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Summary 

This report aims to explore a possible transparent alternative to the black box 

approach of machine learning in identifying a ship’s type from simple movement 

data, consisting of a set of coordinates with timestamps. This is achieved by an 

application that converts the set of coordinates to vectors and assigns them various 

traits, such as turn radius, speed and distance traveled, and then identifying the 

correlation between collections of different values of these traits, called granules, and 

different ship types. The results show a definite connection between certain kinds of 

granules and certain ship types and lay the foundation for building a more well 

defined syntax for ship identification. 
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1 Introduction 

 

Saab Microwave Systems is a developer of software for use with surveillance and 

radar technology. Their products facilitate interpretation and organization of the large 

amounts of data associated with multisensory input, as well as information fusion 

functions needed to consolidate the dissimilar input from several different kinds of 

sensors. One such product called the IBD is currently under development. One of its 

intended features is to be able to describe the type of a ship by the sensory input it 

receives about it. For most ships, this is no problem as their in-built AIS transmitter 

constantly relays data about its bearing, speed, destination and type.  

But in some instances, the only available data on a vessel is where it is at what time; 

coordinates and timestamps. Identifying these is a non-trivial feat, as the movement of 

one boat could conceivably be emulated by any smaller, faster boat. This fact alone 

makes definite identification impossible. It is possible, however, to assign each vessel 

a probability distribution based on how well its attributes compare to those specified 

for various ship types. The problem then changes to specifying interesting attributes 

that different ships tend towards, and creating ways to identify these from the bare 

minimum data. 

Problems of this nature are usually addressed through a field called machine learning, 

where a computer learns to associate certain patterns or parts of patterns with specific 

values. It can, for example, be shown a picture of a sloop and thereafter output high 

values when it is shown a sailboat. The downside is that it may have associated a 

sloop with tall structures and will also output high values when it’s shown a 

lighthouse, or it may have seen only large white shapes and will include clouds in the 

identification. The inherent uncertainty in machine learning makes it tricky to control 

and to teach it the specific patterns that the operators want it to learn. There is a lot of 

data for the computer to pick up on when making comparisons, and too many levels 

of pattern complexity to search through them all.  

This problem is not impossible to overcome. A possible solution is to define a number 

of small patterns beforehand that fit the sets of raw data. These patterns can be as 

simple as the ship going in a straight line for ten minutes, or as complex as a 500 m
2 

oval-shaped spiral. They would then be fitted to the larger movement pattern and 

could be used to describe parts of the vessel’s journey to cluster the interesting 

parameters to a more lucid description. It is this approach that this report will attempt 

to describe, from the identification of interesting behaviour to the description of the 

parameters. 
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2 Background 

 

The identification and description of patterns interests numerous fields and areas of 

research. Data mining, machine learning, cluster analysis, computer vision and related 

fields all rely heavily on the ability to convert raw data to meaningful information 

(Hegland, 2003 p. 6; Jain, 1999a p. 1-2; Jain, 1999b p. 265; Campos, 1998). Its 

applications can be found in areas as diverse as medical diagnosis, traffic control, 

video games and marketing (Jain, 1999a p. 2-3; Kang, 2004; Adriaans, 1996 p. 7-8).  

The IBD or Intelligent Behaviour Detector is a product developed by Saab Microwave 

Systems as a means for interpreting surveillance data, finding interesting patterns and 

behaviour, and notifying relevant parties. These three main areas are further divided 

into subcategories based on the type of sensory input and the objects being observed, 

implemented with a type of entity called modules. 

The architecture of the IBD allows for modules to be added arbitrarily depending on 

the sought feature, such as detecting loitering in people on airport surveillance footage 

or an imminent collision of two approaching vehicles. These modules have access to 

other module output, all sensory input, and the overall database of the IBD 

(Saabgroup, 2009). 

The goal of this report is to provide a method for describing basic aspects of 

movement patterns of ships for use in movement analysis modules. 

2.1 Relevant Fields 

This report will draw on resources from various existing fields for methodology, 

theory and inspiration. This section will give an overview of these fields, with an 

emphasis on how they relate to this report. 

2.1.1 Pattern Recognition 

Pattern Recognition is a broad, vaguely defined field that attempts to find interesting 

correlations between and within sets of data. It spans a number of subfields and is 

primarily considered in light of its applications in other fields, such as computer 

science, physics, neurobiology, psychology, engineering, statistics, mathematics or 

cognitive science (Pal, 2001 p. 2).  

Pattern Recognition attempts to emulate in computers the human ability to make 

accurate distinctions between objects and concepts based on vague and unreliable 

data. As movement analysis deals with highly situational and flexible behaviour, it is 

a prime example of the kind of discrete yet relational data set that makes general 

solutions to the problem of Pattern Recognition so elusive (Jain, 1999a p. 2). 
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2.1.2 Granular Computing 

Granular Computing is an emerging field attempting to consolidate and extrapolate on 

standards for grouping related atomic variables into lower resolution components. It 

builds on the view that human perception and cognition intuitively focus on that level 

of detail in a given system which matches potential, known patterns, and attempts to 

describe these levels in terms of fundamental information granules (Pedrycz, 2007).  

A granule is defined as a meaningful abstraction of data, a pattern that emerges when 

considering a certain level of resolution, but is either lost in noise or in information 

entropy when viewed at a higher or lower resolution respectively. An example is the 

proverbial forest that can’t be seen for the trees. 

Common terms to describe granules are large and small, coarse and fine, low and high 

resolution, low and high granularity. These refer to examining data in large and small 

sets; building on the previous example the forest would be large, coarse or low while 

the trees would be small, fine or high. 

Granules are not universal, but arbitrarily defined for each instance, which gives rise 

to two separate subdisciplines; Granule Construction and Granule Calculation (Yao, 

2000; Pedrycz, 2007). These deal with the identification of atomic descriptors in 

given patterns; and the use of these in describing more complex variations, 

respectively. 

 

2.1.3 Data Mining & Knowledge Discovery in Databases 

The field of Data Mining is concerned with methods for distilling interesting, new 

information from large sets of data (Hegland, 2003 p. 5). The process can be broken 

down into three steps (Fayyad, 1997 p. 102): 

 Normalize, refine or complement the data in a pre-processing stage 

 Identify and extract patterns 

 Analyze the relevance of the results 

Data mining is sometimes considered a subset or a step of a broader subject called 

Knowledge Database Discovery (KDD) (Adriaans, 1996 p. 5; Fayyad, 1997 p. 102), 

in which case its scope is limited to just identifying and extracting patterns. In many 

publications the two are considered synonymous (Adriaans, 1996 p. 5; Hegland, 

2003), but in this report we will use the former definition. 
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3 Aim  

As previously written, pattern recognition is a popular field with a wide variety of 

applications. Substantial research has been done in these areas, especially over the 

past few decades when new business practices and standards, coupled with the rise in 

ubiquity and capability of hardware, has significantly increased the amount of data 

available to commercial and administrative entities, while intuitive comprehension 

has understandably decreased (Adriaans, 1996 p. 2; Olafsson, 2006). Areas like 

cluster analysis employ multiple  parameters to group features into multidimensional 

categories, where computers excel, as arbitrary numbers of dimensions hold a similar 

complexity to them, but humans find it difficult, if not impossible, to visualize 

connections in hyperdimensional space (Höppner, 1999 p. 1; Olafsson, 2006; Fayyad, 

1997 p. 101). 

Focus has therefore been put on Machine Learning, to strip as much of the 

interpretation away from the human aspect and allow autonomous programs to 

interpret the data themselves and output the correlations they find. The benefit of this 

approach is the aforementioned comprehension and speed; computers are much better 

at finding connections between entities with hyperdimensional parameters, and are 

capable of processing far greater sets of data. The disadvantage is the uncertainty of 

the results. Machine learning approaches are good at finding correlations, but a 

similarity in one or more aspects is not inherently interesting, nor is its relevance 

obvious (Fayyad, 1997 p. 102-103; Kodratoff, 2001 p. 15). If the human operator 

cannot understand the connection, the data is little more than additional noise in the 

system.  

There are several ways to deal with this uncertainty. Some approaches consider it a 

part of the recognition criteria to link the correlations to previously explored and 

established patterns (Jain, 1999a p. 3), whereas some limit the scope of the search by 

selecting a suitable subset of dimensions to use for clustering (Fayyad, 1997 p. 101). 

Another approach to addressing the problem is a combination of the two, as described 

in works on Granular Computing, namely breaking down the description of types of 

patterns into so called granules, which will both limit the number of dimensions and 

make them more interesting to an observer.  

A similar method to detect anomalies in ship movements was proposed by Ekman and 

Holst (Ekman, 2003) in their SICS evaluation for SaabTech. In their report, they 

propose that a set of basic sensory input about a ship can be used in conjunction with 

adjacent ships, statistics of area and changes over time to satisfactorily describe 

interesting, anomalous behaviour. 

This report aims to explore Ekman and Holst’s proposition by identifying the granules 

required for describing the defining aspects of movement patterns utilized by different 

ship types. We will concentrate on a level of granularity that minimizes the number of 

dimensions needed, but is fine enough to not miss interesting behaviour. We will also 

assume that the data we have to draw from will be limited to a set of coordinates with 

related timestamps. 
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3.1 Objectives 

3.1.1 Implementation 

The purpose of the implementation is to provide a way to define granules, as well as 

an interface for matching granules to ship movements from groups of ships of similar 

type. As the result of this report is meant to be incorporated into the IBD at Saab 

Microwave Technologies, the application will need to be built using its interface, as 

well as access its databases of stored ship movements. It will utilize the existing 

graphical interface of the IBD and will be written in Java. 

The implementation will be divided into several components. The three main 

components will be: 

 Ship type group data 

 Granule Library 

 Matching algorithm 

 

Ship type group data 

The ship type group data refers to the data that will be collected from the IBD AIS 

database, and will be sorted in several groups based on type. The groups are selected 

from the AIS registry based on uniqueness of movement patterns and prevalence in 

the Gothenburg port area. The groups selected are: 

 Fishing ships 

 Cargo ships 

 Passenger ships 

 Pilot ships 

 Pleasure / private ships 

 Sailing ships 

 Rescue ships 

Fishing ships have distinct movement patterns that are usually centered on small areas 

with many sharp turns and short, jerky movements. This behaviour is called trawling, 

where the boats attempt to cover as much of a fish-rich area as possible. 

Cargo ships are characterized by large, slow movements with long acceleration 

stretches, few, wide turns and generally stable bearings. This behaviour is indicative 

of high fuel consumption in maneuver adjustments. 

Passenger ships keep within a defined area, going back and forth with few deviations 

between two or more points. Their repetitive movement patterns are easily identified. 

Pilot ships move much like fishing ships, but within a smaller area. 

Pleasure / private ships are any non-commercial ships with an AIS tracker. They do 

not follow any standardized patterns but are useful as a comparison since they 

generally exhibit certain capabilities such as speed and high turn rate. 

Sailing ships have some limitations that make them interesting as a comparison to the 

other groups.  
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Rescue ships move similarly to pilot ships  and fishing ships, going long or small 

distances before occupying an area for a certain amount of time. 

Ship data of the selected type will be extracted from the IBD AIS database at SAAB 

using SQL queries and stored in custom data types 

 

Granule Library 

The Granule Library stores the definitions of granules, defined in a way that allows 

them to be matched to the format used to store the movement data. The format must 

therefore be designed along with the Granule Library, or with the interface of it in 

mind.  

 

 

Matching Algorithm 

The matching algorithm or functions will find occurrences of granules described in 

the Granule Library in the ship data, and provide feedback regarding occurrence of 

granules in a ship’s movements, as well as metadata collected during the comparison. 

 

Initial granules 

The possible movement range of any given ship is significantly limited and well 

described. The possible data of a ship at any time, given a set of positions with 

timestamps, can be described with two vectors; its position and its velocity vector 

given its previous position. These can be further extended over longer spans to 

calculate for each time interval:  

 Position 

 Speed 

 Acceleration 

 Direction 

 Rate of Turn 

As such, detecting certain thresholds of these variables would be prime candidates for 

atomicity; the highest level of granularity. 

3.1.2 Iteration 

Once the implementation is complete we must interpret the data and use it to find 

better descriptions for each group.  

 

3.2 Method 

It is difficult to prove understandability of a system, but it is possible to show how 

well different ship types can be described by the proposed granules. The methodology 

used will be Correlational as described in (Ellis, 2009 p. 327), as the focus is to find a 

correlation between more or less basic aspects of ship movements and their type 

classification. In a Correlational method it is necessary to have both a solid 
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framework with which to describe the data you wish to correlate, and to know what 

signs to look for.  

In 3.2.1 Implementation we describe the mechanism we will use to both extract the 

data and to describe it in relation to the ship types. In 3.2.2 Iteration we use this data 

to create better descriptions and refine our searches. 

3.2.1 Implementation 

The implementation will serve to illustrate the correlation between granules and 

different kinds of ship. By matching granules to the movement patterns of groups of 

ships, we can extract data of granule usage, and compare the prevalence. The 

occurrence of a granule in one group compared to others would indicate the degree to 

which it can be used for identification, called the accuracy of the granule. 

Further data that can be drawn from the matching algorithm is the span of variable 

variation in granule matches. If a granule finds many matches in a given ship’s 

movement based on one criterion, several other criteria may be overlooked that, in 

conjunction with the first, could increase the granule’s accuracy. E.g.: both fishing 

boats and ferries make many turns based on Rate of Turn criteria, but ferries slow to a 

stop beforehand based on Speed, while fishing boats keep a constant Speed through 

all their turns. 

The important aspects of the implementation are those that can provide meaningful 

feedback of the granule matches, as these are key to the next step in the verification: 

the iteration.  

3.2.2 Iteration 

Each time we extract and analyze the data from the granule matches, we will use it to 

create new granules or modify existing ones, based on the characteristics of the ones 

that are most uniquely matched to the groups. That is to say, if a granule is shown to 

occur more often for a specific group of ships we can spawn a number of new 

granules based on it with slightly altered parameters and compare in the next iteration 

if their accuracy for a specific group has changed. This way the granule library will 

iteratively evolve to more uniquely describe ships of different types. 

The granule library and each of the more accurate - or otherwise interesting - granules 

will be evaluated each iteration.  

The granules will be evaluated on their accuracy, which is a measure of its highest 

percentile in relative distribution of group matches. A granule with 20, 200 and 200 

matches for groups A, B and C respectively will show a ~4.8%, ~48% and ~48% 

accuracy. The advantage of this metric as opposed to measuring the difference 

between the highest and second highest accuracy is that it allows for analysis of 

granules that have a high accuracy in two groups, which could lead to the discovery of 

defining aspects in the group with the lowest accuracy (group A in the example given 

above).  

The library will be evaluated on its ability to identify classes of ships, and the 

parameters that are unique to these.  
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4 Implementation 

4.1 The produced system 

4.1.1 Object overview 

The application is comprised of three main types of objects. Below is a summary of 

their names and overall functionality, with more detailed descriptions in later sections. 

 Management objects 

 Utility objects 

 Granules and granule utilities 

The management objects are responsible for retrieving and collating the movement 

data from the database, and facilitating the usage of granules. They provide the 

framework for the granules to work in, and have been explicitly constructed 

separately to make the design of granules as modular as possible. These include Ship, 

ShipGroup, ShipHandler, DatabaseConnector, DatabaseRetriever and Filemanager. 

The utility objects are the classes that store movement data and provide related 

functionality. These are more closely tied to the design of the granules, as they are 

used as intermediary objects between them and the management objects. The 

members are ShipType, DataPoint and ShipVector. 

The granules and granule utilities perform searches and calculations on ShipVectors, 

and return data regarding occurrence and various locally defined parameters. Each 

granule extends the abstract base class Granule which provides the interface for 

accessing the granules. The classes included under this definition are Granule, 

DistanceGranule, MeanStatsGranule, RoTGranule, SpeedGranule, Demarcation, 

Statistics, Turn and TurnFinder.  

1

0..*

1

*

ShipHandler

ShipGroup

ShipShipVector

11..*

Granule
0..1 0..*

0..1

0..*

 

4-1 Management, Utility and Granule objects 
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4.1.2 Data loading and interpretation 

The program starts with retrieving movement data from an external source and 

converting it to instances of the PointData class. This holds the timestamp, the 

longitude and latitude, and the ID and type of the ship. The data is retrieved in one of 

two ways: 

 From an SQL database via java-supported query functions 

 Through locally defined .pdts files that store LinkedLists of PointData 

The former uses the DatabaseConnector and DatabaseRetriever classes to connect to a 

PostGIS database. Queries retrieve coordinates, timestamps and ID in the requested 

table and create a new instance of PointData for each entry. If the database is absent 

and no connection is made, the program attempts to access four .pdts files located in 

the project folder, which are loaded one by one and cast to LinkedLists with 

PointData that was previously retrieved from queries. This latter option is to allow the 

program to execute on computers without the SQL database. 

These PointData are given to the singleton ShipHandler, that holds four instances of 

the class ShipGroups. ShipHandler is responsible for distributing PointData and 

Granules to each of the four ShipGroups, and to collect return data from the granules. 

Each ShipGroup corresponds to a specific ship type and hold collections of Ships of 

their respective type. When a DataPoint is given to the ShipHandler, it checks its type 

and sends it on to the proper ShipGroup, which either adds it to the Ship with the 

corresponding ID, or creates a new Ship with that ID. 

As mentioned in 3.1.1 the application required that the format used to store movement 

data was compatible with, or usable by, the granules. The ShipVector class was 

created to accomplish this, which extrapolates on DataPoints to provide a common 

representation of basic navigational shifts, such as changes in direction and speed. 

When a Ship is given a PointData, it stores it in a list in wait for a call to the 

createShipVectors function, which converts the stored PointData to a list of 

ShipVectors that represent the routes of the ship. 

This conversion from PointData to ShipVector is complicated by erroneous entries in 

the AIS database, and the realities of ship behaviour. Many ships keep transmitting 

position data even at rest, which results in several vectors with no variation except for 

time. The AIS system also has a default position outside of the geographic coordinate 

system, located beyond the geographic North Pole, that is used for faulty signals, and 

is randomly distributed among the regular entries. Additionally, some ships leave the 

range of the AIS scan and return later, creating large gaps in the sequence of data 

points in both time and distance. 

To avoid these anomalies, Ship discards those PointData that are too close to the 

previous ones, as well as those that are out of range. It also inserts breaks in the 

movement stretches where too much time has passed, so that a Ship might contain a 

number of stretches. 
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Database

Retriever

Database

Connector

Filemanager

Main

AIS 

Database

ShipHandler

.pdts

ShipGroup Ship

 

4-2 Data points being transferred from external source to Ships 

 

4.1.3 Granules 

Granules are inherited from the abstract base class Granule. They are defined and 

added to the ShipHandler singleton in the Main class. The ShipHandler creates a copy 

with the same settings for each of the four ShipGroups and pass them on to them. The 

ShipGroups hold the given copy as a master copy and create additional copies for 

each Ship they contain. The Ships hold a collection of granules which, when 

requested, they provide with their ShipVector collection in the Granule function 

MatchShipRoute. The granules in turn perform their algorithms on this movement 

data and save the results. When prompted, the Ships return their lists of granules to 

their ShipGroup, where they are fed to their respective master copy using the Granule 

function MergeGranule. This function merges the results from all granules of their 

type and stores statistical and meta data. 

Most Granules use the utility class Statistics to calculate one or more of three kinds of 

averages; the mean, median and mode. Further discussion of these follows later in the 

text. 
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MeanStatsGranule 

The MeanStatsGranule collects elementary statistics from the sets of ShipVectors, 

regarding average length, acceleration, deceleration, rate of turn and time per vector. 

The results of this makes it easier to set the parameters and thresholds for further 

granules, as they reveal the approximate spans that the ships act in. 

 

RoTGranule 

The RoTGranule uses the utility TurnFinder to extract the turns in the movement 

patterns based on the given parameters RoTThreshold and RoTSensitivity. These 

define the minimum total size of a turn in radians and the minimum size of a turn 

between ShipVectors divided by their length, respectively, for the stretch to be 

counted as a turn. It then collects statistics regarding these turns; their length, size, 

duration, occurrence, area covered and how far apart each turn is from the others. 

This Granule is acutely sensitive to parameter changes and requires a great deal of 

calibration to provide the desired results. If the RoTSensitivity is set too low it might 

register uninteresting standard bearing adjustments, if it is set too high it might 

exclude long, gradual turns. RoTThreshold is equally delicate, too high values will 

only register long, gradual turns and gloss over sharp, extreme ones, whereas a low 

value will potentially sum several turns into one, where they might have been 

interesting individually. 

The parameters set will define what kind of turns will be found, and thus what kind of 

ships it will be most applicable to. It is in finding these desired values that the output 

of other granules like the MeanStatsGranule can be useful. 

 

DistanceGranule 

The DistanceGranule finds sets of ShipVectors that keep within a certain distance of 

one another, while fulfilling criteria of exceeding a distance travelled treshold, not 

exceeding a certain time limit, both or neither, depending on the parameters set. 

This allows for finding movements that are contained in a small area but might still 

have travelled a long way or stayed in one place for a long time. This is behaviour that 

can be indicative of specialized ships that perform location-specific tasks as opposed 

to shipping over large areas. 

Like with the RoTGranule, the parameters are sensitive and will require calibration to 

function properly, not least to ascertain what size areas to investigate or how long the 

interesting tasks might take to complete.  
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4.1.4 Granule utilities 

The granule utilities are classes that hold data and functions specific to one ore more 

granules.  

 

Turn 

The Turn class represents the stretch of ShipVectors that together constitute a turn. It 

provides data regarding the turn’s size, distance travelled, distance from the start of 

the turn to the end, and the turn’s duration. The class can calculate this data in the 

Calc function after a start and end ShipVector have been set. 

 

TurnFinder 

As mentioned in RoTGranule, the TurnFinder locates and returns the Turns in a set of 

ShipVectors. It does this by checking for stretches of ShipVectors whose Rate of Turn 

exceeds the specified sensitivity and then summarizing it to see if the total exceeds the 

specified threshold.  

 

Demarcation 

Demarcation is a simple holding class for the data which the DistanceGranule looks 

for. It stores a Start and an End ShipVector describing the relevant stretch of 

movement, along with the radius of the demarcated area, the distance travelled within 

it and the time spent there. 

 

Statistics 

The Statistics class provides functionality for finding averages in collections of float 

values or integers. The three available averages are the arithmetic mean, the median 

and the mode. 

Mean 

The arithmetic mean is the summarized value of a collection of elements, divided by 

the size of the collection.  

 

Median 

The median is the middlemost element in an ordered collection. 

 

Mode 

The mode is the most represented value in a collection. This is a simple calculation 

with integers, but for floating point values, each value is most often unique and 

simply counting occurrences would be ineffectual. Instead, the Statistics class 

calculates the most represented value incrementally per decimal, narrowing down the 

collection to a defined precision and returning one of its values.  
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All three of these representations of the average have disadvantages as well as 

benefits. The arithmetic mean works best when the values do not differ much from 

one another, whereas extreme values on either end can skew results. The median 

works best when the value distribution is evenly spread out over all elements, but it 

can also give irrelevant data if the values are too extreme or centered to either end. 

The mode gives a usable metric to compare the other two against by showing the most 

common value, which can indicate if the collection is skewed in one direction or the 

other. But mode is per definition uncertain, since several different values can all be 

equally represented, and the result might just be one of many. 

In providing all three, more meaningful analysis is possible, giving the option to 

discard certain data if it is evident that it falls prey to outliers or skewed distributions. 

 

4.2 Measurements 

 

We’ve tested variations of the parameters for the RoTGranules’ and 

DistanceGranules’ inputs to find the combinations that yield the highest number of 

occurrences for each ship type. The results are presented below. All units are arbitrary 

but internally consistent regarding the comparison between the ships. 

 

4.2.1 Rate of Turn Granule 

The charts represent the Rate of Turn Sensitivity values for: 

1. Fishing ships 

2. Cargo ships 

3. Pilot ships 

4. Passenger ships 

5. Pleasure / private ships 

6. Sailing ships 

7. Rescue ships 

The Rate of Turn Sum Threshold value tested is displayed beneath each chart. 
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4-3 Rate of Turn Sum Threshold:  0.1 

 

 

4-4 Rate of Turn Sum Threshold: 2.0 
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4-5 Rate of Turn Sum Threshold: 3.0 

 

 

4-6 Rate of Turn Sum Threshold: 4.0 
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4-7 Rate of Turn Sum Threshold: 5.0 
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4.2.2 Distance Granule 

The DistanceGranule was tested on the mean distance travelled and mean time 

travelled per Demarcation, with the parameters set to the values shown to yield the 

most occurrences. The numbering of ship types is the same as above. 

 

 

4-8 Mean distance travelled. Demarcation Radius: 0.15, Distance Threshold: 0.11 

 

 

4-9 Mean time travelled. Demarcation Radius: 0.15, Distance Threshold: 0.11 
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4-10 Mean distance travelled. Demarcation Radius: 0.3, Distance Threshold: 0.11 

 

 

4-11 Mean time travelled. Demarcation Radius: 0.3, Distance Threshold: 0.11 
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4-12 Mean distance travelled. Demarcation Radius: 0.3, Distance Threshold: 0.4 

 

 

4-13 Mean time travelled. Demarcation Radius: 0.3, Distance Threshold: 0.4 

 

 

4.3 Measurement analysis 

 

4.3.1 Rate of Turn Granule 

What’s most striking about the RoTGranule results is that not all optimal sensitivity 

values are zero. Since it represents the lowest value needed for a  turn to count, the 

lowest possible value ought to be the most represented, but instead we find that for the 

smallest turns (e.g. threshold values) the sensitivity levels are quite high for certain 

ships. The higher the sensitivity, the more a big turn can be broken down into further, 
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smaller turns and thus increasing the occurrence of the granule for ship types that 

favor small, jerky movements over large, cumulative ones. 

The cargo ship category has predictably the lowest sensitivity values on average, 

having the highest prevalence of long turns and not many small ones. The passenger 

ships are on the other hand characterised by their straight courses that terminate in an 

abrupt 180° turn, and therefore have the highest values in 2.0 and 3.0 RoTSum 

Threshold groups. 

 

4-14 Course for a cargo ship with marked turns. The purple areas denote a turn, and the green 

and red denote the start and end of one respectively. 
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4-15 Course for a passenger ship. Note the purple end points, denoting very isolated turns 

 

Fishing, pilot and rescue ships display varied behaviour, travelling long, straight 

stretches and then covering an area with smaller, sharper turns. This blend of high and 

low sensitivity behaviour can be seen in the initially high values that shrink steadily as 

the threshold is increased. 

 

 

4-16 Course for a fishing ship with marked turns, sensitivity 9.5 and threshold 0.1. Stand alone 

red vectors indicate a very small turn 
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4-17 The same ship as 4-11, but with a sensitivity of 3.2. Note that the number of turns are fewer, 

but much longer on average. 

 

Pleasure / private ships are by nature erratic and unpredictable. This category consists 

of any ship large enough to require an AIS transmitter, but without a specified 

commercial purpose. There is no consistent behaviour among these ships as they have 

no consistent agenda, but the higher speeds and greater rates of turn attainable by 

them in contrast to typically larger, bulkier ships like Cargo ships makes it possible to 

differentiate them in that respect. 

 

RoTGranule  

Sensitivity 2.0  

Threshold 0.2 

Pleasure Ships Cargo Ships 

Mean size of turns 2.97 0.72 

Mean distance travelled 

per turn 
0.076 0.035 

Mean distance travelled 

between turns 
0.029 0.32 

Mean duration of turns 3474720 903655 

4-18 Comparison of mean stats between Pleasure ships and Cargo ships. Note the wider, longer 

turns of the Pleasure ships, and the greater distance travelled between turns of the Cargo ships 
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4.3.2 Distance Granule 

As the Distance Granule finds instances where the ships have travelled a certain 

length in a small area it is not surprising to see that the Cargo ships once more have 

the lowest values. But a more interesting observation is that of the relative difference 

between the length and time of a Demarcation. In 4-12 and 4-13 we see a major 

difference in the rank of the Fishing ships’ time, as opposed to its rank in distance, 

indicating that it spends longer time in small areas than the other ships, easily 

explainable by its trawling behaviour.  

The Pilot ships exhibit a similar behaviour, also ranking very high on the time scales. 

As the pilot ships are area dependent like the Fishing ships, they linger in one area 

while performing their job. 
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5 Conclusions 

 

5.1 Synopsis 

In order to find unique characteristics of ship movements that could be described in an 

intuitive way, we created an application that takes point data from an AIS tracking 

system and converts them to less granular abstractions. The abstractions take the form 

of ShipVectors and Granules; algorithms that create vector data from the GPS signals 

and assigns each vector traits and parameters. These traits were then correlated and 

compared to find patterns with transparent parameters that could yield an explainable 

connection between the ship types and the traits. The output of the application did 

point towards several interesting identifiers, but it is still in the form of data that needs 

to be further interpreted by the user. 

5.2 Discussion 

The task of identifying ships based solely on limited information about their 

movements is problematic for a number of reasons. The most obvious one is that 

ships are controlled by people rather than predictable algorithms, and are subject to 

chaotic influences such as traffic, weather, bureaucracy, business or personal agendas.  

As such, one must keep in mind that aberrations will be plentiful and unpredictable, 

and to consider the data in a larger perspective. Large sample groups are key in 

finding common trends, and the data used in this project was perhaps not sufficient 

for an in-depth analysis.  

Abstracting the point data from intermittent reported GPS signals to a smooth, 

uniform description of a ship’s course is itself an issue as well. One must be careful in 

selecting and discarding data, and choosing a suitable level of abstraction. Many 

entries in the initial database were worthless; some ships had kept reporting long after 

anchoring while others had left the covered area only to reappear days later, wreaking 

havoc on the time values of the vectors. Further ship entries were far too short or 

broken to be of any use and skewed the averages heavily. The majority of the work 

gone into this project was spent on gradually improving the accuracy of the 

abstraction by locating and analyzing these errors and incompatibilities, and rectifying 

them or changing the system to accomodate them. 

In this process it is important to avoid, but hard to notice, confirmation bias. When 

correcting an error or changing one’s approach to allow it in the system, it is possible 

to change the application into one that provides the desired output. As this project 

began with assumptions regarding ship movements and behaviours, there has always 

been the risk of designing solutions that would accomodate that kind of result, but 

discard others. There is no simple fix for this problem, and without the feature to 

automatically test the efficacy of the application on individual ships there are no 

quantifiable certainties. The output of the application must be considered in light of 

this.  

Nevertheless, it has provided a general framework and certain indicators for 

characterising ship movements, such as the particulars for frequency, size and 

duration of turns, as per the Correlational model described in (Ellis, 2009 p. 327), 

where we attempt to find a predictive relationship between the various factors of ship 

movement and ship type. 
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5.3 Future work 

Larger sample groups over longer times and larger areas could smooth out the errors 

in the abstraction, and provide more accurate statistics. More representation from the 

smaller ship groups could improve the comparisons inbetween the ships.  

Several projects could be imagined with this work as their base. Further effort could 

be put into applying the data to individual ships and develop the granules to provide 

percentages and likelihood that a certain ship belongs to a certain type. This could be 

a stepping stone towards an application that detects these kinds of behaviours in real 

time for a number of ships in or around a port area or other interesting points of 

surveillance. 

This particular brand of detection is possible to carry over to other types of vehicles, 

such as cars and even airplanes. Ship detection has the advantage of dealing with 

gradual, comparatively slow changes over time whereas cars and airplanes are capable 

of much more discrete manoeuvring and also contend with a third dimension, but 

these problems can be overcome by finer measurements and more frequent updates. 

In a similar vein, any 2D AI system could benefit from this approach, in games or 

other simulations, to find patterns. The traits that are investigated are inherent in any 

2D movement and can find distinct patterns wherever a similar system is used. 

The application lends itself well towards genetic algorithms, for finding optimal 

parameter inputs and interesting behaviour. A simple version of this was used in the 

final stages to test the granules, but was very time consuming and not powerful 

enough to find more than the most rudimentary combinations. 

With more conclusive results, the data could be used to create a language for 

describing ship movements, using collections of several behaviours as single, 

syntactic units. This language could be used not only for identifying ship types in real 

life scenarios, but for guiding simulated ships in virtual environments. The same 

principles used to find notable characteristics could be used to define limitations and 

typical manoeuvres.  
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