture is extending (θp1 turns negative) a lot to move the cen-
ter of gravity toward the middle while the ankle position is only
slightly changed to keep the balance with the knee posture. Mean-
while, θ2 is increasing to 1 in order to limit the extension of the

hip part and strengthen the flexion of the hip motion. The posture
change of a chained-up three joints (ankle, knee, and hip) drives
the robot to walk more robustly and for a longer distance. The final
convergence of proper posture for walking is a consequence of the
interaction of the morphology of NAO, the neural controller and
the sensory feedback. For example, it is logical that NAO’s ankle
cannot be changed a lot as it is disproportionately big. The cpg-
actor-critic realizes this obviously by the slight adjustment of the
ankle posture with interaction.

As for the connection weights of AE and ankle sensor neu-
rons, they only show the curves without flat convergence. The
reason is that, in eNAC, the Q function is actually theoretically
approximated by a linear combination of basis functions. However,
practically it is only possible to averagely approximate without
exact accurate convergence. This is also the reason we need to set
up a specific convergence rule.

Finally, a specific walking gait is converged to by the interac-
tive learning process and parameters are converged to θ= [0.4290,
1.0131, −11.7874, 21.6984, 3.2394, 3.8179, −0.6147, 0.1758,
−12.8070].

3.2. EXPERIMENT 2: WALKING ON THE SLOPE
3.2.1. Prerequisites
The aim of experiment 2 is to test if the learning architecture can
still function when there is different non-linear influence of the
gravity for walking up and down the slope. Meanwhile, it is inter-
esting to observe how the robot adaptively reacts to environmental
change by achieving a trade-off between adaptation and learning.
Finally, a conclusive relation between adaptive adjustment of CPG
parameters and slope is explained.

In this experiment, we fully adopt the architecture in Figure 4.
Since results in experiment 1 do not show any qualitative difference
of walking gaits, each run in experiment 2 uses the parameter set
developed in an arbitrarily selected good solution from experiment
1. The NAO, in each evaluation, is thus able to walk on a flat slope
before attempting an upward or downward slope, depending on
the condition. The good solution obtained for flat-ground walk-
ing consists of the following parameter set: θ= [1.3391, 0.4717,
3.1593,−0.6291, 3.4483, 3.1432,−0.6640, 0.2293, 0.4365] used as
the set of values at the start of each experiment 2 run. In each
experiment 2 run, the architecture is tested to learn to walk on the
slopes from −0.08–0.08 rad (about −5–5˚) by changing 0.01 rad
each test. For each slope, there are 5 runs carried out for each con-
dition where the aforementioned angles (8 in total) are gradually
varied (get steeper) over the course of each simulation. Therefore,
there is a total of 8 ∗ 5 upslope and 8 ∗ 5 downslope angles from
which data points are derived (see Figure 7).

3.2.2. Experiment 2 results
Walking up and down the slope are two different cases with dis-
tinct gravitational effects. Figure 6 shows how the walking posture
and sensory feedback are autonomously changed by learning in
those two situations (average data). From negative slope to posi-
tive slope, the change of gravity exerted on the robot is a non-linear
alternation. So the posture change is required to cancel the influ-
ence of gravity in the moving direction (upslope and downslope:
extra negative and positive force respectively). If we assume the
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FIGURE 5 | Left column:The results of the runs with top-five reward
on flat ground. (A) shows the maximization of average reward for the
five runs. (B–E) show the results of the run with highest average reward
(Exp 5) regarding how connection weights are updated in each CPG by
learning process with respect to the contributions of each term
respectively. Right colunm: The results of a run on 3˚ critical slope.

(F) shows the “struggling” maximization of expected reward. The green
dash line shows a quadratic fitting of the increasing learning curve.
(G–J) show how connection weights of CPGs are adaptively updated on
the critical slope. For details of explanation, please refer to main text. All
the “Episodes” mean updating episodes which exclude the episodes
unable to satisfy updating rule.
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slope is β, then the gravity exerted in the walking direction is given
by f=mgsinβ, where m is the mass of the robot and g is the grav-
ity constant. Therefore, Figure 6A shows a non-linear change of
knee posture. When the robot walks up the slope, the gravity is
a resistance force. When β is very small, mgsinβ≈mgβ shows a

linear-like relation in which there is only small error. When the
errors are accumulated until the resistance force f starts to prevent
the robot moving forward, then the non-linear change has to be
canceled. This is why there is an abrupt change when the robot
walks up on the 3˚ slope (0.05 rad) which is called “critical” slope.
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FIGURE 6 | (A) Posture change of ankle and knee joint with respect to slope
(−0.08∼0.08). (B) shows how the hip joint is adjusted to adapt to slope
changes. (C,D) show how the knee and ankle reflex change with respect to

slope based on the strength of sensory feedback. (E) shows the different
walking gaits on flat ground and slope (−0.08 and +0.08 rad). Please refer to
video (Cai, 2013).
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Then when the slope is slightly steeper than 0.05 rad, Figure 6A
shows a new linear change of the knee posture. The same phe-
nomenon happens to be the case that the robot walks down the
slope (slope −0.04 is a turning point). Figures 5E–J show the
updating of parameters for the “critical” slope. It is clearly visual-
ized that a smooth parameter adjustment of the 3˚-slope walking
is achieved after the optimal update direction has been found by
the learning process of previous slope walking. Interestingly, the
posture alternation of the ankle part shows a nearly perfect linear
change with respect to alternative slopes. The possible reason may
be led by the sensory feedback (refer to the terms XE3 and XF3 in
Appendix A) adaptively changing the ankle posture according to
the inclination angle (detected by the gyro sensor) of the robot.
This sensory feedback shows the natural adaptation of the CPG
architecture which compensates accumulated errors (a non-linear
weight change of ankle sensor neurons compensates the gravity in
Figure 6D). As the key to maintaining stable walking is how to hold
up the walking posture as upright as possible, the change of one
joint in a kinematic chain of the leg leads to a posture alternation
in other joints. Therefore, when the slope is turned from−0.08 to
0.08 rad, with nearly symmetric knee posture change and decreas-
ing ankle change, the hip motion naturally flexes more on the
upslope (pushing the body upward) and extends more (flexes less)
on the downslope (using the gravity of the body). In Figure 6B,
the alternation of θ1 of downslope walking is larger than that of
upslope walking indicates that the robot needs more hip flexion
for walking on the upslope than the downslope. Figures 6A,B
insinuates a maintenance of upright walking posture on different
slopes.

As for the sensory feedback integration, the knee reflex
has a symmetric tendency of upslope and downslope walking
(Figure 6C). The ankle reflex changes non-linearly to compen-
sate the effect of non-linear gravity change on the ankle joint
(Figure 6D). Therefore, with an appropriate posture control and
decent sensory information, the robot converges to different walk-
ing gaits on flat ground, upslope, and downslope (Figure 6E).
The main difference between the gaits on flat ground and slope
except posture is that the amplitude of roll motion is automatically
reduced in slope walking in which case that slope walking needs
more prudent gaits.

3.2.3. Data analysis
The distribution of experimental data is shown in Table 1. Based
on the reward, the data is categorized into three groups in accor-
dance with Figure 7A and the number of results are grouped into
these three categories. It is shown both in Figure 7A and Table 1
that most of learning results converge to the reward above 4.3
and 81.3% converged walking gaits are obtained with the reward
above 4.4 which are dubbed as good results. In Figure 7A, the
data shows two linearly increasing relations between the stability
and walking distance, proving that the RL learning tries to opti-
mize both of two key factors important for a good walking gait
(According to Equation 30, the reward function is equal to the
sum of stability and walking distance). Figure 7B indicates an
interesting boost for the stability at the “critical” slope (0.04 rad)
observed in the last section. Two stability clusters are observed in
Figure 7B (upper). The learning algorithm maintains the stability

Table 1 |The Distribution of Experimental Data.

Reward Upslope walking Downslope walking

<4.3 1 0

4.3–4.4 9 5

>4.4 30 35

on two levels separated by the “critical” slope and tries to imporve
the walking distance as much as possible (Figure 7B (down)).
Similarly, the same boost occurs for downslope walking with the
separation of |slope|= 0.04. However, the stability of downslope
walking is more than upslope walking as an acceleration in the
forwarding direction is demanded in order to walk upward (In
our work, stability is negatively proportional to the acceleration
of the robot’s pitch and roll directions). Therefore, with less force
exerted on the body (less acceleration) and the same walking dis-
tance, downslope walking is easier compared to upslope walking
in our experiments.

3.3. CONCLUSION
With the two experiments, the natural cpg-actor-critic architecture
successfully learns different gaits through interaction according
to environmental change. It also learns the correlation of posture
changes amongst ankles, knees, and hips based on the NAO robot’s
morphology and the adaptability of neural controller. Meanwhile,
it also achieves the implementation of CPG adjusting posture and
integrating sensory feedback at the same time.

4. DISCUSSION
4.1. COMPARISON OF OUR WORK WITH RELATED WORK
4.1.1. Comparison to Nakamura’s model
In order to explain the features of the proposed natural cpg-actor-
critic in this article, the comparison of our model to Nakamura’s
is helpful to generally comprehend this complicated architecture.

4.1.1.1. Similarity. Based on the NAC, Nakamura’s model and
ours are both natural cpg-actor-critic architecture for learning
walking gaits in different environments. The two architectures
both layer into basic connections and training connections. The
advantage of layering is to reduce the dimensionality of parame-
ter space to avoid the typical problem for reinforcement learning
(RL), curse of dimensionality.

4.1.1.2. Differences.

1. The use of a robot platform is different. Apparently, Naka-
mura’s model only works on Taga’s stick walker in Matlab. The
work shown in this article covers an implementation on a real
robot in a simulated physical world. The interaction of mor-
phology, environment, and sensory feedback is closer to the
physical world. This is the first implementation of natural cpg-
actor-critic on a real robotic platform according to the authors’
knowledge. The NAO robot is a robot which moves in 3D space
and is more complicated than the 2D stick walker.

2. The type and use of CPG are both different. Nakamura’s model
is based on Matsuoka oscillators while Hopf oscillators are used

Frontiers in Neurorobotics www.frontiersin.org April 2013 | Volume 7 | Article 5 | 13

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Li et al. Reinforcement learning of humanoid walking

0.35 0.4 0.45 0.5 0.55 0.6
3.85

3.9

3.95

4

4.05

Walking distance (the same period)

S
ta

b
ili

ty

Stability vs Walking Distance

stability−distance

4.2 4.25 4.3 4.35 4.4 4.45 4.5 4.55

3.85

3.9

3.95

4

Expected Reward

S
ta

b
ili

ty

Distribution Patterns of Learning Data (upslope walking)

4.2 4.25 4.3 4.35 4.4 4.45 4.5 4.55

0.35

0.4

0.45

0.5

0.55

0.6

Expected Reward

W
a

lk
in

g
 D

is
ta

n
ce

(t
h

e
 s

a
m

e
 p

e
ri
o

d
)

<0.04 rad

>0.04rad

<0.04rad

>0.04rad

4.35 4.4 4.45 4.5 4.55 4.6
3.94

3.96

3.98

4

4.02

4.04

4.06

Expected Reward

S
ta

b
ili

ty

Distribution Patterns of Learning Data (downslope walking)

4.35 4.4 4.45 4.5 4.55 4.6
0.4

0.45

0.5

0.55

0.6

0.65

Expected Reward

W
a

lk
in

g
 D

is
ta

n
c
e

(t
h

e
 s

a
m

e
 p

e
ri
o

d
)

< 0.04rad

>0.04rad

<0.04rad

>0.04rad

7.1

7.2

7.3

A

B

C

FIGURE 7 | (A) shows distribution points of stability vs walking distance
for both upslope and downslope walking (80 data points). The dashed
lines split the region into two regions: the left-upper cluster represents the
results whose reward are above 4.4 and the right-down cluster represents the
results whose reward are between 4.3 and 4.4 except one dot whose reward
is below 4.3. Both of these two clusters are distributed around two

hand-drawn lines. (B,C) show the distribution points of stability vs reward and
walking distance vs reward for upslope and downslope walking respectively.
The red-triangle dots represent the results for the cases in which
|slope|<0.04 rad and the blue-plus dots represent the results for
|slope|>0.04 rad. Note that the walking distance is measured always for the
same period and it also reflects the speed of walking.
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in our work. The main difference of these two oscillators is that
a Hopf oscillator can change its pattern simply by adjusting ωi

to preserve the basic characteristics (longer descending phase
than ascending phase and anti-phase of the two legs) of walking
behaviors but a Matsuoka oscillator cannot (Righetti, 2008). In
this article, our CPG architecture is inspired not only by the
layered biological structure but also by a sensor-driven mech-
anism. Sensor neurons are very useful to endow CPGs with
preliminary adaptation.

3. The learning mechanism is distinct. As abovementioned, our
model reduces more computation load and dimensions by
grounding basic properties of walking in the PF layer. On the
other hand, by using baseline b in eNAC is helpful in stabilizing
the RL algorithm. This is why our model learns much faster
and is more stable (not easily get diverged) than Nakamura’s.

Generally speaking, the two natural cpg-actor-critic models
are distinctly implemented in different bodies in heterogeneous
physical worlds with dissimilar use of CPGs.

4.1.2. Features of our work
Except for the characteristics compared to Nakamura’s model, our
work also generally presents several novel features/perspectives
compared to related work (Matsubara et al., 2006; Manoonpong
et al., 2007; Endo et al., 2008; Nassour et al., 2013):

1. Morphology logic: the traditional inverse kinematics (IK)
model is not used in our model. IK provides a mapping from
cartesian space to joint space as long as a trajectory of the end-
effector is known. However, walking does not necessarily need
IK (McGeer, 1990; Manoonpong et al., 2007; Nassour et al.,
2013). Even though IK is coined as a morphological logic for
a rigid-body robot (Pfeifer and Bongard, 2006), our work may
imply that IK is not the only logic and the interactive mem-
ory (Eligibility ψ for natural gradient) can also form a logic to
help robot adjust the body posture adapting to environmen-
tal change. In Endo et al’s. (2008) work, a walking CPG model
(only on flat ground) based on IK is presented and the trajectory
the foot follows is presumed to be a predefined ellipsoidal path.
In our work, the posture is adjusted according to the gradi-
ent update interactively focusing on body stability and walking
distance instead of recalculating the foot trajectory on differ-
ent terrains (slope or flat ground). In Nassour et al’s. (2013)
work, the posture control is only implemented on the ankle
part and it is manually tuned. However, our CPG model not
only learns the weights of posture control term for the ankle
part but also form an adaptive morphological logic by adapt-
ing posture alternation to different slopes. As for the work in
Manoonpong et al. (2007); Matsubara et al. (2006), a simpli-
fied leggy walker without ankle joints is utilized, which seems
to make it easier for the robot to walk.

In a nutshell, in most of the work, an initial posture is manu-
ally chosen to be a basis/center which CPGs oscillate around but
the evaluation of the posture remains unknown. In our work,
we involve a posture control mechanism so that the posture is
also adaptively changable to alternative terrains on the basis of
past experience.

2. Learning mechanism: our work is the first implementation of
natural cpg-actor-critic on a complete humanoid. “Natural”
means the gradient approach applied in our model is the steep-
est and exploration-efficient in light of using natural gradient
(Peters and Schaal, 2008). The RL learning presented in the
work (Endo et al., 2008; Matsubara et al., 2006) is based on non-
natural gradient which may not effectively avoid the “plateau”
problem that the small gradient update causes learning to be
stuck in a local optima without final convergence. On the other
hand, in terms of dimensions of parameter space,our model has
the ability to learn by adapting 9 parameters together. In Nas-
sour et al’s. (2013) work, there are only two parameters tuned
and all the other connection weights are manually defined,
including the posture change parameters for ankle parts. In
Endo et al’s. (2008) work, it is based on a speed-up normal
gradient with three parameters to optimize. Therefore, our
model seems to be able to work in a relatively high-dimensional
parameter space.

However, there are still unsolved problems remaining in our
work and they are summarized as follows:

1. Lack of memory: In our work, we demonstrate a CPG architec-
ture leading the humanoid to learn to walk on different slopes.
However, we acquire different adapted values of parameters
with the same configuration of the parameter set. In order
to adapt to the environmental change, this architecture needs
spatio-temporal memory to memorize the relation between
learned parameters and environmental variables. For example,
in our work, contextual variables (the angle of the body) can
be detected by gyro sensor. With the spatio-temporal mem-
ory, the robot can perform adaptive walking without learning
when encountering the contextual changes it has experienced
and learned before. The contextual transition may be solved
by context-related transition based on bifurcations (Asa et al.,
2009) or a context-switching mechanism with topological map
(Caluwaerts et al., 2012).

2. Transferability: Even though most of related work demon-
strates the results in a simulated robot (Matsubara et al., 2006;
Manoonpong et al., 2007; Endo et al., 2008), whether our work
is transferable to the physical robot still remains uncertain. In
future work, we have to test different results on the physical
robot.

4.1.3. Insights into RL approach selection
For the POMDP we concern in this article, function approxima-
tion is a very useful solution for solving problems in continuous
action space (Orlovskii et al., 1999). Discretizing the state space
with feature input of an agent is commonly used approach in
actor-critic to representing the states of an agent under the condi-
tion that the state space is infinitely large (Orlovskii et al., 1999).
Therefore, the value function can be approximated in a lot of
ways. For example, it could be approximated based on state pre-
dictors (Doya et al., 2002; Gianluca, 2002; Khamassi et al., 2006),
artificial neural network (ANN) (van Hasselt, 2011; Farkaš et al.,
2012), and basis functions (Doya, 2000b; Peters and Schaal, 2006;
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Nakamura et al., 2007; van Hasselt and Wiering, 2007). Regard-
ing to the approximation based on state predictors, they mainly
work for multi-model model dependent applications so it is not
easy to compare the performance among them. It seems Cacla
proposed by Hasselt can be adapted with ANN very easily for
both actor and critic for the value-function approximation and
action selection (van Hasselt, 2011). In our work, we mainly use
episodic NAC to achieve steepest policy update. However, Has-
selt et al compare NAC and Calca on cart-pole tasks, finding
that Calca outperforms NAC (Orlovskii et al., 1999). The main
difference between NAC and Calca is that the former optimizes
the policy which maps state space to action space and the lat-
ter can search optimal solutions in action space directly. This
is why Calca can update the action and approximate the value
function separately with two sets of parameters and the action
parameters are only updated with positive temporal difference
(TD) (van Hasselt and Wiering, 2007). Normal NAC has to update
also with negative-TD causing the action space to jump into
an unknow space which may distablize and fail NAC. Inspired
from Calca, in our work, we use the positive-TD update rule
(AR>GAR) to avoid the suffering of negative-TD update for
NAC. With initial trials for using Calca on cpg-actor-critic, it
seems Calca cannot converge even after 300 episodes as it updates
slowly.

4.2. DYNAMIC SYSTEMS APPROACH
Walking, in dynamic systems theory (DST), is regarded as a flex-
ible limit-cycle behavior. Learning to walk entails finding out a
proper limit cycle of the body motion in a certain environment
through interaction. The cpg-actor-critic, as the architecture based
on this theory, also covers a lot of aspects of the dynamic sys-
tems approach. According to Thelen, a dynamic system could be
viewed as an equation q=N (q, parameters, noise) where q is a vec-
tor representing all the subcomponents or states of the system and
parameters are key factors to which the collective converged behav-
ior is sensitive and that shift the system through different states.
N is a non-linear function which determines q which reflects an
attractor (Thelen and Smith, 1996). Similarly, the cpg-actor-critic
could be written as cpg =N (cpgstates, θ, noise) where cpg is the
vector of all the output of CPGs, cpg states are X and θ is a vector
containing policy parameters. N represents the RL functionality
which can find an attractor of CPGs. The noise is compressed with
proper exploration rate of policies. The whole system is wrapped
for a non-linear process of searching for attractors. In a dynamic
system, q and parameters could be very high-dimensional. This is
also the drawback of RL where a lot of work is done to reduce
the dimensions of state space and parameters. Interestingly, the
instability is observed at the beginning of learning (Figure 5)
then stability emerges from instability. Clearfield argues that new
motor capabilities of infants emerge from instabilities (Clearfield,
2004, 2011; Clearfield et al., 2008). In Thelen’s theory, instabil-
ity, including non-linearities, or phase shift or phase transition,
is considered as the very source of new forms. In our implemen-
tation, the instabilities caused by exploration of an RL algorithm
exactly leads to the final generation of a stable gradient. From the
perspective of RL, instabilities in DST or infant learning may be
the effects of preliminary exploration in order to seek the right

direction of developmental tendency. Since the human body is
an extremely sophisticated dynamic system which includes differ-
ent levels (from microscopic to macroscopic) of high-dimensional
parameter and state space, it takes more time and gets through
more instabilities to finally converge to new behaviors. From
the point of view of robotics, it also should be necessary to
think about how a robot is able to learn in high-dimensional
space with more intelligence. In this sense, cpg-actor-critic prof-
fers a way to explore this open question of RL in a continuous
space.

Interaction is of importance in locomotion learning. Inspired
by infants learning to walk, the authors tested the use of assistive
states (Xp) in cpg-actor-critic architecture. Since “Parental scaf-
folding” is a necessary factor helping infant to stand up and learn
to walk through a repeated process (Adolph et al., 2012), the pro-
posed architecture also shows possibilities of external assistance
in learning to walk. Firstly, the assistive states which are directly
related to the posture of ankles and knees could be interpreted as
external force or bias. Hence, these states could be representations
of outer assistance, e.g., from parents’ help. Secondly, infants start
to learn to walk without mature value or emotion systems to eval-
uate their behaviors, parents play roles as infants’ emotion systems
telling them which is good or not thereby causing the maturation
of their affective systems (Schore, 2012). In RL, different rules of
learning (like update rules and avoidance of falling) are adopted
to place a “scaffolding” function primarily in a learning process.
However, it lacks a general and evolvable value system for different
types of locomotion learning. In this article, the value function is
fixed and task-oriented working as a stability indicator for walk-
ing. In modern RL approaches, except dealing with more complex
high-dimensional learning tasks, a generic reward system which
can be adaptive to dissimilar situations is also a challenge. This
is why a mature emotion system is demanded in a lot of robotic
learning applications (Breazeal and Scassellati, 1999).

4.3. CONCLUSION AND FUTURE WORK
In a nutshell, the work presented in this article simply shows the
typical features of dynamic systems pertaining to instabilities, non-
linearities, and adaptability to the environment. However, there is
still a big difference in performance between an artificial, and a
biological (human) adaptive dynamic system which solves more
general problems in development and learning. Dynamic systems
theory focuses on the development of systems in which new behav-
iors or attractors can emerge, disappear, and be memorized. In
terms of this, RL, as a solver of general learning and developmental
problems, needs further research.

In future work, we would like to test the results or the learn-
ing process on the physical NAO robot. Moreover, in order to
testify the generality of our work and extend the adaptation of
our model, experiments on different morphologies, and walk-
ing path planning (emphasized by Laumond; Arechavaleta, 2008;
Mombaur et al., 2010) are also necessary.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/Neurorobotics/10.3389/fnbot.2013.
00005/abstract
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APPENDIX
A. THE DETAILS OF CPG-ACTOR-CRITIC IN THE

IMPLEMENTATION
A.1. DIRECTIONS OF FLEXOR AND EXTENSOR FOR EACH JOINT
In the pitch motion, there are two kinds of moving directions for
each joint of NAO: forward (F) and backward (B). The directions
of extensor and flexor are given: (1) Hip: Flexor (B+) and Extensor
(F−). (2) Knee: Flexor (F+) and Extensor (B−). (3) Ankle: Flexor
(B+) and Extensor (F−). The “−” and “+” represent the decrease
and increase of joint values.

A.2. DETAILS IN RL AND CPGs
In the RL, the policy parameters θ ∼

[
θ1:6, θp12, θ9

]
are the weights

W in CPGs (θ9 is not shown in the main text as it is not related
to CPGs). The state space is X ∼

{
XE , XF ,Xp

}
, where XE =

{XE1, XE2, XE3} , XF = {XF1, XF2, XF3} , Xp = {1,1} . All the XE

and XF are sensory feedback on sensor neurons with the functions
given by: ρsn = sigmoid

(
θthreshold , θinput , a

)
=

1

1+e
a
(
θthreshold−θinput

) .

Then the Ū of RL policy could be written in details:

ŪE1 = θ1XE1, ŪF1 = θ2XF1 (A1)

ŪE2 = θ3XE2, ŪF2 = θ4XF2 (A2)

ŪE3 = θ5XE3, ŪF3 = θ6XF3 (A3)

Ūp1 = θp1Xp1, Ūp2 = θp2Xp2 (A4)

where for hip pitch motion XF1= sigmoid (Psh, Ph, 0.5) and
XE1= sigmoid (Psh, P, −0.5) are the proprioceptive (PP) sensor
neurons, the Psh and Ph are the initial value of hip joint of stand-
ing posture and the value of the joint sensor. These two not only
adjust the posture of hip but also can increase or limit the motion
of the flexor or extensor. For the knee part, XF2= sigmoid (Psk,
Pk, 16) and XE2= sigmoid (Psk, Pk, 16) are the same anterior
extremity sensors. The Psk and Pk are the basic posture of knee

and the joint value of knee, respectively. 16 indicate a quick reflex
when the knee joint reaches the extremity. As for the ankle part,
XF3=Ξsigmoid (0, Pg, 8) and XE3=Ξsigmoid (0, Pg, −8) are
ankle sensor neurons. Ξ is a function which is equal to 1 when the
foot contacts the ground and 0 when there is no contact. Pg is the
angle of upright body based on the gyro sensor. These neurons are
used to adjust the motion of ankle joint adaptively to the inclina-
tion angle of the body and work like a simple vestibular system.
Therefore, the final output of CPGs is: (1) Hip: τ1= τE1− τF1. (2)
Knee: τ2= τE2+ τF2+Wp1X p1, where Wp1 is equal to converged
θp1. (3)Ankle: τ1= τE3− τF3+Wp2X p2, where Wp2 is equal to
converged θp2. The control signals U = Ū + δ, where δ is a vec-
tor containing exploration values generated by RL policy. All the
abovementioned equations are implemented on one leg and the
same is used on the other leg because of the symmetry.

The roll motion adopts sensor-driven CPGs. For the hip
roll: τhl= sigmoid(Pshl, Phl, 28)− sigmoid(Pshr, Phr, 28) and
τhr= sigmoid(Pshr, Phr, 28)-sigmoid(Pshl, Phl, 28) are the output
of roll CPGs to left and right hip roll joints, where Pshl, Pshr are
the standing posture of left and right hip pitch joints and Phl,
Phr are the values of joint sensors for left and right hip pitch
joints. The same mechanism is for ankle roll: τal= sigmoid(Psal,
Pal, 28)− sigmoid(Psar, Par, 28) and τar= sigmoid(Psar, Par,
28)− sigmoid(Psal, Pal, 28) are the output of roll CPGs to left and
right ankle roll joints, where Psal, Psar are the standing posture of
left and right ankle pitch joints and Pal, Par are the values of joint
sensors for left and right ankle pitch joints.

In order to better and stably approximate Q function in RL,
we use another value-function related basis function ψ= 0.1F to
increase the stability of RL, where F is the joint value of hip. Since
the Equation 27 J =V π(xH+1)−V π(x0), where V π(xH+1) is
the prediction of future value function dependent on state xH. So
by using θ9ψ to approximate V π(xH+1) can increase the stability
of RL. V π(x0) is the value function of the initial state which is a
constant approximated by baseline.

Frontiers in Neurorobotics www.frontiersin.org April 2013 | Volume 7 | Article 5 | 19

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

	Humanoids learning to walk: a natural CPG-actor-critic architecture
	Introduction
	Materials and methods
	Central pattern generators
	Layered CPG structure
	Sensor neurons

	NAC model
	Natural CPG-actor-critic model
	Learning algorithm

	Experimental settings
	Robotic platform and the neural controller
	Software


	Results
	Experiment 1: walking on the flat ground
	Prerequisites
	Experiment 1 results

	Experiment 2: walking on the slope
	Prerequisites
	Experiment 2 results
	Data analysis

	Conclusion

	Discussion
	Comparison of our work with related work
	Comparison to nakamura's model
	Similarity
	Differences

	Features of our work
	Insights into RL approach selection

	Dynamic systems approach
	Conclusion and future work

	Supplementary material
	References
	Appendix
	The details of CPG-actor-critic in the implementation
	Directions of flexor and extensor for each joint
	Details in RL and CPGs



