FAKTORER ATT BEAKTA VID VAL AV DATABASMODELL FÖR EN MOLNTJÄNST

- Ur ett mikroföretags perspektiv

FACTORS TO CONSIDER WHEN SELECTING A DATABASE MODEL FOR A CLOUD SERVICE

- From a micro-business perspective

Examensarbete inom informationssystemsutveckling
Grundnivå nivå 15 Högskolepoäng
Vårtermin År 2012

Sebastian Espling

Handledare: Eva Söderström
Examinator: Per Backlund
FAKTORER ATT BEAKTA VID VAL AV DATABASMODELL FÖR EN MOLNTJÄNST
- Ur ett mikroföretags perspektiv

Examensrapport inlämnad av Sebastian Espling till Högskolan i Skövde, för Kandidatexamen (BSc) vid Institutionen för kommunikation och information.

(DATUM)

Härmed intygas att allt material i denna rapport, vilket inte är mitt egna, har blivit tydligt identifierat och att inget material är inkluderat som tidigare använts för erhållande av annan examen.

Signerat: ____________________________

Sebastian Espling
Jag vill börja med att tacka min handledare Eva Söderström för all den hjälp och vägledning som jag har fått under arbetes gång.

Jag vill även tacka alla på Bricknode AB för att ni har ställt upp och bidragit med värdefull information till uppsatsen. Tack för ett varmt välkomnande och ett stort engagemang för det arbete som genomförts.
Sammanfattning

En databasmodell är en viktig del av en applikation och för företag som utvecklar molntjänster är det viktigt att databasmodellen kan hantera föränderlig och växande data. För mikroföretag som utvecklar molntjänster är val av databasmodell en stor investering. Ett medvetet val måste göras för att säkerställa att rätt databasmodell väljs uteftor de förutsättningar, resurser och syfte man har med sin applikation. Då mikroföretag inte har samma resurser i form av kapital, kunskap och kompetens som större företag är detta val än mer viktigt. I denna uppsats har en kvalitativ undersökning genomförts i syfte att svara på två delfrågor och en huvudfråga. Delfrågorna skall ligga som grund till att svara på huvudfrågan i uppsatsen. Huvudfrågan ämnar identifiera vilka faktorer mikroföretag som utvecklar molntjänster bör beakta vid val av databasmodell för deras förutsättningar och syfte. Delfråga 1 ämnar identifiera vilka fördelar samt nackdelar som finns med databasmodellerna relationsdatabaser och NoSQL databaser. Delfråga 2 ämnar klargöra om det finns några faktorer som påverkar valet av databasmodell speciellt för en molntjänst.

Resultatet av uppsatsen och den slutsats som arbetet resulterade i var att mikroföretag med hjälp av de för- och nackdelar som identifierats kan utvärdera vilken databasmodell som passar deras förutsättningar och syfte. Då syfte och förutsättningar skiljer sig mellan företag är detta en analys som de själva måste genomföra. Studien visade att finns vissa speciella aspekter att beakta för valet av databasmodell för en molntjänst men att det inte skiljer sig avsevärt från vilka aspekter som beaktas för val av databasmodeller i allmänhet.
Innehållsförteckning

1 Inledning .. 1

2 Mikro, små och medelstora företag (SME-företag) .. 3
 2.1 Definition av SME-företag enligt EU ... 3
 2.2 Förutsättningar för SME-företag. ... 4

3 Molnet ... 5
 3.1 Definition av begreppet Molnet .. 5
 3.2 Typer av molntjänster ... 8
 3.2.1 Software-as-a-Service (SaaS) ... 8
 3.2.2 Platform-as-a-Service (PaaS) ... 9
 3.2.3 Infrastructure-as-a-Service (IaaS) ... 9

4 Databaser .. 10
 4.1 Definition Databas .. 10
 4.2 Definition Datamodell ... 11
 4.3 Relationsdatabas ... 12
 4.3.1 Relationsmodellen ... 12
 4.3.2 Relationsdatabas ... 12
 4.4 NoSQL ... 13
 4.4.1 Key Value Stores ... 14
 4.4.2 Document Stores ... 15
 4.4.3 Column Family Stores ... 16
 4.4.4 Graph Databases .. 16

5 Problembakgrund .. 17
 5.1 Syfte och frågeställning .. 18
 5.2 Avgränsning ... 19
 5.3 Etiska aspekter ... 19

6 Metod .. 20
 6.1 Val av metod ... 20
 6.1.1 Kvalitativ ansats ... 20
 6.1.2 Inspirerad av Aktionsforskning ... 21
 6.1.3 Fallstudie ... 21
 6.2 Datainsamlingsmetod .. 22
 6.2.1 Intervju .. 22
 6.2.2 Litteraturstudie .. 23
 6.2.3 Dokumentstudie ... 23
 6.3 Genomförande ... 23
 6.3.1 Ostrukturerade intervjuer ... 24
 6.3.2 Litteraturstudie .. 25
 6.3.3 Dokumentstudie ... 27
 6.3.4 Prototyputveckling .. 27

7 Resultat ... 29
 7.1 För- och nackdelar med Relationsdatabaser och NoSQL databaser 29
 7.1.1 Fördelar relationsdatabaser .. 29
 7.1.2 Nackdelar relationsdatabaser .. 30
 7.1.3 Fördelar NoSQL databaser .. 31
 7.1.4 Nackdelar NoSQL databaser .. 32
 7.2 Val av databasmodell för molntjänst ... 33

8 Analys .. 36
 8.1 Analys av för- och nackdelar gällande relationsdatabaser 38
 8.2 Analys av för- och nackdelar gällande NoSQL databaser 40
 8.3 Val av databasmodell för molntjänst ... 43
1 Inledning

Vi lever i en föränderlig värld där ny teknik och nya innovationer konstant introduceras i människors liv. Dessa förändringar sker i snabb takt och är märkbara i de flesta branscher och inte minst i IT-branschen. För att företag skall kunna vara konkurrenskraftiga krävs det att de kan hantera en föränderlig värld och förändras i takt med den.

Då utvecklingen av internet går i ett mycket högt tempo och ny teknik som molntjänster har introducerats på marknaden har kravet på prestanda hos databaser ökat (Han, Haihong, Le & Du, 2011). Efterfrågan på databaser som kan skala, läsa och skriva data effektivare än de traditionella relationsdatabaserna är stor (Leavitt, 2010). Detta gäller speciellt applikationer som hanterar stora mängder data samt applikationer som har krav på hög tillgänglighet och som skall kunna hantera stora mängder användare samtidigt (Han et al., 2011).

Denna utveckling har gjort att en ny form av databaser har uppkommit på marknaden och skapat ett stort intresse, NoSQL databaser. NoSQL databaser och relationsdatabaser utgår från två skilda databasmodeller och lagrar data på två skilda sätt. För företag som utvecklar molnapplikationer och använder databaser som lagringsmedium är val av databasmodell en viktig aspekt för att få ett stabilt system med hög prestanda. Att välja databasmodell för ett specifikt syfte och applikation är inte trivialt och kräver kunskap om databasens egenskaper. Stora IT-företag kan allokera resurser för att utvärdera databasmodeller och köpa in befintliga lösningar eller utveckla egna databaser som passar deras behov och syfte. SME (mikro, små och medelstora) företag besitter inte samma resurser som de stora IT-företagen och valet av databasmodell som lämpar sig för den applikation som utvecklas kan därmed bli en svår process.

Uppsatsens syfte är att undersöka hur mikroföretag som utvecklar molntjänster kan gå tillväga för att välja en databasmodell som passar deras applikation och syfte. För att finna ett svar på denna problemställning har en kvalitativ ansats använts. En forskningsansats inspirerad av aktionsforskning samt en fallstudie har genomförts på företaget Bricknode AB. Genom ostrukturerade intervjuer har kunskap inhämtats angående vilka faktorer som respondenterna anser vara viktiga att beakta vid val av databasmodell för en molntjänst.
Inledning

För att svara på huvudfrågan har även två delfrågor identifierats. Fråga 1: Vilka fördelar samt nackdelar går att urskilja för databasmodellerna relationsdatabaser och NoSQL databaser? Fråga 2: Vilka faktorer påverkar valet av databasmodell för en molntjänst? Fråga 1 har besvarats genom litteraturstudier, programmering och ostrukturerade intervjuer med respondenter på företaget Bricknode AB. Fråga 2 har besvarats genom ostrukturerade intervjuer med respondenter på företaget Bricknode AB.

Utifrån analysen av de två delfrågorna har en slutsats framkommit och resulterat i ett svar på huvudfrågan. Slutsatsen av studien är att företag som utvecklar molntjänster kan med hjälp av de för- och nackdelar som identifierats angående databasmodellerna NoSQL och relationsdatabaser välja databasmodell som passar deras applikation och syfte. Då studien visade att det fanns vissa speciella aspekter att beakta för valet av databasmodell för en molntjänst bör företag som utvecklar molntjänster även ta hänsyn till dessa aspekter. Dock skiljer sig inte dessa aspekter avsevärt från de som beaktas för val av databasmodeller i allmänhet. Däremot bör det noteras att det läggs mer fokus på aspekter som skalbarhet och hantering av stora datamängder för valet av databasmodell för en molntjänst.

2 Mikro, små och medelstora företag (SME-företag)

Syftet med detta kapitel är att definiera vad som karaktäriserar mikro, små och medelstora företag (SME) för att sedan klargöra vilka eventuella begränsningar som finns för dem gällande investeringar inom IT. Att förstå vad som karaktäriserar SME-företag är viktigt att presentera för läsaren då problemformuleringen kommer att avgränsas till att enbart fokusera på mikroföretag och förutsättningar för dessa.

2.1 Definition av SME-företag enligt EU

Överlag är de flesta mikro, små och medelstora företag fristående då de aningen är helt självständiga eller har minoritetspartnerskap med ett eller flera andra företag där varje andel är mindre än 25 % per partnerskap (Svenskt näringsliv, 2008). Beroende på vilken kategori som företaget faller inom görs beräkningar utifrån dessa uppgifter. Resultatet av beräkningen kommer att visa om företaget uppfyller kraven på antal anställda arbetskraftenheter och de finansiella beloppen (se tabell 1). Företag som hamnar inom dessa ramar kan betraktas som SME-företag och företag som hamnar utanför dessa ramar förlorar sin SME status (Europeiska kommissionen, 2006). Det bör även noteras att Sverige följer den definition av SME-företag som är gällande inom EU idag (Svenskt näringsliv, 2008).
Tabell 1: Definition av SME-företag. (bearbetad från Europeiska kommissionen (2006) s.14)

<table>
<thead>
<tr>
<th>Företagskategori</th>
<th>Antal anställda arbetskraftenheter</th>
<th>Årsomsättning</th>
<th>Balansomslutning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Litet</td>
<td>< 50</td>
<td>≤ 10 miljoner euro (1996 – 7 miljoner euro)</td>
<td>≤ 10 miljoner euro (1996 – 5 miljoner euro)</td>
</tr>
<tr>
<td>Mikro</td>
<td>< 10</td>
<td>≤ 2 miljoner euro (fastställdes inte 1996)</td>
<td>≤ 2 miljoner euro (fastställdes inte 1996)</td>
</tr>
</tbody>
</table>

2.2 Förutsättningar för SME-företag.

SME-företag besitter inte samma resurser i form av kunskap, kapital och kompetens som större företag (Qureshi, Kamal, & Wolcott, 2008). Detta medför att förutsättningarna blir annorlunda för SME-företag gällande investering och utveckling av ny teknologi (Servon & Doshna, 2000). Ett beslut att göra en investering i teknologi för att driva den utveckling företaget önskar eller att implementera en molnlösning blir därför mer kritiskt för ett SME-företag än för större företag då fel beslut kan medföra negativa effekter på verksamheten (Qureshi et al., 2008).
3 Molnet

En innovation som har tagit IT-branschen med storm är datormoln som ofta går under beteckningen "molnet". Molnet har varit det hetaste modeordet inom IT-branschen de senaste åren och allt fler företag har eller överväger att emigrera delar av sin verksamhet till molnet. (Vaquero, Rodero-merino, Caceres & Lindner, 2009). Grundtanken med molnet är att flytta hela eller delar av ett företags IT-resurser till internet där det hanteras av ett annat företag. Detta innebär att företag "slipper" investera i hårdvara som t.ex. servrar samt kompetens i form av IT-tekniker och annan IT-personal. Utöver att företagen kan göra besparingar genom att outsourcing dessa element av verksamheten kan de även fokusera mer på kärnverksamheten. Detta då ett annat företag handskas med de IT-relaterade aspekterna av verksamheten (Buyya, Yeo, & Venugopal, 2008).

3.1 Definition av begreppet Molnet

I följande kapitel kommer tre definitioner av molnet presenteras, med en redogörelse för olika typer av molntjänster och vad som kännetecknar dem.

Det finns idag ingen definition av molnet som är allmänt vedertagen och erkänd. Experter och aktörer på marknaden har olika definitioner av fenomenet. Nedan kommer tre av dessa definitioner redovisas för att försöka ge en någorlunda klar bild angående vad begreppet ”Molnet” faktiskt innebär.
Sveriges IT arkitekter, som är en del i International Association of Software Architects (IASA), publicerar en definition för Molnet som är godkänd av IASA´s styrelse (IASA, 2009):

”Termen Cloud Computing relaterar både till applikationer som levereras som tjänster över Internet och till den hårdvara och systemmjukvara som tillhandahåller dessa tjänster.

Applikationstjänsterna talar vi om som Software as a Service.

Hårdvaran och systemmjukvaran är det vi kallar för molnet (The Cloud).

Cloud Computing karaktäriseras av två viktiga egenskaper; upplevt oändliga resurser och betalning per resursförbrukning. Den tjänst som erbjuds av molnet kallas Utility Computing, vilket närmast kan jämföras med resursförbrukning av t.ex. el och vatten.

När ett moln är publikt tillgängligt kallas det för ett publikt moln (Public Cloud). Ett moln som inte görs publikt tillgängligt kallas för ett privat moln (Private Cloud). Ett moln som inte kan erbjuda upplevt oändliga resurser och betalning per resursförbrukning erbjuder inte cloud computing.

Cloud Computing kan därför anses bestå av tjänsterna Utility Computing och Software as a Service”

(IASA, 2009)

Vaquero et al., (2009) har studerat över 20 definitioner från experter inom området i syfte att försöka finna en definition som uppnår konsensus angående vad molnet är samt att skapa en definition som innehåller de essentiella egenskaperna hos molnet. Den definition som framtogs var följande:

”Clouds are a large pool of easily usable and accessible virtualized resources (such as hardware, development platforms and/or services). These resources can be dynamically re-configured to adjust to a variable load (scale), allowing also for an optimum resource utilization.

This pool of resources is typically exploited by a pay-per-use model in which guarantees are offered by the Infrastructure Provider by means of customized SLAs.”

(Vaquero et al., 2009 s.51)
Detta definierar molntjänster som en stor samling lättanvända och lättillgängliga resurser i form av hårdvara, utvecklingsplattformar och/eller tjänster. Resurserna kan konfigureras och skalas efter behov och detta innebär då att man utnyttjar en resurs fulla kapaciteter. Dessa resurser görs tillgängliga via en betalningsmodell där leverantören, utefferede överenskommelser med kunden, levererar resurser anpassat efter kundens behov.

National Institute of Standards and Technology (NIST) presenterar sin framtagna definition av molnet i rapporten ”The NIST Definition of Cloud Computing”.

"Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction."

(Mell & Grance, 2011 s.2)

NIST definierar molntjänster som en modell som möjliggör lättillgängligt, bekväm, on-demand nätverkstillgång till en delad samling av IT-resurser som ex. nätverk, servrar, lagringsutrymme, applikationer och tjänster. Dessa resurser skall lätt kunna underhållas och distribueras utan att behöva förlita sig på en leverantör. De IT-resurser som NIST beskriver går ofta under benämningen molntjänster SaaS, PaaS och IaaS (Rittinghouse & Ransome, 2010). Dessa molntjänster beskrivs i kommande kapitel.

3.2 Typer av molntjänster

Molnet består huvudsakligen av tre olika tjänster. Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS) och Infrastructure-as-a-Service (IaaS) (Rittinghouse & Ransome, 2010). Nedan kommer en övergripande presentation av de olika molntjänsterna och vad som karaktäriserar dessa.

3.2.1 Software-as-a-Service (SaaS)

Den snabba utvecklingen inom IT har gjort det möjligt för leverantörer och användare att utnyttja SaaS modellen i större utsträckning än tidigare. Anledningen är att internetuppkopplingar blivit allt snabbare och tillgängligheten till internet har ökat markant (Rittinghouse & Ransome, 2010). En ytterligare faktor är att datorer idag har mycket bättre prestanda än tidigare och att datalagring har blivit billigare. Detta innebär att det finns en möjlighet för företag och organisationer inom alla affärsområden att designa, utveckla och använda SaaS tjänster eftersom att de inte begränsas av teknologi eller bandbredd i samma mån som innan. (Rittinghouse & Ransome, 2010)

SaaS används i dagsläget för att komplettera eller ersätta de lokala IT-resurser som finns i ett företag. Användarna får tillgång till samma funktionalitet som finns i det lokala systemet fast till ett lägre pris eftersom att de undviker kostnader som uppkommer vid inköp av ny teknologi, underhåll, support samt kostnader för licenser och implementering av ett lokalt system (Rittinghouse & Ransome, 2010). Kunden bryr sig ofta inte om hur systemet fungerar eller hur det är implementerat så länge fungerar och kan stödja det dagliga arbetet. (Rittinghouse & Ransome, 2010)
3.2.2 Platform-as-a-Service (PaaS)

3.2.3 Infrastructure-as-a-Service (IaaS)

4 Databaser

I detta kapitel kommer inledningsvis en definition av vad en databas och databasmodell är att presenteras. Kapitlet är därefter indelat i två delar där en del behandlar relationsdatabaser och frågespråket SQL och en del behandlar NoSQL databaser. Syftet är att ge läsaren en introduktion till databaser och även att belysa vad som karakteriserar databaserna NoSQL och relationsdatabaser.

4.1 Definition Databas

- En databas representerar någon eller några aspekter av den verkliga världen. Förändringar i den verkliga världen återspeglas i databasen (Elmasri & Navathe, 2010).
- En databas är en logiskt sammanhängande kollektion av data med någon form av mening. En slumpmässig samling av data kan inte betraktas som en databas då det inte finns ett logiskt sammanhang (Elmasri & Navathe, 2010).
- En databas är designad, byggd och popularerad med data för ett specifikt syfte. Databasen har även en avsedd användargrupp (Elmasri & Navathe, 2010).

4.2 Definition Datamodell

En datamodell är en representation av komplex datastruktur i den verkliga världen (Rob & Coronel, 2002). Datamodellen för en databas består enligt Rob & Coronel (2002) av tre huvudkomponenter:

- En beskrivning av datastrukturen som skall lagra data för slutanvändaren
- En samling med regler som kan garantera integriteten för den lagrade data
- En metodologi för att manipulera och transformera data från den verkliga världen

4.3 Relationsdatabaser

Kapitlet kommer att innehålla en kort introduktion om relationsmodellen. Därefter kommer information om relationsdatabasen att presenteras för läsaren. Syftet med detta kapitel är att ge läsaren en teoretisk grund angående relationsmodellen och relationsdatabaser för att lättare kunna förstå den kommande problemformuleringen.

4.3.1 Relationsmodellen

4.3.2 Relationsdatabaser

4.4 NoSQL

I detta avsnitt kommer information om NoSQL presenteras. Kapitlet kommer att innehålla en introduktion till NoSQL och varför efterfrågan på NoSQL databaser blir större. Därefter kommer de olika datamodeller som finns inom begreppet att presenteras för läsaren. Syftet med detta kapitel är att ge läsaren en god teoretisk grund angående NoSQL och dess datamodell för att lättare kunna förstå den kommande problemformuleringen.

Begreppet NoSQL (Not Only SQL), eller ”ej relationsdatabaser”, har funnits sedan slutet på 60-talet och innefattar databaser som inte kan placeras i kategorin för databaser som bygger på den traditionella relationsmodellen (Leavitt, 2010).

4.4.1 Key Value Stores

Databasen Key Value Store kan jämföras med en adressbok eller ett lexikon då en unik nyckel används för att komma åt data (Hecht & Jablonski, 2011). Nyckeln är ofta en sträng och data som nyckeln relaterar till är vanligtvis en primitiv datatyp exempelvis ett heltal, fält (array) eller en sträng (Seeger, 2009). Data som nyckeln relaterar till benämns ofta som Value, eller...

4.4.2 Document Stores

Document Stores har som egenskap att de inkapslar två nyckelvärden tillsammans med den data som lagras i ett JSON, XML eller JSON liknande dokument (Han et al., 2011). Det första nyckelvärdet är ett automatgenererat "_ID" fält som varje dokument lagrar i syftet att kunna identifiera dokumentet i en samling av dokument. Den andra nyckeln identifierar ett specifikt värde i det aktuella dokumentet. Båda dessa nycklar måste ha unika värden (Hecht & Jablonski, 2011). All data lagras och organiseras i databasen som dokument och dessa dokument återfinns i s.k. kollektioner av dokument (Leavitt, 2010).

4.4.3 Column Family Stores

4.4.4 Graph Databases

Användningsområdet för grafdatabaser är främst geografiska platstjänster, kunskapsrepresentering, vägvisningstjänster och andra system och tjänster som hanterar komplexa relationer mellan data (Hecht & Jablonski, 2011).
5 Problembakgrund

NoSQL databaser har introducerats som ett alternativ till de välkända och välanvända relationsdatabaserna och har i dagsläget vunnit mark hos stora aktörer som Amazon, Google, Twitter och Facebook (Hecht & Jablonski, 2011). Dessa jättar inom IT använder ofta en kombination av NoSQL databaser och relationsdatabaser för att hantera datalagring och läs- och skrivoperationer samt skalning av data (Hecht & Jablonski, 2011). Faktum är dock att stora företag som Amazon, Google, Twitter och Facebook, som förfogar över nästintill oändliga resurser i form av teknik, kapital, kunskap och kompetens, har möjlighet till att utveckla egna databasmodeller som är anpassat för just deras system (Hecht & Jablonski, 2011).

5.1 Syfte och frågeställning

Syftet med denna studie är bidra med kunskap angående vilka faktorer som påverkar valet av databasmodell för mikroföretag som utvecklar molntjänster. Syftet är även att redovisa fördelarna och nackdelarna för databasmodellerna relationsdatabaser och NoSQL databaser för att klargöra vad som faktiskt skiljer dessa åt. Huvudfrågeställningen blir därför:

- Vilka faktorer bör mikroföretag som utvecklar molntjänster beakta vid val av databasmodell för deras förutsättningar och syfte?

För att kunna svara på huvudfrågan krävs det även att följande delfrågor besvaras:

1. Vilka fördelar samt nackdelar går att urskilja för databasmodellerna relationsdatabaser och NoSQL databaser?
2. Vilka faktorer påverkar valet av databasmodell för en molntjänst?

5.2 Avgränsning

Endast NoSQL databasen MongoDB kommer att implementeras i en testmiljö då resurser i form av tid inte är tillräcklig för att kunna implementera andra NoSQL databaser eller en relationsdatabas.

5.3 Etiska aspekter

Företaget Bricknode AB har givit sitt godkännande om att medverka i studien och till att använda företagets namn i uppsatsen. Respondenterna har även de givit sin tillåtelse att namnges i uppsatsen. I uppsatsen har företaget namnets men inte respondenterna då namngivning av respondenter inte anses vara nödvändigt för uppsatsen.
6 Metod

I detta kapitel presenteras den undersökningsdesign som har valts för studien samt motivationer till varför en speciell undersökningsmetod valts. I kapitlet behandlas även genomförande, som beskriver arbetsprocessen och tillvägagångssättet, samt metoder för datainsamling som använts för uppsatsen.

6.1 Val av metod

För uppsatsen valdes en kvalitativ ansats där aktionsforskning och fallstudie kommer användas som tillvägagångssätt.

6.1.1 Kvalitativ ansats

6.1.2 Inspirerad av Aktionsforskning

Aktionsforskning används då det finns ett identifierat problem, som praktikern själv har identifierat eller identifierat tillsammans med problemägaren, som är i behov av en förändring eller förbättring (Bell, 2007). Utifrån problemområdet som identifierades tillsammans med organisationen som är verksamma inom domänen där problemet är verkligt har det specifika problemet identifierats och därav stärks valet av aktionsforskning än mer.

Målet med aktionsforskning är att identifiera rekommendationer som kan bidra till en lösning på de identifierade problemen för att förbättra verksamheten (Bell, 2007). Då uppsatsen syftar till att identifiera faktorer som är viktiga att beakta för mikroföretag vid val av databasmodell anpassat för deras molnapplikation anses aktionsforskning i den form som Bell (2007) beskriver vara ett tillvägagångssätt som kan bidra med kunskap för att svara på den gällande problemformuleringen.

Utöver de aspekter av aktionsforskning som presenterades ovan kommer även fallstudier att användas som undersökningsmetod i uppsatsen.

6.1.3 Fallstudie

En fallstudie undersöker ett verkligt fenomen i den kontext som fenomenet befinner sig inom (Backman, 2008) och är lämplig för forskare som arbetar individuellt och som ämnar undersöka ett problem på djupet (Bell, 2007). Fallstudier anses även vara mycket lämpliga i situationer där de objekt som studeras har en hög grad av komplexitet (Backman, 2008). En fallstudie ämnar ofta förklara, förstå eller beskriva företeelser, organisationer eller system
Metod

(Backman, 2008). En fallstudie kan vara beskrivande (deskriptiv), förklarande eller undersökande (explorativ) i sin natur (Backman, 2008).

Den form av fallstudie som kommer användas i uppsatsen är den explorativa då praktikern söker att besvara en problemformulering som undersöker hur aspekten av ett problem. Själva fallstudien och vart den genomfördes beskrivs nedan i kapitel 6.3. Då det faktiska problemet är ett verkligt fenomen i den kontext som praktikern befinner sig i stödjer detta användningen av fallstudier. Att fallstudier även lämpar sig för forskare som arbetar på egen hand och som vill studera ett fenomen på djupet gör att användningen av fallstudier motiveras än mer då studien faktiskt genomförs på detta vis.

6.2 Datainsamlingsmetod

6.2.1 Intervju

6.2.2 Litteraturstudie

6.2.3 Dokumentstudie

Dokument är en vanlig kvalitativ datatyp som innefattar källdata som innehåller information (Backman, 2008). Denna information kan vidta många olika former som brev, filer, fotografier, tidningar, dagböcker, protokoll och interna rapporter (Bell, 2007). Det som utmärker ett dokument är att det inte har producerats i forskningssyfte (Bryman & Bell, 2011). En dokumentstudie syftar till att samla in dokument, som kan tänkas vara relevanta för problemområdet och det aktuella problemet, för att sedan analysera dessa dokument och avgöra om de är relevanta för studien (Bryman & Bell, 2011).

6.3 Genomförande

I detta kapitel kommer genomförandet av de valda undersökningsmetoderna att redovisas och även hur de valda datainsamlingsmetoderna genomförts i praktiken.

För att samla in data som kan bidra till att svara på det aktuella problemet har en fallstudie genomförts hos Bricknode AB. Bricknode AB är ett mikroföretag som utvecklar ett finanssystem som erbjuds som en SaaS tjänst på molnet. Företaget vill undersöka möjligheten att byta databasmodell från en relationsdatabas till en NoSQL databas då de är i behov av att kunna skala databasen utan att det påverkar prestandan och tillförlitligheten vid en eventuell expansion. Företaget önskar speciellt att en testimplementering av NoSQL databasen MongoDB genomförs då de innan har fattat intresse för denna databas.

![Figur 1 – modell över genomförande](image)

6.3.1 Ostrukturerade intervjuer

Genomförandet av ostrukturerade intervjuer har skett på Bricknode AB och de två respondenter som deltog i intervjuerna har vardera över tio års erfarenhet inom systemutveckling och de har båda varit med att utveckla Bricknode’s system från början. De besitter goda kunskaper angående molntjänster och vilka kriterier som databasmodeller bör uppnå för att vara lämpliga att använda för molntjänster.

Respondent 1 jobbar som projektledare och systemutvecklare på företaget Bricknode AB. Han har 15 års erfarenhet inom systemutveckling och var med och startade upp företaget.
Metod

Respondent 2 jobbar som utvecklare på företaget Bricknode AB. Han har drygt 10 års erfarenhet inom systemutveckling och är den som har designat den befintliga databasstrukturen som Bricknode använder idag.

Intervjuerna har genomförts genom samtal med respondenterna för att identifiera deras tankar och åsikter på frågor som har framkommit genom litteratur- och dokumentstudier och även genom prototyputveckling (se Figur 1). Då ostrukturerade intervjuer genomfördes har ingen inspelning skett utan istället har anteckningar använts som den främsta dokumentationstekniken. Utifrån resultatet av intervjuerna har återigen litteratur- och dokumentstudier genomförts (se Figur 1) och resultatet från denna iteration bidrog till att vidareutveckla prototypen.

6.3.2 Litteraturstudie

Litteraturstudie har genomförts för att bilda en god teoretisk grund för det gällande problemområdet. Studien behandlar främst litteratur i form av vetenskapliga artiklar för att urskilja vilken kunskap som finns dokumenterad i dagsläget. Litteraturstudien innefattar även studie av facklitteratur som behandlar databasmodeller då dessa finns väl dokumenterade i denna form av litteratur. Sökning efter litteratur skedde främst i databaserna IEEE Xplore, Google Scholar, CiteSeer och Scopus samt i bibliotek. Litteratursökningen har innefattat att identifiera nyckelord för uppsatsen för att sedan använda dessa nyckelord i databassökningen i syfte att finna litteratur som kan bidra med att lösa problemet. Dessa nyckelord innefattade ord som NoSQL, Relationaldatabase, Relationsdatabas, RDBMS, Databasmodell, Databasemodel (även Databasemodell med två l), Cloud, Cloud Computing, SaaS, PaaS, IaaS,
6.3.3 Dokumentstudie

6.3.4 Prototyputveckling

Utveckling och prototyputveckling har utförts på Bricknode AB. Bricknode AB har bistått med den teknologi som implementeringen krävde i form av utvecklingsmiljö, servrar, hårdvara och mjukvara. Företaget bidrog även med kunskap inom ämnet och erfarenhet av utveckling i .NET och Visual Studio 2010. En kontinuerlig dialog har upprätthållits med respondenterna på Bricknode AB genom ostrukturerade intervjuer och samtal.
7 Resultat

Nedan presenteras resultaten från de litteraturstudier, dokumentstudier och intervjuer som genomfördes. Inledningsvis kommer fördelar samt nackdelar angående databasmodellerna NoSQL databaser och relationsdatabaser att redovisas baserat på empiri och litteratur. Därefter kommer empiriska data som samlats in genom intervju gällande aspekter vid val av databasmodell för en molntjänst att presenteras.

7.1 För- och nackdelar med Relationsdatabaser och NoSQL databaser

Nedan presenteras för och nackdelar med relationsdatabaser och NoSQL databaser. Först presenteras för- och nackdelar med relationsdatabaser och därefter för- och nackdelar med relationsdatabaser.

7.1.1 Fördelar relationsdatabaser

De fördelar som verksamhetsexperterna upplever finnas med relationsdatabaser är att de kan hantera atomära operationer och att de har ACID stöd. De nämner även att det finns mycket dokumentation angående denna databasmodell vilket gör att den är relativt lätt att arbeta med. De säger även att relationsdatabaser är en bekant teknik och att det finns bra systemstöd och utvecklingsverktyg tillgängligt för databasmodellen. Rapportering och stödet för rapportering är något som de anser vara en fördel med relationsdatabaser. Överlag säger verksamhetsexperterna att det är en mycket mogen teknik på de flesta områden.

De fördelar som enligt teorin finns med relationsdatabaser är att de är standardiserade och använder det standardiserade frågespråket SQL (Elmasri & Navathe, 2010). Relationsdatabasen är även välanvänd och det finns många utbildade och kunniga användare samt utvecklare för denna databasmodell (Elmasri & Navathe, 2010).

7.1.2 Nackdelar relationsdatabaser

7.1.3 Fördelar NoSQL databaser

De fördelar verksamhetsexperterna anser vara de viktigaste är att NoSQL databaser kan skala till väldigt stora storlekar utan att det kostar ofantligt mycket pengar. De menar att när skalning av NoSQL databaser sker är det vertikal skalning vilket innebär att fler servrar införskas och databasen distribueras på dessa istället för att köpa in en ”top-noch” server med den senaste teknologin. Respondenterna säger att en ytterligare fördel är att servrar som används vid vertikal skalning kan bestå av gamla datorer som återanvänds och därmed behöver inte en investering i den senaste teknologin göras vid en expansion. Istället läggs det till en server i den befintliga strukturen för att hantera det ökande dataflödet. Att NoSQL databaser är gratis är även en stor fördel då investeringar i licenser undviks vilket kan vara en stor kostnad för ett mindre företag som snabbt expanderar menar de. Utöver skalning och pris är prestanda något som verksamhetsexperterna anser vara en väldigt viktig faktor. Fördelen med NoSQL databaser är designade för att kunna läsa och skriva stora mängder data utan att prestandan blir lidande säger verksamhetsexperterna.
De fördelar som enligt teorin finns med NoSQL databaser är att det går att finna en databas för nästan varje ändamål (Hecht & Jablonski, 2011). NoSQL databaser begränsas inte av fasta relationsscheman utan har en fri och öppen struktur. De är bra på att hantera ostrukturerad data som bilder, e-post och textfiler och detta medför att de lämpar sig väl för webbtjänster (Hecht & Jablonski, 2011). NoSQL databaser är designade för att klara tunga läs- och skrivoperationer och för att hantera stora datamängder och poster (Han et al., 2011). Den decentraliserade strukturen underlättar replikering, skalning och ökar prestandan vid läs och skrivoperationer (Seeger, 2009). NoSQL databaser är även lätt att konfigurera och lära sig och de har ett enkelt API att arbeta mot. NoSQL databaser har en dynamisk struktur och är designade för att lätt kunna skalas up och ner horisontellt (Han et al., 2011). NoSQL databaser är baserade på öppen källkod och är gratis (Han et al., 2011).

7.1.4 Nackdelar NoSQL databaser

De nackdelar som verksamhetsexperterna har funnit med NoSQL är att det finns mycket sämre systemstöd än för relationsdatabaser. De menar även att det inte finns lika bra verktyg för rapportering för NoSQL. Det problem som respondenterna anser vara mest kritiskt för deras verksamhet är att NoSQL, och främst MongoDB, inte kan hantera atomära operationer på flera objekt. Detta medför att transaktionshantering inte är möjligt då det saknas ACID stöd i NoSQL. Dock menar verksamhetsexperterna att problemet kan löses genom att använda båda databasmodellerna NoSQL och relationsdatabaser och därmed skapa en egen lösning. De anser dock att detta ej är optimalt då två olika databasmodeller behöver underhållas och arbetas mot. Den bristande dokumentationen om NoSQL databaser är även det en nackdel menar respondenterna.
De nackdelar som finns enligt teorin gällande NoSQL databaser är att de i nuläget inte är standardiserade (Han et al., 2011). Det finns även en begränsad tillgång till dokumentation angående funktionalitet och även begränsad tillgång till guider för utförandet av vissa konfigureringar (Han et al., 2011). En ytterligare nackdel hos NoSQL databaser är att de inte kan hantera relationer på ett effektivt sätt (Leavitt, 2010). Relationerna 1:1 och 1:N stöds relativt bra men när det kommer till N:M relationer är stödet bristande. På grund av den denormaliserade strukturen brister NoSQL databaser överlag i hantering och kontrollering av redundant data (Han et al., 2011). NoSQL databaser har även svårt att hantera atomära operationer och komplexa querys där flera olika objekt och villkor är inblandade (Leavitt, 2010; Han et al., 2011). Dessa querys måste delas upp i steg vilket gör det mer komplicerat att ställa komplexa frågor mot databasen.

7.2 Val av databasmodell för molntjänst

Nedan återfinns en sammanställning av resultatet från de ostrukturerade intervjuer som genomförts på företaget angående vilka aspekter som företaget beaktar vid val av databasmodell för en molntjänst.

På frågan vilken den viktigaste faktorn vid val av databasmodell för en molntjänst är svarade respondent 1 att pris är den viktigaste faktorn. Respondenten säger att om de skulle vilja skala en Oracle databas skulle det kosta dem miljontals kronor, speciellt eftersom de expanderas väldigt fort för tillfället. På frågan varför det skulle kosta mycket pengar svarar respondent 1 att en Oracle lösning innebär att de måste köpa nytt och större vid en expansion plus att det då även tillkommer licenskostnader. Respondent 1 säger även att varje server som driver en Oracle databas måste vara ”top notch” för att få en väl presterande databas. Respondenten fortsätter med att förklara att gratisalternativ är något som de tittar mycket på och att det finns väl fungerande gratisalternativ för relationsdatabaser. Problemet med gratisalternativen är dock enligt respondent 1 att även de kräver ny och kraftfullare teknik vid en expansion samt att det är problem med att skala relationsdatabaser.
På samma fråga svarar respondent 2 att prestanda är en självklarhet då systemet måste kunna hantera stora mängder av läs- och skrivoperationer. Även skalbarhet är något som de har tittat mycket på den senaste tiden för att hantera den snabba expansionen. Respondent 2 menar att det är en viktig egenskap då de måste kunna skala upp deras system utan att det kostar för mycket och har en negativ påverkan på prestanda.

På frågan varför de överväger att övergå till NoSQL databaser svarar respondent 2 att NoSQL och speciellt databasen MongoDB tillåter dem att återanvända teknologi som redan finns inom företaget och slipper därmed investera i ny teknologi vid en expansion. Dessutom är alla NoSQL databaser opensource vilket betyder att de är gratis. Den enda kostanden för företaget blir därför tekniken och de undviker då dyra licenskostnader enligt respondenten.

Vid frågan om vilken databasmodell de skulle välja för deras system i dagsläget är respondenterna eniga om att en databasmodell inte kan fylla det behov som de har för tillfället utan att de förmodligen kommer att behöva använda en hybrid av NoSQL och relationsdatabaser. Respondent 2 säger att företag helt enkelt får ställa fördelar mot nackdelar och välja en databasmodell eller en kombination av databasmodeller som uppfyller det syfte och de krav som finns.
8 Analys

I detta kapitel kommer resultatet att analyseras utifrån problemställningen.

Resultatet angående för- och nackdelar med relationsdatabaser och NoSQL databaser har påvisat att det finns en klar skillnad mellan dessa två databasmodeller. Relationsdatabasen är en välanvänd, väldokumenterad och standardiserad databasmodell som idag används av många organisationer. NoSQL är en ny aktör på marknaden och har inte en lika gedigen bakgrund som relationsdatabaser men presenterar ny, spännande och eftertraktad funktionalitet som vertikal skalning och en denormaliserad struktur.

Utifrån det resultat som presenterats angående för- och nackdelar med databasmodellerna NoSQL och relationsdatabaser har två tabeller sammanställts för att strukturera och illusttera dessa. Tabellerna baseras på egenskaper som i resultatet förefaller vara nyckelegenskaper för respektive databasmodell.

- Prestanda
- Skalbarhet
- Pris
- Atomära operationer
- Relationshantering
- Dokumentation

Jämförelsegrunderna angående de egenskaper som presenteras i tabellerna i avsnitt 8.1 är följande:

- **Prestanda** – Prestanda i tabellen relaterar främst till hur databasen hanterar läs- och skrivoperationer. Även andra aspekter finns att beakta gällande prestanda men dessa beaktas ej i tabellen.
- **Skalbarhet** – denna egenskap relaterar till hur väl databasen hanterar och klarar av skalning. Detta innefattar hur databasen skalar upp samt ner.
- **Pris** – denna egenskap relaterar till priset på databasen och eventuell teknik och licenser som krävs för att driva och använda databasmodellen.
- **Relationshantering** – denna egenskap relaterar till hur väl databasen kan hantera relationer mellan objekt och entiteter.
- **Dokumentation** – denna egenskap relaterar till hur mycket som finns dokumenterat om databasmodellen.
- **Atomära operationer** – denna egenskap relaterar till om databasen kan hantera atomära operationer. På ett eller flera objekt.
8.1 Analys av för- och nackdelar gällande relationsdatabaser

Nedan presenteras analysen av resultatet gällande för- och nackdelar för relationsdatabaser.

Tabell 2: För- och nackdelar med relationsdatabaser.

<table>
<thead>
<tr>
<th>Egenskaper</th>
<th>Relationsdatabaser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prestanda</td>
<td>Nackdel</td>
</tr>
<tr>
<td>Skalbarhet</td>
<td>Nackdel</td>
</tr>
<tr>
<td>Pris</td>
<td>Nackdel</td>
</tr>
<tr>
<td>Relationshantering</td>
<td>Fördel</td>
</tr>
<tr>
<td>Dokumentation</td>
<td>Fördel</td>
</tr>
<tr>
<td>Atomära operationer</td>
<td>Fördel</td>
</tr>
</tbody>
</table>

menar respondenterna. Respondenterna säger även att Opensource lösningarna inte är ett bra alternativ då de ändå måste köpa in ny och bättre teknologi när de expanderar och datamängden som lagras blir större. För ett expanderande mikroföretag är alltså pris en nackdel för relationsdatabaser då både Opensource lösningar och licensbaserade lösningar kostar mycket pengar i slutändan.

Atomära operationer – Relationsdatabasens hantering av atomära operationer är en klar fördel, främst på grund av dess ACID stöd. Atomära operationer kan genomföras på flera objekt samtidigt vilket lämpar sig väl för komplexa transaktioner i databasen (Elmasri & Navathe, 2010). Både respondenterna och teorin anser att relationsdatabasens stöd för atomära operationer på flera objekt är en fördel gällande relationsdatabasen.
8.2 Analys av för- och nackdelar gällande NoSQL databaser

Nedan presenteras analysen av resultatet gällande för- och nackdelar för NoSQL databaser.

Tabell 3: För- och nackdelar med NoSQL databaser.

<table>
<thead>
<tr>
<th>Egenskaper</th>
<th>NoSQL databaser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prestanda</td>
<td>Fördel</td>
</tr>
<tr>
<td>Skalbarhet</td>
<td>Fördel</td>
</tr>
<tr>
<td>Pris</td>
<td>Fördel</td>
</tr>
<tr>
<td>Relationshantering</td>
<td>Nackdel</td>
</tr>
<tr>
<td>Dokumentation</td>
<td>Nackdel</td>
</tr>
<tr>
<td>Atomära operationer</td>
<td>Nackdel</td>
</tr>
</tbody>
</table>

Prestanda - NoSQL databaser har hög prestanda på grund av dess denormaliserade datamodell. Document Stores databasen MongoDB hanterar exempelvis relationer mellan objekt genom att skapa ”embebedded objects” där en relation mellan olika objekt ”bakas in” i samma objekt (Leavitt, 2010). Relationer i NoSQL hanteras i vissa fall även genom att direkt länka främmande nycklar med varandra. Anledningen till att NoSQL databaser har hög prestanda är att de överlag exkluderar eller minimerar antalet relationer mellan objekt. Denna struktur innebär att lagring av data blir mindre komplex och därmed går läs- och skrivoperationer snabbare (Han et al., 2011). Att prestanda ses som en fördel för NoSQL databaser är på grund av de presterar mycket bra i stora som små databasstorlekar och att prestandan ökar på grund av den begränsade användningen av relationer.
Analys

Pris – Då NoSQL databaser är opensource är användning av NoSQL databaser gratis. Det tillkommer inte heller några licenskostnader vid användning av NoSQL databaser. Det faktum att NoSQL databaser även kan drivas på mindre kraftfulla maskiner är även en fördel gällande pris då ny teknologi inte nödvändigtvis behöver köpas in. Respondenterna nämner att pris är en klar fördel för NoSQL databaser vid skalning. NoSQL databaser hanterar skalning genom att sammankoppla flera servrar för att få dem att verka som en kraftfull server. Detta är ofta inte möjligt för relationsdatabaser då en nyare och kraftfullare server måste köpas in för att hantera ett ökat dataflöde. Respondenterna säger även att det faktum att NoSQL är Opensource även det är en klar fördel då de inte behöver betala för licenser. Överlag är pris en klar fördel för NoSQL databaser och verifieras både i teori och empiri.
Analys

8.3 Val av databasmodell för malmöntjänst

Utifrån de intervjuer som genomförts med respondent 1 och respondent 2 från företaget Bricknode AB går det att urskilja att egenskaper som pris, prestanda, skalbarhet, tillförlitlighet, tillgänglighet, dokumentation och hantering av atomära operationer är viktiga för valet av databasmodell för en malmöntjänst.

Skalning och hur databasmodellen hanterar stora mängder data är något som särskilt bör beaktas vid val databasmodell för en malmöntjänst menar respondenterna. Enligt Mell & Grance (2011) är skalbarhet en viktig faktor för en malmöntjänst då tjänster lätt skall kunna skalas up och ner i storlek efter kundens behov. Skalbarhet kan därför anses som en särskild viktig aspekt vid val av databasmodell för en malmöntjänst. Att databasmodellen kan hantera stora mängder data är viktigt för en malmöntjänst då mängden data som cirkulerar på internet ökar allt mer (Sakr et al., 2011).

Pris är även en viktig aspekt som bör beaktas. Denna aspekt går att härleda till att Bricknode AB är ett mikroföretag och att de har andra förutsättningar och resurser än vad större aktörer på marknaden har (Qureshi, Kamal, & Wolcott, 2008). Respondenterna säger att de tittar på för- och nackdelar med databaserna innan de gör ett val av databasmodell.

9 Slutsats

Detta kapitel syftar till att med hjälp av delfrågorna svara på huvudfrågan för uppsatsen.

För att svara på huvudfrågan kommer först de delfrågor som identifierats att besvaras.

1. Vilka fördelar samt nackdelar går att urskilja för databasmodellerna relationsdatabaser och NoSQL databaser?

De för- och nackdelar som identifierades angående relationsdatabaser och NoSQL databaser baserades på följande databasegenskaper: Prestanda, Skalbarhet, Pris, Relationshantering, Dokumentation och Atomära operationer. Tabell 4 nedan illustrerar dessa för- samt nackdelar.

<table>
<thead>
<tr>
<th>Egenskaper</th>
<th>NoSQL databaser</th>
<th>Relationsdatabaser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prestanda</td>
<td>Fördel</td>
<td>Nackdel</td>
</tr>
<tr>
<td>Skalbarhet</td>
<td>Fördel</td>
<td>Nackdel</td>
</tr>
<tr>
<td>Pris</td>
<td>Fördel</td>
<td>Nackdel</td>
</tr>
<tr>
<td>Relationshantering</td>
<td>Nackdel</td>
<td>Fördel</td>
</tr>
<tr>
<td>Dokumentation</td>
<td>Nackdel</td>
<td>Fördel</td>
</tr>
<tr>
<td>Atomära operationer</td>
<td>Nackdel</td>
<td>Fördel</td>
</tr>
</tbody>
</table>

2. Vilka faktorer påverkar valet av databasmodell för en molntjänst?

Nu när ovanstående delfrågor är besvarade kan även huvudfrågan besvaras.
• Vilka faktorer bör mikroföretag som utvecklar molntjänster beakta vid val av databasmodell för deras förutsättningar och syfte?

De faktorer som mikroföretag som utvecklar molntjänster bör beakta vid val av databasmodell för deras förutsättningar och syfte är de egenskaper som presenteras i tabell 4:

- Prestanda
- Skalbarhet
- Pris
- Atomära operationer
- Relationshantering
- Dokumentation

De bör dock lägga extra vikt på följande aspekter vid utveckling av en applikation som skall distribuieras som en molntjänst:

- Skalbarhet
- Hantering av stora datamängder

Mikroföretag kan med hjälp av de för- och nackdelar som presenterats i Tabell 4 utvärdera vilken databasmodell som passar deras förutsättningar och syfte. Då syfte och förutsättningar skiljer sig mellan företag är detta en analys som de själva måste genomföra. Även om själva valprocessen av databasmodell inte skiljer sig avsevärt mellan en in-house lösning och en molntjänst får valet av databasmodell konsekvenser för företaget. Då molntjänster har som egenskaper att vara skalbara, tillgängliga och kunna hantera stora mängder data måste även databasmodellen som väljs kunna stödja dessa aspekter (Han et al., 2011). Konsekvenserna av att välja en relationsdatabas är att företaget kommer behöva investera i ny och dyr teknologi för att kunna hantera skalning och ökande mängd data (Connolly & Begg, 2008). Då relationsdatabaser är komplicerade att skala upp och ner innebär detta att företag även måste besitta goda kunskaper inom relationsdatabaser alternativt hämta denna kunskap utanför företaget från exempelvis externta konsulter. Konsekvenser av att välja en NoSQL databas är att företaget får en ny och relativt okänd teknik. Dokumentation och support finns inte i samma mån som för relationsdatabaser vilket innebär att felsökning och utveckling blir svårare. Dock så är NoSQL databaser anpassade för att hantera stora datamängder och kunna skala mycket bra. De konsekvenser som valet av databasmodell medför är även att företaget
Slutsats

anpassar sin applikation till en speciell databasmodell och ett eventuellt byte av databasmodell kan bli en kostsam och komplicerad process om inte rätt val gjorts från början.
10 Diskussion

I detta kapitel kommer metod, tillvägagångssätt, genomförande och framtida arbete att diskuteras.

Att genomföra ostrukturerade intervjuer var även det ett bra val. Då mycket frågor och funderingar uppkom vid prototyputveckling, litteratur och dokument studier var det viktigt att kunna ställa frågor till verksamhetsexperterna på Bricknode AB direkt för att snabbt kunna fortsätta med arbetet. Detta gällde speciellt prototyputvecklingen då frågor behövde ställas när problemen uppkom och när problemen var färskna och aktuella i minnet. Att kunna ställa frågor under relativt ostrukturerade former bidrog till mycket kunskap och även till givande diskussioner inom ämnet. Den ostrukturerade intervjuformen gjorde att verksamhetsexperterna kunde ställa upp när det fanns möjlighet och tid. Denna flexibla arbetsform var nödvändig då de hade arbetsuppgifter på företaget som prioriterades först. Arbetet hade kunnat se annorlunda ut om en mer strukturerad form av intervju hade genomförts. Frågor som uppkom under diskussioner kanske inte hade identifierats och tillgången till verksamhetsexperterna kanske inte hade varit lika stor då möten skulle behöva bokas in för att genomföra dessa intervjuer.
Gällande den litteratur som använts i uppsatsen anser jag att majoriteten av de artiklar och dokument som använts är av hög trovärdighet då de är publicerade verk. Den litteratur som använts för att stödja prototyputveckling är dock inte granskad av forskare och är publicerad av utvecklare som testat sig fram till fungerande lösningar. Dessa dokument och tutorials kan ha en mindre trovärdighet. Jag vill dock påpekta att testning har genomförts på information som dessa dokument och tutorials behandlar och prototyputveckling har verifierat att informationen är korrekt och användbar.

Gällande framtida arbete kan det vara intressant att närmare jämföra de mer tekniska aspekterna av de olika databasmodellerna NoSQL och relationsdatabaser för att få en djupare kunskap främst angående prestanda. Denna studie skulle kunna genomföras med en kvantitativ ansats för att kunna presentera kvantifierbara resultat gällande prestanda, pris och skalbarhet för de olika databasmodellerna. Det kan även vara intressant att genomföra en studie angående vilka konsekvenser valet av en databasmodell får för ett företag på längre sikt.
Källförteckning

Stack Overflow (2012) http://www.stackoverflow.com

Youtube (2012) http://www.youtube.com