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Abstract

This report is a survey of monitoring and event detection in distributed fault-tolerant
real-time systems, as used in primarily active database systems, for testing and debugging
purposes. It contains a brief overview of monitoring in general, with examples of how software
systems can be instrumented in a distributed environment, and of the active database area
with additional constraints of real-time discussed. The main part is a survey of event
monitoring mostly taken from the active database area with additional discussion concerning
distribution and fault-tolerance. Similarities between testing and debugging distributed
real-time systems are described.
keywords: event monitoring, distribution, real-time, active databases, testing, debugging,
software engineering

*This work was supported by NUTEK(The Swedish National Board for Industrial and Technical Development),
as part of the Distributed Reconfigurable Real-Time Database Systems Project in the Embedded Systems Program.



Contents

1 Introduction

1.1 Basic Definitions . . .. ... ... ... ... ... . ...
1.1.1 Real-timesystem . . . ......................... ... ..
1.1.2 Fault Tolerance . . . . . . . . ... . .o i
1.1.3 Distribution . . . . .. ... L

12 BasicIssues . . .. ... ... ...
1.2.1 Software Engineering Issues . . . . . . . ... ...

13 Overview . .. .. .. .. .. e e e e e e e
2 Monitoring
2.1 Hardware, Software and Hybrid Monitors . . . . ... ... ... ... .. ... ..
2.2 Probe-effect . . .. .. ... ..
23 EventLog . . . .. ...
24 Instrumentation. . . ... ... ... ... ...
2.4.1 INCAS Distributed Monitoring Facility . . ... ... ............
2.4.2 Monitoring using Coprocessors . . . . . . .. ... .. ... ..
2.4.3 Instrumentation of Object-Oriented Database Management Systems . . . .
3 Event Monitoring
3.1 Event Specification . . . . .. ... ...
3.1.1 Basic Event Definitions . . . .. .. ... .. ... .. .. .. ... .....
3.1.2 Primitive Events . . . . . .. ... ... ...
3.1.3 Basic Definitions of Composite Events . . . . . ... ... .. ... .....
3.14 Composite Events . . . ... ... ... ... ... .. ... ...
3.2 Event Detection and Composition . .. ........................
3.2.1 Time of Occurrence and Time of Detection . . . ... ............
3.2.2 Stable Events in Distributed Systems . . .. ... .. .. ..........
3.2.3 Event Monitoring and Transaction Boundaries . ... ............
3.24 Event Parameter Contexts. . . . .. ... .. ... ... ... ... .. ...
3.3 Expressiveness vs Efficiency and Predictability . .. .................
3.3.1 A Comparison of Internal Representations . . . . . .. .. .. ........
3.3.2 Event Criticality . ... ... ..... ... .. ... ...
4 Debugging
4.1 Testing vs Debugging Activities . . . . .. ... ... ... .. ... ... ... ...
4.2 Aspects of traditional debugging . . . ... ... ... ... .. ... .. ... ...
4.2.1 Functionality of Logical Debuggers . . . . . ... ... .. ... ... ....
4.2.2 Functionality of Performance Debuggers . . . . . ... ... .........
4.2.3 Functionality of Timeliness Debuggers . . . . ... .. ... ......... '
4.3 Control and Observation for Logical Debugging Purposes . . .. ..........
4.3.1 On-linevs Off-line Debugging . . . . .. ... ... ... .. ... ... ...
4.3.2 Replaying Execution . . . . .. ... ..... ... ... ... .. ... ...
5 Summary
5.1 Event Monitoring . . . . . . ... ... ..
5.1.1 Traditional Steps of Monitoring . . . . . ... ... ... ... ..... ...
5.1.2 Monitor Implementations . ... ... .. ... ... ... .. ... .. ...
5.1.3 Event Specification . . . . . ... ... ... ..
5.14 Event Detection and Composition . .. ... ... ..............
5.1.5 Expressiveness vs Efficiency and Predictability of monitoring . . . . . . . .
5.2 Debugging . . . .. ... . .

O O OT O 0O DN = =i el

O O 0oLt ~IT,



5.3 Future Work

ii



-

List of Figures

Primitive Event Taxonomyin Snoop . . .. ... .. ... ... ... ........ 14

Primitive Event Taxonomy in SAMOS . . . ... ... ... ... .. ........ 15
Primitive Event Taxonomy in REACH . . . ... ... ... . ............ 15
Resulting Primitive Event Taxonomy . . . . .. ... ... .. ............ 16

List of Tables

Qualitative Comparison of internal representation of composite events . . . . . . . 24

iii



1 Introduction

Richard Snodgrass starts off his article [Sno88]
with the following definition:

”Monitoring is the extraction of dy-
namic information concerning a com-
putational process, as that process ex-
ecutes. This definition encompasses
aspects of observation, measurement,
and testing. Much has been writ-
ten about monitoring uniprocessor sys-
tems, and the general techniques for
tracing and sampling are well estab-
lished.

scale well to monitoring complex sys-

These approaches do not

tems, which include large uniproces-
sors, tightly coupled multiprocessor
systems, and [distributed systems].”

Monitoring becomes an interesting issue in
complex systems as the problem of observing
a complex system from within the system will
cause an intrusion in the system and affect the
system behavior. This is referred to as the
probe-effect (see section 2.2) and is important to
avoid in real-time systems. For example, if test-
ing of a real-time system requires introduction of
extra code and hardware, causing a probe-effect
during testing, this extra code and hardware
cannot be removed in the operational system be-
cause the system would behave differently and
effectively invalidate many of the tests. In non
real-time systems where there are no deadlines,
the extra code and hardware can be removed as
long as it does not affect the logical behavior of
the system. Proper monitoring for testing must
thus be considered in the design of a real-time
system.

Complex real-time systems need to monitor
tasks to be able to schedule them so that they
will meet their dead-lines. Fault-tolerant sys-
tems need monitoring to observe whether or not
a component fails so that the system can handle
the failure without exhibiting a failure outside

the system. All safety-critical real-time systems
must include fault-tolerance. In (re)active da-
tabase systems, monitoring of events is manda-
tory and needed for handling rules in an efficient
manner. Software tools for testing and debug-
ging need to be able to observe the state of the
system or continuous changes in the system.

1.1 Basic Definitions

Basic definitions concerning real-time systems,
fault-tolerance, distribution, and active databa-
ses are presented as a brief guide the pinpointing
the background of this survey.

1.1.1 Real-time system

The need for real-time systems is increasing be-
cause some applications — e.g., safety-critical
applications such as aircraft control and nuclear
plant control, and non-safety-critical systems
such as multimedia applications — need com-
puter systems that are not only logically correct
but will produce responses in a timely (and pre-
dictable) manner. There are several definitions
of real-time systems such as [KV94]:

”The computer system must react
to stimuli from the controlled object
(or the operator) within time intervals
dictated by its environment.”

or [You82]:

”any information processing activ-
ity or system which has to respond
to externally-generated input stimuli
within a finite and specified period”

In [BW89] the latter definition is considered to
be too broad and systems are divided into hard
and soft real-time systems. In a hard real-time
system it is absolutely imperative that a task
finishes before its deadline. In a soft real-time
system a missed deadline will not result in a
catastrophic failure and it may be useful to com-
plete the task even if the deadline was missed. In



addition a firm real-time system can be consid-
ered as a special case of a soft real-time system
where there is no value in executing a task has
no value after its deadline.

Best-effort systems are normally thought of
as soft real-time systems, but they are more
correctly placed in between hard and soft sys-
tems. A best-effort real-time system will be able
to handle all hard deadlines and most of the soft
deadlines during normal load. During peak load
the system will degrade gracefully and only the
hard deadlines are guaranteed [KV94].

Further classification of hard real-time sys-
tems is fail-safe vs fail-operational [KV94]. In
a fail-safe system one or more safe states can be
accessed in case of a system failure. Applica-
tions in which such safe states cannot be iden-
tified must be fail-operational, i.e., they have to
provide a minimum level of service even in the
case of faults occurring.

Real-time systems are further divided into time-
triggered systems — i.e., systems which execute
in lock step and react to external events at pre-
specified instants, and event-triggered systems
— i.e., systems which react to significant exter-
nal events immediately [KV94].

Event Showers Event triggered real-time
systems are prone to event showers [KV94, p.
426, p. 456]). These may occur in situations of
exception (fire, leakage, explosion, crash, etc),
where a number of nodes provide alarm infor-
mation, some of it redundant or repeated, some
of it multiplied by propagation, although often
concerning a single cause. In a ”pure” event
triggered system, where no events are trans-
formed nor constrained before they are passed
into the system, this may cause an overload in
the system.

No system can handle a completely random
load. Aperiodic events, i.e., events whose inter-
arrival time is undetermined, are not tractable

deterministically. Sporadic events are a way of
constraining the environment so that the events
will have a minimum interarrival time, i.e., they
are tractable [K'V94].

Furthermore, the subsequent event generation
can be predicted to a significant extent when an
alarm occurs, i.e, most events following a first
alarm are predictable rather than chance events.
Rules can be created by the designer [KV94]: i)
to compact successive instantiations (repeated
events) of the same alarm at the representatives
— i.e., an internal entity that acts on or ob-
serves a real-world object [KV94]; ii) to discard
redundant events from different sources, either
at the representatives or upon arrival at the
node; iii) to prepare communication and com-
puting resources for the forthcoming shower.

Additional engineering measures can further
improve the event handling capability. These
have to do with load or flow control, concerned
with regulating the flow of data from periphery
(representatives) to the nucleus of the system
(node). For example, if the real world events are
bursty the transmission from the representative
to the nodes can be smoothed, by spacing them
by the equivalent of an average rate [KV94] —
also known as transforming aperiodic events into
sporadic events.

1.1.2 Fault Tolerance

Two important hypotheses must be postulated
about the environment since a computer sys-
tem has a finite amount of resources in terms
of processing capacity, available memory, I/0
ports etc, all of which can fail. These hypothe-
ses are the Load Hypothesis and Fault Hypothesis
[KV94].

The Load Hypothesis characterizes the peak
load in terms of maximum rate of — or mini-
mum time interval between — events. Hard and
best-effort real-time systems must be designed
to handle peak loads.

The Fault Hypothesis characterizes the types



and frequency of anticipated faults. In a worst
case scenario in a dependable hard or best-effort
real-time system, the system must be able to
handle peak load at the same time as the max-
imum number of faults occur. An example of a
common part of the fault hypothesis is the sin-
gle failure assumption, i.e., no error will occur
while trying to handle another error — including
recovering from the error, repairing and reinte-
grating the failed component.

As hardware occasionally fails to operate, and
design faults are impossible to avoid, fault-
tolerant software has to be built. However,
noone has so far been able to find, nor is it
likely that anyone will find, a software engi-
neering method for the development of complex
computer systems which will guarantee that de-
sign faults are not introduced. A fault-tolerant
system needs redundancy in space and time to
be able to handle faults. In software this means

the addition of extra code.

There are two strategies for making software
fault-tolerant. Omne approach is active fault-
tolerance [KV94] — the extra fault-tolerant code
is always executing whether or not errors occur.
It is also known as static fault-tolerance [BW89]
— the behavior of the software does not change
because an error occurs. The main technique
is called N-modular redundancy [BW89, KV94].
The basic idea behind N-modular redundancy
is that separate modules are doing the same
work and the results are compared by a voter
[BW8Y]. If m modules are allowed to fail then
m+1 modules are needed if they exhibit the fail-
silent property, i.e., the voter will not receive
result from any of the faulty modules. Further,
2m 41 modules are needed to mask the m arbi-
trary failures, i.e., the voter takes the majority.
Finally, 3m + 1 modules are needed to be able
to detect which modules failed.

The other approach is passive fault-tolerance
[KV94] (as opposed to active), because the error

handling is only invoked whenever an error oc-
curs. It is also known as dynamic fault-tolerance
[BW89] (as opposed to static), because the be-
havior of the software changes when an error
occurs, The main techniques are backward and
forward error recovery in which the system re-
covers from an error when it is detected either by
rolling back to a safe (saved) state or by rolling
forward to an anticipated safe state.

The use of active — or static — fault-
tolerance is the preferred method in hard real-
time systems because it does not require any
extra time to handle an error [KV94]. Instead
extra hardware and software is required. Passive
— or dynamic — fault-tolerance will always cost
extra time which must be included in the worst-
case scenario when scheduling tasks. The major
problem with passive fault-tolerance is that this
extra cost in time may make scheduling too pes-
simistic and result in unnecessarily low resource
usage (unless some tasks may be discarded as in
a soft real-time system).

In passive fault-tolerance the need for moni-
toring is intuitive, i.e., if an error occurs then
perform recovery. For example, if an actuator
is connected to fail-silent modules that will tell
the system that a fault occurred, a hot standby
module can take over the faulty modules’ roles
[KV94]. In this case monitoring can be used for
detecting the event that a module has failed and
determine that the hot standby is supposed to
take over.

1.1.3 Distribution

In this report a distributed system is viewed
as loosely coupled processing elements (nodes)
that do not share memory nor a global clock. A
distributed system can be either homogeneous
or heterogeneous. In a homogeneous system all
nodes share the same data representation and
data alignment and normally execute the same
operating system. Only homogeneous systems
will be discussed in this survey.



A distributed system is potentially fault-
tolerant. This might seem to be a contradic-
tion because there are even more components
that can fail in a distributed system than in
a conventional system. However, a distributed
system does not necessarily fail when the maxi-
mum number of nodes allowed by the fault hy-
pothesis fail independently, because the nodes
can be replicated. Furthermore a node can be
made fail-silent by replicating and comparing
constituent components on the node.

A distributed real-time system must be sup-
ported by reliable real-time communication in
order to guarantee response time of real-time
remote requests. The properties tighiness,
bounded transmission delay, bounded omission
degree and bounded inaccessibility are necessary
These
properties support: i) enforcing a bounded de-

for real-time communication [Ver94b).

lay from request to delivery of a frame, given the
worst case load conditions assumed; ii) ensuring
that a message is delivered despite the occur-
rence of omissions; and iii) maintaining connec-
tivity.

In order to enforce bounded transmission de-
lay of a message, issues such as traffic patterns
(when and with which frequency requests are
made), latency classes (a message in the low-
est latency class is of the highest urgency),
LAN sizing and parameterizing, and user-level
load/flow control, must be taken into account.
The fault hypothesis must include assumptions
about omission failures concerning the network
which will lead to protocols that ensure that
messages are delivered even though an omission
fault occurred. Fortunately omission failures are
rare and of a bursty nature, i.e., it is normally
safe to assume that only one omission will occur
during delivery of a message [Ver94b].

The handling of CPU (and process) groups
— e.g., multicast — are a central idea in re-
liable real-time communication which, for an
efficient implementation, pervades all layers in

the network protocol. The main reasons for the
importance of group protocols can be found in
[Ver94b, p 479):

”Real-life experience has shown
that [the group protocols] drastically
simplifies the algorithmic and correct-
ness problems of distributed comput-

in g”

Global Time Base and Global Ordering:
Global ordering of events and requests must be
preserved in a distributed system in order to
prove global properties about the system. With-
out global ordering it is impossible to ensure
that requests are served in the order they were
made, nor is it possible to tell in which order
two (causally dependent) events occurred. In a
distributed real-time system, a global timebase
must also be supported in otherwise it is impos-
sible to i) synchronize the triggering of actions
at two different nodes, ii) do distributed log-
ging, and hence global event detection, and iii)
support replica determinism — i.e., letting in-
dependent replicated modules come to the same
result when they are executing algorithms that
are dependent on time, order, and priority of
requests (and events) [KV94].

The é; — precedence relation, i.e., &; is the
minimum real time interval for causal relation
to be generated [Ver94a, is the criterion for po-
tential causality. The é; is 2g given a clock gran-
ularity g [Ver94a}, which must be at least equiv-
alent to the bounded clock precision 7 (cf clock-
synchronization algorithms [Chr89, CGG94]).
However, choosing a too small g will lead to
a too dense time base where too many unde-
sirable repeated observations may be performed
[Ver94a), e.g., too many repeated occurrences
during event shower may be let through from
the representatives.

Ordering by logical clocks [Lam78] can be used
in non-real-time distributed system, however,



this will not work properly if any participants
(e.g., processes, nodes) exchange messages out-
side the ordering protocol [Ver94a, 474]. Fur-
thermore, it has been shown that it is impossible
to order a sequence of three causally indepen-
dent events (a.k.a strong gap detection[BR93))
timestamped with logical clocks using this pro-
tocol. However, it is possible to use vectorized
logical clocks, where each time-stamp contains
a logical clock for each node in the system, to
detect that an event E; did not occur before E,
which occurred before E; (a.k.a weak gap detec-
tion [BR93)).

1.1.4 Active Databases

Active databases is an active research area
where the early work was presented in the con-
text of HIPAC [DBB*88], ETM [KDM88] and
POSTGRES [SHH87]. These can be classified
as event-triggered systems (not necessarily real-
time systems). The major idea is to add reactive
mechanisms to the database as ECA-rules. An
ECA-rule is an association of an Event, a Con-
dition and an Action. When an event occurs the
corresponding rules are triggered and their con-
ditions evaluated. For all rules that have been
triggered, if their conditions are true their as-
sociated actions are performed. Consensus on
what events are, how events should be detected,
how the rules should be executed has only been
partially reached. There are still open research
issues in this area.

However, active databases are in need of ev-
ent monitoring and event detection. It is our
contention that this event monitoring and detec-
tion can be combined with the monitoring and
detection needed for other components such as
software engineering tools and real-time appli-
cations.

Coupling Modes: Event monitoring (specifi-
cation part) in active databases are affected by
the coupling modes (i.e., modes describing when

and how the handling of the sequence event
monitoring, condition evaluation, and action ex-
ecution of a rule takes place [DBB*88, Buc94]),
which is described in section 3. For example,
the condition can take place immediately after
the event has been detected, whereas, the ac-
tion can be executed in a separate (detached)
transaction.

1.2 Basic Issues

Below basic issues in software engineering are
discussed.

1.2.1 Software Engineering Issues

Testing and debugging are two important activ-
ities in any software engineering methodology.
Debugging is often not explicitly mentioned in
software engineering methodologies with the ex-
ception of methodologies for building expert sys-
tems and other systems based on artificial intel-
ligence (cf RUDE [Par86]). Testing, however, is
seen as an important activity in all methodolo-
gies.

The area of software testing has been an ac-
tive area of research since the 1960s. Practi-
cal experience, empirical and theoretical studies
have led to well-defined methodologies for test-
ing software on different levels [Bei90]. However,
this has not solved the problem of proving in a
reasonable time how dependable a system is nor
does there exist any good measure of software
quality. According to [Bei90] all simple faults
are caught with testing but the subtle interac-
tion faults between components are left in the
system.

Even if this pessimistic view of testing is
taken, testing is a necessary step in software en-
gineering used in conjunction with well known
methodologies for specification and controlling
the software development process. When testing
distributed real-time systems the major problem
in executing the tests are observability and re-



producibility [Sch94, Sch95a].

As mentioned, when a system is observed
there is an intrusion known as the probe-effect
(see section 2.2), because software sensors in the
form of extra code need to be added. In soft-
ware, this intrusion will affect the temporal be-
havior of the system. This is particularly severe
for real-time systems. The probe-effect must be
avoided by leaving the software sensors in the
operational system [Sch94, Sch95a].

It must be possible to re-run a test and it
should produce the same result every time un-
less the system is changed. In order to do this,
recorded time is required, i.e., significant events
must occur at the same points in time during re-
play as in the original execution and, hence, the
occurrences of significant events must recorded
and replayed [Sch94, Sch95a]. Furthermore, de-
viations in the hardware must be hidden. Care
must be taken so that additional (or different)
probe-effect is not introduced when the system
is observed under a re-run of a test.

Furthermore, testing must be considered al-
ready in the specification and design phase. It
cannot be delayed until after the design, espe-
cially in a real-time system since the tests may
change the temporal behavior of the system.

1.3 Overview

In the remainder of this survey we consider Mon-
itoring in section 2, Event Monitoring in section
3, Debugging in section 4, and Conclusion in
section 5. .

2 Monitoring

The term monitor is used for various constructs
with different meanings. In synchronization
a monitor is an abstract data type provid-
ing the programmer with an easy way of syn-
chronizing accesses of a resource of some kind

[Hoa74, And91] and the term has also been

used earlier as a synonym for operating systems
[SG94]. The basic semantics of this kind of mon-
itors are of control rather than observation.

In other work the monitor is a construct for
monitoring of events or properties. Monitor-
ing in this case is the extraction of dynamic
information concerning the computational pro-
cess [Sno88): for example, the violation of tim-
ing constraints [JRR94] and events in real-time
systems [Pla84]. This survey concentrates on
this (in the same para.) latter meaning of the
concept, of a monitor.

The traditional steps (in italic) in monitor-
ing computer systems occur during the following
four phases:

1. Design and implementation of a system: a)
Sensor configuration: This step involves de-
ciding what information each sensor will
record (and possibly report) and where the
sensor will be located; b) Sensor installa-
tion: The sensors must be coded (or built
in hardware) and inserted in the correct
location in the subject system. Provision
must be made for temporary and perma-
nent storage of the collected data in the
Sensor.

2. System setup: Enabling sensors: Some sen-
sors are permanently enabled, storing (and
possibly reporting) monitoring data when-
ever executed, while others may be individ-
ually or collectively enabled, directly or in-
directly by directives from the user.

3. Execution of a system: Data generation:
The subject program is executed, and the
collected data are stored in main memory
or on secondary storage for consumption
now or later. No dynamic reconfiguration
is generally possible during this phase, e.g.,
it is not possible to change what the sen-
sors should record during run-time unless
the sensors are designed to adapt to antic-
ipated changes.



4. Post-execution analysis of the generated
data: a) Analysis specification: In most sys-
tem the user is given a menu of supported
analyses; sometimes a simple command lan-
guage is available. b) Display specification:
The user is given a set of formats (either
specified via a menu or a command lan-
guage), ranging from a list of raw data
packets to canned reports or simple graph-
ics. ¢) Data analysis: Data analysis nor-
mally occurs in batch mode after the data
have been collected due to the often high
computational cost of the analysis. d) Dis-
play generation: Usually this step occurs
immediately after data analysis, although
a few monitoring packages allow the ana-
lyzed data to be displayed at a later time.

These steps were reduced in [Sno88], by using
a declarative relational approach to specifying
monitors to the following: 1a) Sensor configura-
tion, 1b) Sensor installation, 4a) Analysis speci-
fication, 4b) Display specification and finally 3)
Execution (where the missing steps of enabling
sensors, data analysis, and display generation
are performed automatically in the Execution
step). Snodgrass uses historical databases and a
relational query language T'Quel as a basis this
simplification. This approach makes it easier
to maintain and extend compared to the tra-
ditional approach. The major drawbacks men-
tioned by Snodgrass are that:

1. the queries are specified before the data is
collected. This a priori knowledge is not
always available.

2. the complexity of the relational monitor
makes it very inefficient. In a practical test
between this approach in TQuel, including
optimization of the queries, and a tradi-
tional procedural approach (in LISP) the
difference in performance was two order of
magnitudes.

The first drawback is not so severe in a real-
time system compared to a conventional system
as more a priori knowledge about the environ-
ment and the computer system is known.

The second drawback is quite severe in a real-
time systems if the relational approach would
be used for on-line analysis. The detection of
an event must be considerable shorter than the
remaining time to the deadline to allow a com-
putation to finish in time. If the worst-case es-
timation of how long it will take to detect an
event is too pessimistic, or the time it takes to
detect an event is not negligible compared to
the time it takes to perform the task invoked
as a result of the event, or the deadline is very
close relative to the associated event occurrence,
then the complexity of the relational monitors
is a critical issue.

The most severe problem with relational mon-
itors is that the detection of complex event
patterns uses the Cartesian product operator,
which may be applied several times. Optimiza-
tions (or improvements) of the TQuel queries
are available, but these only exist for a few of
the possible expressions in TQuel.

The relational approach suggested by Snod-
grass has a lot of advantages, but the disad-
vantage of complexity makes it virtually useless
for event detection in real-time systems. How-
ever, by using less generic, but still powerful
languages based on operator grammars specif-
ically designed for dealing with events the ev-
ent detection can be made more efficient (see
section 3). These languages must be extended
with "display specification” and ”display gener-
ation” otherwise these steps must be performed
manually.

2.1 Hardware, Software and Hy-
brid Monitors

In INCAS [HW90] they differentiate between
hardware monitors implemented using hardware



only, software monitors using software only and
hybrid monitors which are implemented using a
combination of both. Hybrid monitors are con-
sidered good because they the combine the flex-
ibility of software monitors with the efficiency of
hardware monitors. A drawback of hybrid mon-
itors compared to software monitors is the need
to build special purpose hardware, but this can
normally be kept to a minimum.

2.2 Probe-effect

A monitor will affect the behavior of an observed
system — a monitored task will have longer
(possibly unpredictable) response times. Fur-
thermore, a minor issue is that monitored ap-
plications may be larger than their unmonitored
counterparts.

The probe-effect consists of two parts: i) the
unpredictability of the monitor, and ii) the the
difference in the behavior of a monitored system
and its unmonitored counterpart. The unpre-
dictability of the monitor can be solved by differ-
entiating between the data collection part, i.e.,
the sensor, which can designed to be predictable,
and the data processing part of the monitor.
The sensor is placed within the observed system,
whereas, the data processing part is placed out-
side the observed system. Furthermore, hybrid
and hardware monitors can be used to consider-
ably reduce the overhead of both the sensor and
the data processing part compared to a software
monitor. A difference in the behavior of a mon-
itored system and its unmonitored counterpart
can only be avoided by leaving the monitors in
the operational system, however, this is only im-
perative in real-time systems [Sch94, Sch95a].

2.3 Event Log

The functionality of a monitor is to detect that
an event has occurred or that a property has
changed. If complex event patterns are allowed
then the monitor needs to keep an event log.

The monitor checks the event log and if a com-
plex event pattern is detected the required ac-
tion is taken, e.g., by passing the data about the
event occurrence to another module.

If the event log is stored in stable memory the
log can be used in a similar way to a ”black box”
in an aircraft. If the system fails, the event logs
can be examined to determine why it failed.

2.4 Instrumentation

Sensor configuration and installation together
with installation of the monitoring facility is re-
ferred to as instrumentation. Below are three
important examples of instrumentation, the first
two characterized by the use of hybrid monitors
and the second characterized by the problems of
instrumenting a closed architecture.

2.4.1 INCAS Distributed Monitoring
Facility

In the INCAS [HW90] project a hybrid monitor
has been used. The sensors are inserted into the
software as instructions that are visible on the
main CPU data bus which is snooped by the hy-
brid monitor — a general purpose CPU called a
Test and Measurement Processor (TMP) using
special hardware for bus snooping and running
A node in INCAS con-
sists of one main CPU with one or more TMPs

monitoring software.

hooked on — making the hybrid monitor fault-
tolerant. Furthermore, it is possible to let the
TMPs use a separate network so that they can
communicate without interfering with normal

communication between the nodes.

TMPs only cause approx. 1 % overhead in
the execution of the monitored application while
detecting events occurring at a fast rate (up to
1300 events/second). This hybrid monitor has
been used for run-time monitoring of tasks for
deadline scheduling [JRR94].



2.4.2 Monitoring using Coprocessors

In the work by Gorlick [Gor91] a different hy-
brid monitor, based on the use of a coprocessor,
causes less overhead than the the monitor in the
INCAS project. His main reason for using a co-
processor is the fact that bus-snooping of em-
bedded real-time systems will be made impos-
sible as more hardware components are added
to avoid usage of the bus, e.g., cache memories.
Another reason is to be able to handle more ev-
ents per time unit than traditional bus snoop-
ing because the coprocessor interface is generally
faster than the data bus.

2.4.3 Instrumentation
of Object-Oriented Database Man-

agement Systems

In an object-oriented DBMS, classes are made
persistent either by inheriting from a persis-
tent class hierarchy or by attaching objects at
run-time to objects handling persistence. The
DBMS operations (which are methods) and ar-
bitrary user method and procedures are likely
to be instrumented.

There are four ways of instrumenting an
object-oriented DBMS using software sensors:

i) the compilation process can be altered
— a difficult task because compilers
vary, language specifications change,
and erroneous inputs must be handled.
However, both DBMS operations and
user specified methods/procedures are
handled;

ii) call-back hooks in the DBMS can be
used, however, experience has shown
that no closed architectures have all
the appropriate hooks [BZBW95];

iii) extend each class in the class hi-
erarchy with an instrumented class,

but the instrumentation will not be

fully transparent as the user speci-
fied classes must inherit from the ex-
tended classes. Furthermore, instru-
mented user-specified classes that does
not naturally relate to the DBMS class
hierarchy may unnecessarily have to be
an extension to the extended class hier-
archy, e.g., a naturally non-persistent
class may have to be designed as per-
sistent class if it must be instrumented
in an extended DBMS class hierarchy
consisting of persistent classes;

the existing classes in the class hierar-
chy can be changed, however, this can
only be done in a public architecture
where the source code is available and
only DBMS operations can be handled.

The more flexible scheme of changing the
compilation is desirable as it was concluded in
[BZBW95] that extending the class hierarchy is
relatively simple, but experience has shown that
it often has the undesirable effect that all classes
are persistent and all methods are instrumented.

3 Event Monitoring

A vital part of monitoring is to detect events
when they occur and pass them to other mod-
ules. In an active database, a condition is eval-
uated (which may partly be performed by the
monitor) if the associated event has been de-
tected and an action is taken if the evaluation
of the condition is true.

At the conceptual level there is an event spec-
ification language in which the user can express
what kinds of events and event patterns that
are interesting. This specification is translated
into some internal representation, such as fi-
nite state automata in ODE [GJS93], Petri-nets
in SAMOS [GD93], or event graphs in Snoop
[CM93, CKAK93]) (an event graph is based on
the syntactic trees that are produced for pars-



ing operator grammars [AU77], a.k.a extended
syntactic trees [Deu94]). The internal represen-
tation is used to control the actual event moni-
toring.

Below event specification (section 3.1), event
detection and composition (section 3.2), and ex-
pressibility vs efficiency and predictability are
presented.

In this section important definitions from
ODE, Snoop, SAMOS and REACH are dis-
cussed and evaluated. For each concept, a sug-
gested ”best” definition is presented.

3.1 Event Specification
3.1.1 Basic Event Definitions

Event: To the author’s knowledge the clearest
definition of an event is that it is instantaneous
and atomic, i.e., either it happens completely or
not at all (in Snoop [CM93, CKAK93]).

In the SAMOS prototype an event is said to
indicate a point in time when the DBMS has to
react [GD93], but in a real-time system there are
also components that need to be able to react on
events. The reason for this is that real-time sys-
tems are by their “nature” reactive systems but
do not always require a DBMS. It is possible to
argue that everything should be centered around
a DBMS, but this is undesirable in cases where
the functionality of the DBMS is not needed in
all or part of the application. Hence the defini-
tion is too restrictive for real-time systems. The
fact that an event is a point in time is the most
important fact in the SAMOS definition.

In the REACH prototype an event is simply
seen as the activator of a rule [Deu94], without
saying anything about the nature of an event.
However, it is explicitly stated that the set of ev-
ents must comprise arbitrary method invocation
events, temporal events and flow-control events
in an OODBMS [Buc94, BZBW95].

In ODE an event is referred to as a “sin-
gle activity” [GJM93], “happening of interest”

[JMS92] and “an event known and supported by
the database system” [GJ92a). None of these
definitions are formal nor are any properties
clearly expressed.

Non-instantaneous events are considered by
researchers in mathematics and logics [Gal9x],
however, to the author’s knowledge no evidence
has been found so far to invalidate an instanta-
neous event model in active databases, real-time
systems and software engineering tools.

Definition 1 An event is atomic and instan-
taneous.

Interval: Unlike an event an intervel can
This defini-
tion is needed to explain how certain non-

stretch over a period of time.

instantaneous phenomena are monitored. A
point in time is normally viewed as a special
case of an interval [CM93].

Definition 2 An interval can stretch over a
period of time, where an event is considered to
be a special case of an interval.

Definite Event: In Snoop [CM93] a definite
event is an event that is guaranteed to occur by
definition, e.g., a periodical temporal recurring
event will always occur. In order to be able to
guarantee that definite events can exist in a sys-
tem some strategy for fault-tolerance must be
considered — especially in distributed systems
where hardware and software components may
fail independently. For example, the data about
an event occurrence can be lost or never occur
(omission fault) or a faulty and malicious com-
ponent may generate arbitrary events (Byzan-
tine fault). Even in this case only a number of
failures of prespecified types can be handled, but
it is possible to state under which circumstances
an event is guaranteed, e.g., a distributed sys-
tem can be designed so that it tolerates up to k
omission failures on the network.
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Definition 3 A definite event is an event
that is guaranteed to occur, even in the presence
of a prespecified mazimum number of failures of
certain prespecified failure types.

In Snoop [CM93] an ev-
ent (e1) causally precedes another event (es) if

Causal Precedence:

and only if the occurrence of e; causes the occur-
rence of e;. As in the case of the definite event
the system must be designed to handle failures
so that it is possible to guarantee causal prece-
dence to a certain degree otherwise an event e;
does not guarantee that an event ey will follow.

Definition 4 An event (e;) causally pre-
cedes another event (e3) if and only if the
occurrence of e; causes the occurrence of e,
even in the presence of a prespecified mazimum
number of failures of certain prespecified failure
types.

Logical and Physical Event: In Snoop
[CM93] a logical event corresponds to the spec-
ification of an event at the conceptual level and
does not specify the physical event — e.g., ma-
chine instruction, timer interrupt — to which
it will be mapped. Logical events are mapped
to a physical/internal event either using a map-
ping specification — i.e., transparent instrumen-
tation is done automatically by the compiler —
or by choosing an implementation that corre-
sponds to the mapping specification — i.e., non-
transparent instrumentation done manually.

This makes a clear distinction between the is-
sue of specification and implementation (instru-
mentation). Furthermore it clarifies how inter-
vals — e.g., method calls, transactions — can
be mapped into logical events such as beginning
of interval and end of interval, e.g., beginning of
transaction.

In the ODE prototype [GJ92b, JMS92, GIM93]
the definition of a ”logical event” is an event
that is associated with a condition where the

event occurs if and only if the physical event to
which the event is mapped occurs and the as-
sociated condition holds true. This is similar
to the use of generalized predicate path expres-
sions for detecting events [And79, BH83]. This
definition is not used in this survey.

In this survey a filtered event is a logical event
(as defined in the Snoop prototype) associated
with a filtering predicate.

Definition 5 A logical event is the represen-
tation of an event on the conceptual level.

Definition 6 A physical/internal event, to
which a logical event is mapped, is the actual
event that occurs when the logical event is said

to occur.

Definition 7 A filtered event is an event that
occurs if and only if an associated condition
holds true.

All events discussed henceforth.in this survey
are logical events unless otherwise specified.

Simultaneous Events: In the Snoop proto-
type [CM93, CKAK93] simultaneous event oc-
currences are discussed, but to simplify the
problem no two events are assumed to actually
occur simultaneously.

In the ODE platform [GJ92a, JMS92, GIM93]

- each event occurrence is assumed to have a

unique tuple with an event identifier that is
monotonically increasing as events occur (and
time passes). It is not explicitly stated that two
events are assumed not to occur simultaneously,
however, it is natural to make the assumption
that no two events are allowed to occur simulta-
neously in ODE as distribution nor parallelism
is not mentioned at all.

In the SAMOS platform [GD93] no explicit
assumption is made concerning the possibility of
simultaneous events. As SAMOS is not directed

11



towards parallel or distributed systems it is safe
to assume that there are no simultaneous events.

In the REACH prototype [Deu94, BZBW95]
no explicit assumption is expressed about simul-
taneous events, however, they claim that their
event management could be distributed. Their
event management is built on the same prin-
ciples as Snoop [Deu94] and, to the author’s
knowledge, they do not allow simultaneous ev-
ents.

Definition 8 Simultaneous events are ev-
ents that occurs at the same time according to
the granularity of the chosen time scale, i.e.,

they receive the same time-stamp.

Total Order of Events:
low clients to make requests of a common server

It is possible to al-

simultaneously and still order them sequentially
by differentiating them in some other way. Ex-
amples of properties that have been used for dif-
ferentiating requests for ordering purposes, are
relative importance of the request, the causal
precedence between requests (e.g., a file cannot
be read before it is opened) , or a total ordering
over the clients making the requests. Examples
of these can be found in literature about operat-
ing systems [SG94]. For example, if two times-
tamped requests are generated with the same
time-stamp simultaneously at different nodes in
a distributed system they can be differentiated
if all nodes are totally ordered (at that instant).

The same technique is applicable to the prob-
lem of total order of events because requests are
ordered for correctness and fairness criterias and
events must be correctly ordered. There will be
a delay between the detection of two simulta-
neous events occurring at two separate nodes,
which will be discussed later.

Definition 9 A total order of events is as-
sumed to exist, i.e., simultaneous events are dif-
Jerentiated according to some criteria.

3.1.2 Primitive Events

Primitive events are in the SAMOS prototype
[GD93] distinguished from composite events!
in that primitive events are elementary occur-
rences, whereas composed events are composed
of primitive and composed events using some
event algebra (see section 3.1.3.

The specific primitive events for a given sys-
tem differ, but as stated in REACH [BZBW95]
the set of primitive events in an active object-
oriented DBMS must contain: aerbitrary method
invocation events — which occur whenever a
method is invoked; temporal events — which
occur when the specified time is reached; and
control-flow events — which occur whenever
there is an important change of the control-
flow in the database such as start of transaction,
commit transaction, end of transaction etc.

In the SAMOS platform [GD92, GD93] and
the Snoop prototype [CM93] the primitive ev-
ent set is extensible because both projects fol-
low the base extensible type schemas found in
programming languages.

Definition 10 A primitive event is a prede-
fined elementary event that is generated by the
system, by the environment, or by the applica-
tion.
Supported Primitive Events: There are
variations between the considered active data-
base prototypes in terms of which primitive ev-
ent types are generated from the system. Ex-
amples only of primitive events are presented in
ODE [GJ92a] which are subsumed by the other
projects, hence they will not be separately dis-
cussed in this survey. There is general agree-
ment of what primitive event types should be
supported.

In an object-oriented DBMS most primitive
event types can be modeled as method invoca-
tion events because most operations are imple-

1 Also known as complex events.
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mented as methods, however, they will be sep-
arated in this study because they are concep-
tually differentiated and cannot be modeled as
method invocation events in a relational DBMS.
No distinction will be made between method,
procedure or function calls as the major differ-
ence is only in automatic instrumentation (see
section 2.4.3).

In all prototypes, except ODE where other
constructs are available, the begin-of and end-of
event modifiers (see section 3.1.3) are available.

In this study the primitive event types are di-
vided into: i) events generated by event modi-
fiers applied to intervals (see section 3.1.3) —
i.e., method invocations, database operations
(operations performed on the database), and
transactions; ii) temporal events — events gener-
ated by the clock [CM93]; iii) explicit events —
events generated by the application (the user)
[CM93]; and iv) value events — events gener-
ated when an attribute in an object is accessed
or updated [GD92].

In the discussion below the taxonomy for the
Snoop prototype is presented in figure 1 on page
14 [CM93], the taxonomy for the SAMOS proto-
type is presented in figure 2 on page 15 [GD93],
the taxonomy for the REACH prototype is pre-
sented in figure 3 on page 15 [Deu94, Buc94],
and, finally, the suggested taxonomy in this
study is presented in figure 4 on page 16.

Method Invocation Events: In the Snoop
prototype [CM93] the method invocation events
are categorized as database events, however, our
view is that if these can be generated by an ap-
plication that is not accessing the database it
is more accurate to not categorize them as da-
tabase events — i.e., as is done in the SAMOS
prototype [GD92, GD93] and the REACH pro-

totype [Deu94, Buc94].

Database Events: In the Snoop platform
[CM93], which is designed for both object-

oriented and relational DBMSs, the database
events consists of the events generated when the
traditional database operations (i.e., insert, up-
date, and delete) are executed and when trans-
actions are started or completed.

In the SAMOS [GD92] and REACH [Buc94]
platforms the database events are not present
as they are considered to be method invocation
events, however, this is conceptually bad accord-
ing to our opinion because the taxonomy lacks
clarity.

Our view is that database operations consists
of insert, update and delete, however, as trans-
actions can be a part of the operating system
(e.g., Alpha Kernel [Nor87]) they are separated
from the database events.

In addition the abort
event modifier were introduced to be able to

Transaction Events:

trigger a rule if a transaction aborted in the
SAMOS prototype [GD92]. Furthermore, the
(begin to) commit event modifier were intro-
duced in the REACH prototype to trigger rules
before the transaction actually committed and
to support coupling modes concerning detached
transactions [Buc94] (see section 1.1.4). In this
study the new event modifiers are considered
strongly desirable.

Temporal Events: The absolute temporal ev-
ent — i.e., an event occurring at a specified time
— is considered to be a primitive event in all the
discussed projects. However, the relative tempo-
ral event— i.e., an event occurring at a specified
time relative to another event — is considered
to be a composite event in REACH [Buc94] (see
section 3.1.4).

The view in this study is that an absolute
temporal event is primitive, whereas the relative

temporal event is a composite event.

Explicit Events: Explicit events in the
Snoop prototype [CM93] (a.k.a abstract events
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Figure 1: Primitive Event Taxonomy in Snoop

in the SAMOS prototype [GD92]) can be mod-
eled as method invocation events, which is the
reason for their absence in the REACH proto-
type [Buc94]. In this study it is considered more
clear and understandable to express the explicit
events in the taxonomy.

Value Events: Value events (cf ReadAt-
tribute and WriteAttribute in the REACH pro-
totype [Buc94]) were introduced in the SAMOS
prototype [GD92] because it was possible to
manipulate object attributes without calling a
method.

If it is possible to manipulate object at-
tributes without calling a method this event
type is necessary for completeness. However,
due to the problems of detecting this event type,
our view is that object attribute access without
calling a method should be restricted if possible,
e.g., in the OBST DBMS [CRS*92] attributes

can only be accessed through method calls.

Primitive Events for Distribution and
Fault-Tolerance: None of the discussed ac-
tive database prototypes explicitly take into ac-
count event types concerning distribution or
fault-tolerance. For example, it is interesting
to differentiate between data that is updated lo-
cally, and data that is propagated if rules are
only to be triggered on local updates and not

on propagated data. Another example is that if

there are two active DBMSs with separate data-
bases where one DBMS is a hot standby to the
other DBMS, a DBMS crash can be described
as an event type. When the primary DBMS
crashed this can be detected by the hot standby.

The view taken in this study is that distribu-
tion and fault-tolerance event types are desir-
able, however, they are not present in the tax-

onomy as there is no work done on these event
types.

The two
natural attributes (see section 3.1.3) of a primi-

Attributes of Primitive Events:

tive event are event type (type(E)) and time of
occurrence (toc.(E)) [CM93], which are found in
all discussed prototypes. In the SAMOS pro-
totype the transaction identifier (¢;4(E)) and
the user idenmtifier (u;4(E)) were introduced
[GD92] in order to check if two or more ev-
ents stems from the same transaction or user.
This approach is adopted in the REACH pro-
The t;4(E) and u;g(E) are not ex-
plicitly mentioned in the early Snoop papers
[CM93, CKAK93] as they were implicit, i.e., the
event was detected within the transaction it was

totype.

generated by the user who executed the trans-
action.

In this study the following views are held.
The t;4(E) and u;4(E) can be generalized into
the event’s scope (scope(F)) — i.e., the cur-
rently active dynamic scope (e.g., a user, pro-
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cess, or a transaction) accessing a passive com- within the same scope and domain where the
ponent (e.g., an object) — uniquely denoting event was generated.
where the event is generated. The scope(E)

is architecture dependent, e.g., in a distributed .. .
Definition 11 The type(E) attribute denotes

system without distributed transactions where
the event type of E.

global event detection is needed it is necessary to
let the scope include the node identity otherwise
it is not possible for the global event detector to Definition 12 The t,..(E) attribute denotes
keep track of which node an event was gener- the time of occurrence of E.
ated on. Furthermore, the u;4(E) can also be

generalized into the protection domain of an ev- Definition 13 The scope(E) attribute denotes

ent dom(E) — i.e., the domain specifying what uniquely where the event E stems from, i.e.,

resources are available to an active component 54t active component accessed what passive
(e.g., process, or transaction) under which con- component.
ditions [SG94]. This gives the possibility to use

all features found in the protection of resources. o .
Definition 14 The dom(E) attribute denotes

Both theiécope(E) and dom(E) is needed if what protection domain the event E was gen-
the event monitor is not implicitly executing erated in.
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3.1.3 Basic Definitions of Composite Ev-
ents

Below general event history, event algebra and
event expressions, initiator and terminator con-
stituents, and event attributes and parameters
are presented.

General Event History: In all the stud-
ied prototypes (ODE, Snoop, SAMOS, and
REACH) an event history is basically a totally
ordered set of event occurrences. The differences
are mainly in the representation of event occur-
rences and the usage of the event history. Most
of the work refers back to a general model based
on the fact that the system has a complete his-
tory from a starting point which leads to highly
inefficient algorithms [Deu94].

Obviously, it would not be possible to use the
total order property in an event history if it
would not be possible to differentiate and ar-
bitrate between simultaneous event occurrences
as mentioned in section 3.1.1.

Definition 15 An event history is a totally
ordered set of event occurrences; order is in-
creasing on timestamps and preserves defined
partial orders.

An

event algebra is used to express event ezpres-

Event Algebra and Event Expression:

sions (or event patterns). An event algebra con-
sists of a set of event constructors, and a set of

rules of how to form event expressions. The use
of the term constructor stems from the fact that
as events occur, composite event occurrences are
detected by constructing them out of the event
history using the constructors.

In Snoop [CM93] an event expression is in-
formally an expression that defines an interval,
i.e., a possibly non-instantaneous occurrence.
The event constructor disjunction in Snoop
[CM93, CKAK93] (and in SAMOS [GD92] and
REACH [Buc94]) is exclusive and therefor ex-
presses a point in time which, however, is a spe-
cial case of an interval.

In ODE [GJ92a, JMS92, GIM93] an event ex-
pression is a mapping function from a event his-
tory to a subset of the event history using some
predicate.

Definition 16 An event expression (or ev-
ent pattern) is composed out of other compos-
ite or primitive events based on an event algebra
using constructors.

Henceforth, the term event expression is used.

Initiator and Terminator Constituents:
In a composite event type the composition may
be initiated by any member of a set of con-
stituent types, the initiator set, where the ac-
tual initiating event is referred to as the initiator
[CKAK93]. Similarly, the composition may be
terminated by a member of a set of constituent
types, the terminator set, where the actual ter-
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minating event is referred to as the terminator
[CKAK93].

These definitions are particularly of impor-
tance to event composition, furthermore, they
make further definitions simpler.

Event Modifiers: In Snoop [CM93] event
modifiers provide a mechanism for:

“i) creating logical events at the con-
ceptual level that correspond to points
of interest in a closed interval and ii)
mapping those points of interest to
physical events in the system (i.e., sug-
gest a feasible implementation). ¢

Currently two event modifiers are supported in
Snoop: begin-of — the beginning of an event
expression, e.g., beginning of a transaction; and
end-of — the end of an event expression, e.g.,
end of method invocation, end of a sequence of
three event types.

Care must be taken when applying event
modifiers to arbitrary event expressions in a dis-
tributed system as it can suffer from indepen-
dent failures. This means that applying the
begin-of modifier to an arbitrary event expres-
sion can lead to the "detection” of an event
that then fails to occur. For example, assume
that a program, which can fail independently
from the event detector, contain a sequence of
method calls (my..m,) and the event detector
should detect the beginning of this sequence of
method calls. If the program fails after m; and
before m,, the event detector has detected an
event that never occurred.

Definition 17 An event modifier maps a

point in a closed interval to an event.

Event Type and Event Instance: In the
SAMOS prototype [GD92, GD93] an event ex-
pression is used to describe the event type that
will make a rule fire.

In this study an analogy to object-orientation
is favored, i.e., an event instance is a represen-
tation of the actual occurrence of an event type.

Definition 18 An event type is described by

an event expression.

Definition 19 An event instance is an ac-
tual occurrence of an event of type event type
and its parameters (see below).

Event Attributes and Parameters: In the
ODE prototype [JMS92, GJ92a, GIM93] and
Snoop prototype [CM93, CKAK93], each primi-
tive event is associated with a set of attributes
called event attributes. They are referred to
as event parameters in the REACH platform
[Deu94] and more precisely as actual event pa-
rameters in SAMOS [GD92] [GD93].

In the SAMOS prototype [GD92] actual event
parameters are distinguished from formal event
parameters in the same way that actual and
formal parameters of a procedure call are dis-
tinguished. Formal event parameters are used
when specifying an event type and actual event
parameters are bound to the formal event pa-
rameters at instantiation. The instantiation is
performed as soon as the system is aware that
the event has occurred; this may involve a de-
lay after the actual occurrence, something which
will be discussed later.

When an begin-of method event type occurs
not all parameters may contain interesting infor-
mation because some parameters may be output
parameters whose values are only interesting af-
ter the method call has been completed.

In the ODE prototype [JMS92] event ex-
pressions are said to have parameters and the
attributes of a composite event must be de-
rived from the attributes of component event-
subexpressions [GJM93]. Furthermore param-
At-
tributes only refer to the current primitive ev-
ent, whereas parameters are attributes which

eters are distinguished from attributes.
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have been saved over one or more event occur-
rences. The explanation of the terms in ODE is
not particularly clear.

In addition the Snoop, SAMOS and REACH
prototypes all have a fixed set of event param-
eters that are associated with any event in the
system and a set of optional event parameters
that depend on the kind of the event.

An issue that is not mentioned is that the
event attributes can be implicitly or explicitly
carried with the event. An attribute that is im-
plicit can be derived from the context in which
the event instance is handled, whereas, an ex-
plicit event attribute cannot be derived. For
example, if event monitoring only can be done
within transaction boundaries then there is no
need to make the transaction identifier attribute
explicit because it can be derived from the con-
text, i.e., the transaction.

Definition 20 A fized set of attributes de-
scribing the event is associated with every event

type.

Definition 21 A formal event parameter is
used as a part of the event pattern describing an
event type.

Definition 22 An actual event parameter
is an explicit or derived atiribute of the event
occurrence that is bound to the formal parame-

ters of an event type during instantiation.

3.1.4 Composite Events

In Snoop [CM93] a composite event is defined as
an event obtained by the application of an event
modifier — by default the end-of event modi-
fier — to an event expression. An event expres-
sion is recursively defined as an event expression
formed by using a set of primitive events, event
operators and composite events constructed so
far, i.e., its constituents.

In REACH a composite event is composed
out of primitive events using event constructors

[Deu94] and there is no explicit statement made
about recursively composed events.

In ODE a composite event is specified as an
event expression [GJ92a] or composite events
can be combined out of basic events (cf primi-
tive events) using logical operators and special
event specification operators [GIM93].

Definition 23 A composite event is speci-
fied using an event expression and occurs when
the terminator event has been composed into a

composite event instance.

All the
considered active database prototypes support

Supported Composite Events:

disjunction, conjunction, sequence and various
forms interval operators. An interval operator
is an operator defined over a closed interval of
an event history with an initiator event type and
a terminator event type defining the boundaries.
There are distinctions concerning interval oper-
ators which will be discussed below.

Disjunction, Conjunction and Sequence:
Our view is that all of these event constructors
are needed.

The disjunction composition constructor
stems from HiPAC [DBB*88] and is exclusive
because simultaneous events does not exist on
uni-processor systems, however, inclusive dis-
junction has been brought up lately because
the possibility of simultaneous events in a dis-
tributed system [SHM95]. The computed pa-
rameters of an exclusive disjunction event are
those of the particular constituent that oc-
curred.

The conjunction event occurs whenever an ar-
bitrary order of both constituent event types
has occurred. In the Snoop prototype [CM93,
CKAK93] there is a special variant of conjunc-
tion called any with which it is possible to detect
an arbitrary sequence of a specified size and of
specified event types. The parameters are com-
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puted as the union of all parameters of the con-
stituents.

The sequence constructor event occurs when-
ever an specified sequence of event types has
occurred. The parameters computed using the
union of the parameters of the constituents ex-
cept for t,c.(E), which is derived from the ter-
minator constituent.

Interval Constructors: In Snoop [CM93]
the following interval constructors are used: i)
aperiodic — this constructor works as an en-
abling/disabling filter where every occurrence of
an event type in a closed interval is instantiated
and passed to the recipients (e.g., the rule man-
ager in an active database) every time it occurs,
e.g., if aperiodic(E;, Es, E3) is specified every
occurrence of FEy will be detected and passed
to the recipients between the occurrence of E;
event and an E3 event; ii) aperiodicx — the
occurrence of the composite event type is in-
stantiated when the terminator event type is in-
stantiated and passed to the recipients, e.g., if
aperiodic* (E1, Es, E3) is specified every occur-
rence of Es will be collected between the occur-
rence of an E; and E3 event but the aperiod*
event will not be detected until the occurrence
of Eg; iii) periodic — every occurrence of a pe-
riodic event type in a closed interval is detected
and passed to the recipients when it occurs, e.g.,
if periodic(E;,[t], E2) is specified an event is
generated with periodicity £ between an occur-
rence of an E; and an E, event; iv) periodic*
— this constructor works like a sampler, i.e.,
the composite event type is instantiated when
the terminator event type is instantiated. E.g.,
if periodic * (Ey,X : [t], E2) is specified the X
will be sampled with a periodicity ¢ between
an occurrence of an F, and an E5 event and
the result will be instantiated and passed to
the recipients when an event E, occurs; v) not
— which is instantiated if and only if an ev-
ent type does not occur within a closed interval,

e.g., not(Ey, Es, E3) is instantiated if an E; ev-
ent occurs followed by an E3 event without any
E, events in between.

Unlike the other active database prototypes
SAMOS [GD93] intervals are always closed by a
temporal event type. SAMOS supports the in-
terval constructors: i) the closure constructor —
which stems from HiPAC prototype [DBB+88]
and is the originator to aperiodicx operator and
can be modeled like aperiodic * (E1, E1, Es);
and ii) the history constructor — the compos-
ite event type is instantiated when a specified
number of occurrences of an event type has oc-
curred, e.g., the TIM ES(n, E) event is instan-
tiated when the event E has occurred n times.
This constructor may be viewed as a short form
of a sequence. Furthermore, SAMOS also have
the not constructor.

The REACH prototype supports the closure
constructor, history constructor and the not
constructor [Buc94, BZBW95).

As the Ode prototype supports a very expres-
sive event specification language based on regu-
lar expressions all of the above constructors can
be built out of their minimal set of basic con-
structors [GJ92a).

In this study aperiodic, aperiodicx, periodic,
periodic#, not, and the history constructors are
considered to be desirable due to the expressibil-
ity. However, these operators must be bounded
in a real-time system otherwise it will be impos-
sible to predict how large an event instance can
be and, hence, it is not possible to calculate the
time it takes to pass the event instance to the

recipients.

Temporal Constructors: The periodic and
periodic* operator in Snoop are also temporal
operators. In REACH [Buc94] the relative tem-
poral event is considered to be a composite event
type, because only primitive events are possi-
ble to detect in an efficient manner and no real-

time aspects can be applied on event composi-
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tion in REACH. The relative temporal operator
is viewed as a sequence with an additional com-
plexity that a timer must be set when the initia-
tor of the relative temporal event type occurs.

The REACH prototype [Buc94] introduces a
new temporal event type milestone which is re-
lated to a relative temporal event and there-
fore considered to be a composite event type
in REACH. The milestone event type is used
to invoke contingency plans. For example, as-
sume that a contingency action takes Tyop; time
and a transaction must be completed within
Tcompt time then the milestone event will occur
at Teompt — Teont time so that the contingency
transaction can be invoked. If the original trans-
action has not completed at Tomp it is aborted
and the contingency transaction is committed
instead.

Our view is that the relational temporal event
is an composite event constructor. Furthermore,
there is a need for the milestone event type in a
real-time system with contingency plans.

3.2 Event Detection and Compo-
sition

EBvent detection is the mechanism that detects
the occurrence of an event and disseminates the
event instance to the recipients, e.g., the rule
manager in an active DBMS. Event composition
is the process of assembling composite events
out of its constituents. A composite event type
occurs when there is a fully composed event in-
stance of that type and can, hence, be detected
(see composite events section 3.1.4).

In SAMOS [GD92] user defined event types
are signaled directly to the rule manager rather
than passed via the event detector, which is
The drawbacks
are: i) user-defined event types cannot be part of

claimed to be more efficient.

a composite event types; and ii) all event types
are not uniformly treated. Uniform treatment of
event detection/composition makes it less com-

plex.

In addition, relational monitors [Sno88] has
been suggested as a general monitoring concept,
however, these are inefficient (see section 2).

3.2.1 Time of Occurrence and Time of

Detection

As mentioned in Snoop [CM93] there is a dif-
ference between the time of occurrence of an
event and the time of detection of an event
(Taetay = Taet — Tocc) that must kept sufficiently
low. If the granularity of the timebase of the
computer system is g, then Tyeioy < 2% g, in a
real-time system with d;-precedence (see section
1.1.3). This difference quantifies the timeliness,
i.e., how fast the system can respond to an ev-
ent. In the Snoop prototype [CM93] the lower
bound of the timeliness is considered important
for contingency actions, i.e., how fast can a con-
tingency action be invoked. However, in a real-
time system the upper-bound is more interesting
for predictability (and efficiency) reasons. Fur-
thermore, the lower and upper bound on event
detection should preferably be as close as pos-
sible to avoid low resource usage (and increase
predictability). ‘

In the Ode, SAMOS and REACH prototypes
and in a later paper about Snoop [CKAK93] the
difference between the time of occurrence and
the time of detection of an event is considered
to be sufficiently low. This assumption is good
enough for non real-time uni-processor systems.

In an event-triggered real-time system the de-
lay between the detection and the occurrence of
an event cannot always be assumed to be suffi-
ciently low as these systems are prone to event
showers (see section 1.1.1). For example, if the
burst of events in an event shower consists of
B events and it takes tipeqs and tipeqs is larger
than the interarrival time time to detect each of
the event then the delay between the occurrence
and the detection of the last event in the burst
will be B # t4y¢q; [KV94].
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3.2.2 Stable Events in Distributed Sys-
tems

In a distributed system there is always a delay
between the occurrence of an event at one node
In global
event detection this issue lead to the question:
“When can an event be consumed?” [CM93].
This problem is analogous to the stable re-
quest problem [Sch94, Sch95b, page 176-177).
Clients request replicas to perform services for

and its detection at another node.

them and requests are totally ordered according
to a pre-defined scheme. The question here is
“When can a request be serviced?”.

When a replica has received requests with
higher timestamps from all nodes than a pend-
ing request, then the pending request can be
served given that all clients send their requests
in strict order and a request is assumed to al-
ways arrive at the destination. In a similar man-
ner event instances can be consumed when a
node has received event instances with higher
timestamps than a pending event instance from
all other nodes. If the distributed system is sup-
ported by a real-time network with support for
group protocols an event is stable after 2xw+ T,
time (where Ty is the delivery delay in the sys-
tem), otherwise it may be necessary to send null
event instances [SHM95], i.e., event instances
that is only sent if no events has occurred during
a period of time.

If the distributed system is not supported by
a real-time network then a more computation-
ally costly approach must be used, i.e., querying
the other nodes of events, or introduce indeter-
minism into the system [SHM95].

3.2.3 Event Monitoring and Transaction

Boundaries

There are two issues found in the literature con-
cerning events and transaction boundaries: i)
the event instance’s validity interval — i.e., un-
der which conditions an event instance is still

valid for event composition — and ii) the seman-
tics of composite events based on events from
different transactions.

Validity Interval: An issue brought up by
Buchmann et. al. [BZBW95] is that not all
composite events that the event monitor is able
to detect will ever be fully instantiated. For ex-
ample, if the composite event type is E;andE,
and an E; event occurs, leaving a half-composed
With-
out clear semantics it is impossible to tell when

event instance in the event monitor.

the half-composed event should be removed, or
when it should be completed, e.g., which E; ev-
ent belongs to which half-composed event. In
the REACH prototype [BZBW95] they implic-
itly express the validity interval by using trans-
action boundaries — i.e., any half-composed ev-
ents are removed when a transaction is ended —
or explicitly by specifying the validity time of a
composite event type if the event type’s con-
stituents spans transaction boundaries.
Semantics: When the constituents of a com-
posite event type can stem from two or more
transactions, the semantics of the composite ev-
ent type is not clear because the atomicity prop-
erty of a transaction is broken. However, if
the event monitor does not disseminate any in-
formation about any detected composite events
spanning transactions until after all the transac-
tions have committed the property of atomicity
is not broken [BZBW95].

3.2.4 Event Parameter Contexts

In Snoop [CM93, CKAK93] four event param-
eter contexts — which control the event con-
sumption policies and the parameter compu-
tation of the event composer — were defined:
(most) recent context, chronicle context (also
known as chronological context [Buc94]), con-
tinuous context and cumulative context. These
are described below followed by a discussion.
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Most Recent Context: The most recent
context is considered to be usable in an envi-
ronment where a high rate of sensor readings
are entering the system and it does not matter
if a few readings are missed.

During event composition constituents of par-
tially instantiated composite events are over-
written whenever a more recent constituent is
detected. All event instances that are possible
constituents in a composite event type that are
not possible initiator constituents are flushed
from the event graph after a composite event
instance has been composed.

Chronicle Context: The chronicle context is
used when there is a correspondence between ev-
ents which needs to be maintained, e.g., work-
flow management and testing/debugging.

The initiator and terminator pair is unique
and whenever a composite event is detected the
oldest initiator and terminator constituent pair
is used to compute the parameters. All con-
stituents in a composed event instance are then

flushed from the event graph.

Continuous Context: In this context, each
initiator of a composite event type starts the
detection of that event type. A terminator ev-
ent may complete one or more occurrences of
the same event type. This context is especially
useful for tracking trends of interest on a slid-
ing time point governed by the initiator event.
In this context an initiator will be used at least
once for composition.

The major problem of this context is that it
produces combinations of events of which some
or all are of interest. It therefore adds more
overhead to the system and requires more stor-
age. Furthermore, in a real-time system the
worst-case execution time of the event composi-
tion algorithm might be too pessimistic. For ex-
ample, if the event monitor is part of the trans-

action and a deadline scheduler is used the re-

source usage may decrease due to the event mon-
itor.

Cumulative Context: All events instances
that can possibly belong to a composite are col-
lected from the time the initiator occurs until
the terminator occurs. When a terminator is
found, all events making up the composite ev-

ent instance are flushed from the event graph.

Evaluation of the Event Parameter Con-
texts: In his paper [Buc94] Buchmann states:

“As a minimum, a system must
support recent and chronological con-
sumption policies”

The reason being that most systems can be
designed without the continuous and the cumu-
lative contexts. Furthermore, in a real-time sys-
tem these contexts introduce too much unpre-
dictability and overhead in the system.

Critique: The chronicle event parameter con-
text has an underlying assumption of how events
occurs in the system that is not applicable in
all cases, e.g., if the sequence of opening and
closing a file should be detected and file ”A?” is
opened followed by an opening of file ”B” fol-
lowed by a closing of file ”B” then a composite
event instance consisting of the sequence open
file ”A” and close file "B” would be detected.
More generally: i) event instances may be in-
correctly composed out of unrelated event in-
stances; and ii) a composite event instance may
be lost because an occurrence of an event in-
correctly replaces parts of half-composed event
instances.

Solution: Current research is investigating
the question of context sensitive conditional (fil-
tering) event composition, i.e., it should be pos-
sible to state under which conditions an event
composition should take place [Sch95b]. For ex-
ample, if it would be possible to state that the
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event instances should refer to the same file in
the previous example then the problem can be
solved.

3.3 Expressiveness vs Efficiency
and Predictability

3.3.1 A Comparison of Internal Repre-

sentations

In a comparison of composite event detection
methods made by Deutsch [Deu94], where space
requirements and the complexity of the algo-
rithms are discussed, the results in table 1 on
page 24 are noteworthy.

The table highlights: i) what type of grammar
(arbitrary or operator) the event specification
language is based upon; ii) the space require-
ment (e.g. number of nodes) of the internal rep-
resentation for composite event detection; iii)
the transition cost in the internal representa-
tion when a primitive event is instantiated; iv)
whether the transition cost depends on the num-
ber of composite events that is specified, and v)
if the internal representation of the event speci-
fication is suited for parallel or distributed com-
posite event detection.

The comparison shows that, in terms of ef-
ficiency of the composite event detection algo-
rithms, the event graphs are far better than fi-
nite state automata and Petri-nets. The tran-
sition cost of an event graph is constant and
it requires considerably less space than a finite
state automaton. Furthermore it is suited for
parallel detection and composition.

The price that has to be paid for efficient
composite event detection in a system, is less
expressibility in the event specification lan-
guage. However, in the Snoop [CM93, CKAK93]
and REACH [Deu94, BZBW95] prototypes it is
strongly indicated that it is possible to cover
most situations that need to be detected with a
simple yet powerful event specification language
based on an operator grammar.

The ODE prototype [JMS92, GJ92a, GIM93]
has a very expressive event specification lan-
guage where conditions, which can access the
whole database, are added as filters. These fil-
ters may make the event detection very ineffi-
cient and the use of (extended) finite state au-
tomata may result in a state explosion in the in-
ternal representation of the event specification.

Even though SAMOS, where Petri-nets are
used as the internal representation [GD92,
GD93, GGDY4], has the possibility to use any
grammar, an event operator based grammar is
used.

3.3.2 Event Criticality

Event criticality denotes how critical an event is
in an environment, which affects the event con-
sumption policies, e.g., event types triggering
associated critical tasks (e.g., rules) are assigned
high criticality in order to have a higher prob-
ability of guaranteeing their deadlines — espe-
cially during event showers (see section 1.1.1).
For the purpose of this study only high and low
criticality will be considered because it is trivial
to extend the examples.

Assigning Criticality to an Event Type:
One way if assigning criticality to an event types
is to map the criticality of a task’s deadline
to the task’s associated event type(s). How-
ever, criticality inheritance and parameter de-
pendence (explained below) threatens the con-

cept of event criticality.

Criticality Inheritance: A constituent ev-
ent type must be assigned the maximum crit-
icality derived from its associated tasks and the
composite event type(s) it is part of, otherwise
detection of a critical composite event type may
be delayed. This may, in the worst case, imply
that all primitive event types are assigned high

criticality.
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Property Internal Representation
Finite State | Petri Nets Event Graphs
Automata
event expression grammars: arbitrary arbitrary operator only
number of internal nodes for n | <= 2" O(n), > 3n O(n), > n
primitive events
transition cost 1 0(n®) 0(1)
transition cost depends on num- | No Yes! No
ber of composite events
suited for parallel detection No No Yes

Table 1: Qualitative Comparison of internal representation of composite events

Parameter Dependence: The criticality of
an event type may also depend on the pa-
rameters, e.g., a temperature reading event
(ETemp(T))of a monitored patient is not crit-
ical unless the temperature is above 43 degrees
Celsius. This may also cause all primitive event

types to be assigned high criticality.

A Solution: By using eztended event types
— which are the basic event types (see section
3.1.3) expressing criticality — that are either
generated instead of the basic event type or
transformed from the basic event type before
the event detection not all primitive event types
are assigned high criticality [BH95). For exam-
ple, instead of having one event type expressing
the temp reading event there are two extended
event type ETemppion(T), which only occurs
when the temperature is above 43 degrees Cel-
sius, and ETempr.w(T), which always occurs.
As a consequence more events are generated and
it remains to be seen if this technique can be
used.

Implementation: The event criticality of an
event instance must be determined before or
when it is detected. This can be done two ways:
i) by the event monitor that checks the criti-
cality when the event instance is received — as
this requires lookup tables event criticality may
be dynamically changed, however, the overhead

cost may be too large; and ii) the event instance
is attributed with a criticality by the (software)
sensor — a method that is more efficient than
the first case, however, it is difficult to perform
dynamic changes of the criticality.

In a real-time system the second approach is
more appropriate as there is no need to han-
dle unanticipated dynamic changes. A real-time
system often operates in various run modes — a
run mode is subset of all tasks that are activated
during a certain situation, e.g., a flight control
computer is in different modes during cruising,
taking off, landing, and taxing — where the dy-
namic changes are between these prespecified
run modes. These dynamic changes are pos-
sible to handle in the second approach as the
amount of run modes normally are few, changes
does not take place often, and a (software) sen-
sor only needs to lookup the current run mode.

4 Debugging

Debugging normally involves step by step exe-
cution of sequential code, setting breakpoints,
and tracing execution of code and changes of
variables. This is straight-forward in a tradi-
tional non real-time sequential system, but not
in a parallel, distributed, or real-time system
[Gai85, Plag4).

Research in debugging can be categorized
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as: i) control and observation — i.e., exter-
nal control of the execution and monitoring of
the execution; ii) visualization [Mil92]; and iii)
techniques and tools for assisting debugging —
e.g., slicing (a technique to indicate in what
parts of the system where the fault may be)
[Agr91, KSF92], or algorithmic debugging (fault
diagnosis using additional information about
the system) [Sha82].

After a general introduction the issues of con-
trol and observation will be discussed. The is-
sues of visualization, as well as techniques and
tools will not be covered, as they are considered
not to affect the control and observation policies
or mechanisms of the debugger.

4.1 Testing vs Debugging Activi-
ties

Testing and debugging are often confused
[Bei90]. A common distinction is that the pur-
pose of testing is to show the existence of faults,
whereas the purpose of debugging is to localize
the fault [Bei90, Som92].

4.2 Aspects of traditional debug-
ging

Debugging normally follows the cycle of intro-

ducing a fault hypothesis, testing the fault hy-

pothesis and localizing the fault (execute code)

and edit code (hopefully correcting the error)

[Agro1].

Debugging can be divided into: i) logical de-
bugging — the purpose is to localize logical
faults; ii) performance debugging — the purpose
is to localize performance bottlenecks; and iii)
timeliness debugging — the purpose is to local-
ize timeliness faults [TKM89].

4.2.1 Functionality of Logical Debuggers

The functionality of traditional logical debug-
ging is, typically, as follows: i) setting condi-

tional or unconditional break points in the code
— when a breakpoint is encountered the appli-
cation is stopped and control of the system is
passed to the debugger; ii) executing code step
by step — this can be viewed as a special case of
setting break points; iii) conditionally or uncon-
ditionally tracing execution of code or changes
to variables; iv) inspecting variables and chang-
ing their values; and v) changing the flow of ex-
ecution in the code — e.g., making an arbitrary
jump to any point in the application code.

This functionality is independent of the level
of debugging, e.g., machine code, assembly lan-
guage code, or source language code such as
ADA, C++ and LISP. The functionality is not
related to whether or not the code is compiled or
interpreted. It is simpler to build a debugger for
a interpretive language and normally these de-
buggers are more flexible and have more expres-
sive power than their counterparts for compiled
programs [Agr91].

4.2.2 Functionality of Performance De-
buggers

The goal of performance debugging is to local-
ize bottlenecks, which requires a simpler func-
tionality than in logical debugging. The major
problem in performance debugging is visualiza-
tion which is not covered in this survey. Perfor-
mance debugging can be based on event traces,
however, other methods are preferred as these

traces may become immense in size.

4.2.3 Functionality of Timeliness De-
buggers

The author knows of no actual debuggers for
timeliness debugging, however, the ARTS op-
erating system [TM89] includes the concept of
time fence — a time assigned to an operation
and if the operation does not finish within the
time fence an exception will be raised — which
can be used for timeliness debugging.
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4.3 Control and Observation for
Logical Debugging Purposes

In order to debug a system it must be instru-
mented (see section 2). Event monitoring (see
section 3) can be used for debugging purposes,
however in performance debugging it is not nec-
essary to use event traces.

4.3.1 On-line vs Off-line Debugging

Debugging can either be done on-line — the de-
bugger observes and controls the system while
it is executing — or off-line — the debugging
is performed post-mortem, i.e., after the system
has been executed, on a event trace collected of
the system

The advantage of on-line debugging is inter-
active control and ease of use, but the disad-
vantage is that it may cause a probe-effect (see
section 2). This is serious even for non real-time
parallel and distributed systems due to the un-
predictable behavior, e.g., it may be impossible
to reach the system state where an error occurs.

Off-line debugging is a way of avoiding or min-
imizing the probe-effect by debugging the sys-
tem post-mortem, however, it is more difficult
to use and in order to inspect the system in
a certain state, replaying execution (see section
4.3.2) — i.e., re-executing the events in a trace
in order to reach a certain state — is necessary.

4.3.2 Replaying Execution

Replaying is interesting in logical debugging
(and possibly timeliness debugging). Replay-
ing of an event trace for debugging purposes is
equivalent to the problem of regression testing,
i.e., the test suites should be re-executed after
the system has been corrected in order to check
that new faults were not introduced. The pur-
pose of replaying for debugging differs from re-
gression testing in that only one certain state
needs to be reached.

The three major problems in replaying an ex-
ecution are: i) the time to replay an event trace
to a certain state may be unacceptably long
(this is not a major issue in testing) [NSX94];
ii) in a real-time system the exact timings must
be used during replay (not only the order) (cf
regression testing [Sch94, Sch95a)); iii) addi-
tional probe-effect should not be added during
replay [Sch94, Sch95a); and iv) an environment
simulator must be used in a real-time system
[Sch94, Sch95a].

Furthermore, according to [Sch95a] the ex-
act order and timing of significant events (i.e.,
synchronization of processes, access to the sys-
tem’s notion of time, and asynchronous inter-
rupt) must be recorded to be able to correctly
replay an execution. It is our contention that
the primitive event taxonomy (see figure 4 cov-
ers most significant events in an active database.

Tracing for Fast Replaying: In the work of
Netzer et. al. [NSX94] an approach mixing mes-
sage logging with independent checkpointing of
process states is presented which reduces the
amount of logged messages by 90 percent com-
pared to logging all messages. However, their
tests only covered CPU and message intensive
applications where the average reduction of mes-

sage logging was measured.

5 Summary

5.1 Event Monitoring
5.1.1 Traditional Steps of Monitoring

The traditional (and general) steps in monitor-
ing were introduced (section 2). These steps are
typically followed when any kind of system is
monitored (cf Instrumentation of Active Data-
bases, section 2.4.3).
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5.1.2 Monitor Implementations

There are software, hardware, and hybrid mon-
itors where hybrid monitors combine the flex-
ibility of a software monitor with the minimal
intrusion caused by a hardware monitor (see sec-
tion 2.1). Hence, it is possible to make the in-
strumented tasks more predictable as the event
generation and the data collection part of the
monitoring may be designed so that only a con-
stant and small overhead is added to the task
(see section 2.2).

Furthermore, a hybrid monitor can be used
for monitoring by software engineering tools
without causing any additional intrusion on the
event generation and observation parts of the
system. However, time to perform event detec-
tion increase because the time to disseminate
the event instances to the recipients increases.
This extra overhead due to multiple recipients
must be considered during the design of the sys-
tem. For example, if the system is supported
by a real-time network with group protocols the
time to disseminate the event instance to multi-
ple recipients will be constant (see distribution
section 1.1.3).

5.1.3 Event Specification

Concepts used in the Snoop, REACH, SAMOS
and ODE prototypes were discussed in terms of
fault-tolerance and distribution and the follow-
ing definitions were adopted in this study (see
section 3.1). The basic definition is that an ev-
ent is atomic and instantaneous in contrast to an
interval, which can stretch over a period of time.
A logical event is the representation of an event
on the conceptual level in contrast to a phys-
ical event (to which a logical event is mapped
using an event modifier), which is the actual ev-
ent that occurs when a logical event is said to
occur. A filtered event is an event that occurs if
and only if an associated condition (filter) holds
true (this subsumes the term “logical event” as

used in the ODE prototype). Simultaneous ev-
ents are events that occurs at the same time
according the granularity of the chosen time
scale, however, it is possible to avoid the prob-
lems caused by detecting simultaneous events by
differentiating according to a pre-defined order
and, thus, preserve the total order.

An event modifier maps a point in a closed
interval, e.g., transaction, to an event. An ev-
ent type is described by an event expression,
which is composed out of other composite or
primitive events based on an event algebra us-
ing constructors. In this study an analogy to
object-orientation is made, i.e., the actual oc-
currence of an event of type event type is an
event instance. Event attributes are separated
from parameters, which are used during com-
posite event detection.

Furthermore, definitions for definite event,
causal precedence, general event history, event
algebra, initiator and terminator constituents,
event attribute, event parameter were discussed.

Primitive Events: A primitive event is a pre-
defined elementary event that is generated by
the system, by the environment, or by the ap-
plication. The suggested resulting taxonomy of
primitive events (see figure 4 on page 16) in
this study divides primitive events into: i) event
generated by applying event modifiers to inter-
vals, i.e., method invocations, database opera-
tions, and transactions; ii) temporal events only
consisting of the absolute temporal event type;
iif) explicit events; and iv) value events. The
major reason for this taxonomy is clarity and,
hence, even if most of these primitive events can
be modeled as method invocation events this is
not shown in the taxonomy. The more general
concept of an interval is used to categorize ev-
ents generated in closed intervals. Furthermore,
transaction events are separated out from da-
tabase events as there may be transaction sys-
tems outside the DBMS, i.e., a process executing
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within a transaction may not access the data-
base.

Primitive events for distribution and fault-
tolerance may be needed, however, as there is
no work done on these event types in active da-
tabases no such event types are included in the
taxonomy.

The event modifiers begin-of, end-of, aborted,
and (prepare to) commit are all considered nec-
essary (see section 3.1.3). The first two are
needed in order to map an interval into events.
The abort modifier is needed in case it must be
possible to trigger recovery rules if an transac-
tion fails. The commit event modifier is needed
to be able to trigger rules before the transaction
actually commits, which may be used for two
phase commit and various coupling modes.

The event attributes type(E), tocc(E) (time
of occurrence) are the two natural attributes
of an event. Furthermore, in this study we
present a generalization of t;4(E) and u;q(F)
called scope(E), which uniquely denotes which
active component (e.g., process, transaction) is
accessing which passive (component). The ac-
tual content of scope(E) attribute is architec-
ture dependent and is only necessary when the
event monitor executes outside the scope where
the event was generated. In addition, the pro-
tection domain dom(E) attribute may have to
be carried explicitly if it must be possible to
protect resources during event monitoring. (See
section 3.1.2).

Composite Events: A composite event is
specified using an event expression and occurs
when the terminator event has been composed
into a composite event instance. (See section
3.1.4).

The disjunction, conjunction and sequence
constructors are adopted in this study, as well as
the interval constructors aperiodic, aperiodicx,
periodic, periodic#, and not.

The history constructor can be viewed as a

short form of sequence constructor and, thus,
it is not strictly necessary. The closure opera-
tor can be modeled using the aperiodicx opera-
tor. Furthermore, the any constructor found in
Snoop can be viewed as a short form of conjunc-
tion and, hence, it is not strictly necessary.

In addition the temporal constructors consists
of relative temporal constructor and the mile-
stone constructor (i.e., events generated in or-
der to start contingency actions or to monitor
the progress of a transaction).

5.1.4 Event Detection and Composition

Event detection is the mechanism that detects
that an event has occurred, whereas event com-
position is the mechanism that composes com-
posite event instances out of its constituents.
A composite event occurs when it is fully com-
posed and, hence, it can be detected.

In order to be able to perform global event de-
tection and composition in a distributed system
it must be possible to determine when an event
instance is stable and can be consumed. If the
distributed system is supported by a.real-time
network then an event instance is stable after
2x 7 + T, time after the occurrence of the event
(where T is the delivery delay in the system).
In other cases more computationally costly or
insecure approaches be used which results in
that either the event detection and composition
will take a long time and unpredictability is in-
troduced (see section 3.2.2).

Composite event detection using event graphs
is a efficient and predictable mechanism. Fur-
thermore, the event graphs requires less space
than petri-nets and finite state automatas. In
addition, event graphs are suited for parallel de-
tection and composition (see section 3.3).

Validity intervals are used to determine when
half-composed event instances are valid. If the
event type does not span transactions bound-
aries then the validity interval is simply the life-
time of the transaction, otherwise the validity

28



interval must be specified explicitly (see section
3.2.3).

Event parameter contexts are used to spec-
ify the event consumption and event parame-
ter computation policy, however, these are not
enough as they only work under certain assump-
tions. As a result composite event instances
may be lost or incorrectly composed out of con-

stituents (see section 3.2.4).

5.1.5 Expressiveness vs Efficiency and
Predictability of monitoring

The advantages of expressing what should be
monitored using a declarative language (cf
TQuel section 2, event specification languages
section 3) are: i) the steps required to moni-
tor a system will be reduced; ii) it is more un-
derstandable and, hence, maintainable — i.e.,
easier to change. However, the complexity of a
general approach (cf declarative relational moni-
toring section 2, expressiveness vs efficiency and
predictability section 3.3) makes it too unpre-
dictable and inefficient. A more restrictive, but
still powerful approach has been used in the ev-
ent monitoring of the Snoop and REACH pro-
totypes.

In order to make an event specification pre-
dictable the interval operators in the Snoop,
REACH, SAMOS and ODE prototypes must be
bounded, i.e., there must be limit to the amount
of constituents that a composite event type ”in-
terval operator” may consist of (see interval op-
erators section 3.1.4).

In order to assure predictable and efficient ev-
ent detection — especially during event shower
— for critical tasks the usage of event critical-
ity has been suggested, i.e., the event monitor
prioritizes critical events. This is, however, not
without problems leading to that all event types
in the system may be considered critical, e.g., if
a composite event type is critical its constituents
must inherit the criticality. By using extended
event types expressing the criticality, whose in-

stances are generated when the associated basic
event type occurs under the correct conditions,
it is possible to avoid these problems. At least
an event instance of the lowest criticality will al-
ways be generated when the basic event type oc-
curs. A problem with this solution is that more
event instances are generated in the system (see
section 3.3.2).

The time it takes to perform event composi-
tion and event detection must possible to derive
from the event specification and be bounded.
The interval operators (see section 3.1.4) must
be bounded (see section 3.2.1).

5.2 Debugging

Event monitoring can be used for software en-
gineering in general. Debugging is divided into
logical debugging, performance debugging and
timeliness debugging depending on the purpose.
This survey concentrated on logical debugging,
but the problems of using event traces are equiv-
alent for all three kinds of debugging.

In a distributed real-time system the differ-
ence between debugging and testing is mainly in
the purpose as off-line debugging is necessary to
avoid the probe-effect, i.e., the purpose of test-
ing is to show the existence of faults, whereas
the purpose of debugging is to localize them.
Hence, the mechanisms differ, however, both
testing and debugging is started by collecting
an event trace, which is the only general way of
avoiding the probe-effect. After the event trace
is collected it is analyzed in testing, whereas,
in debugging replay of the event trace is neces-
sary. The replaying of an event trace suffers the
same problems as regression testing, i.e., replay-
ing with the exact timings and order, and no ad-
ditional probe-effect may be introduced during
replay.

It is our contention that the resulting primi-
tive event taxonomy covers most of the signifi-
cant events that must be recorded to be able to
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correctly replay an execution.

5.3 Future Work

The current work issues are: i) how to make ev-
ent detection/composition predictable and effi-
cient; ii) reviewing various testing techniques in
order to investigate if the primitive and compos-
ite event types are sufficient; iii) investigate the
interaction between the scheduler and an event
monitor executing together on a CPU separated
from the application; iv) reviewing the necessity
of detecting simultaneous events; and v) evalu-
ating conditional (filtering) event detection.
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Appendix: OSE Delta

OSE Delta is a proprietary operating system
developed by ENEA Data AB[OSG95, ORR].
A short description of the common properties
concerning structure and portability, processes,
communication, scheduling and modularity are
described followed by the more interesting prop-
erties such as distribution [0SG95, ORR] and
the Distributed Debug Server (DDS) [ODG95,
ODR95].

Structure and Portability

The general strategy of the design OSE Delta
is portability and efficiency, i.e., only a small
part of the operating system is dependent on
the hardware architecture while it handles in-
terrupts in an efficient manner. This strategy

can be found in other state-of-the art operat-
ing systems such as Chorus [RAA+90] and QNX
[Hil92].

The interfaces between the operating system
and hardware driver routines are open in or-
der to let users and vendors supply their own
drivers. Currently two major driver routines
have a public an interface: i) the file system,
and ii) the link handler — the link handler man-
ages the communication links between the dis-
tributed nodes.

OSE Delta can execute on hard and soft tar-
gets. On a soft target preemption can only oc-
cur when operating system calls are executed
and true interrupts cannot be handled, whereas
on a hard target true preemption and inter-
rupts can be handled (the kernel is protected
but have preemption points for increased con-
currency [SG94]). No further distinction will be
made between soft and hard targets in this sur-
vey.

Scheduling and Processes
Scheduling

All process types in OSE Delta are scheduled
according to a preemptive priority based policy
using FIFO ordering on the same priority except
on the lowest priority which is handled using
round-robin scheduling [Han94, OSG95, ORR].

Process Types

OSE Delta supports four kinds of process types:
i) interrupt process — a process which is started
when its associated hardware interrupt occurs;
ii) timer process — a process that is started pe-
riodically; iii) prioritized process — the basic
process type; and iv) background process — a,
process executing on the lowest priority.
Priority and background processes can be cre-
ated dynamically at run-time (dynamic pro-
cesses) or configured into the operating system
(static processes), whereas interrupt and timer
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processes must be configured sta,ticall'y into the
system.

Parent-child hierarchy

There is no parent-child relationship between a
creating process and a dynamically created pro-
cess, i.e., a child can exist without its parent,
the child does not inherit any resources from the
parent, and there is no risk for implicit cascad-
ing termination [SG94]. However, there are no
implicit communication channels such as UNIX

pipes.

Process States

The processes in a system can be in the follow-
ing states: running, ready, blocked, suspended,
and intercepted — an intercepted process is a
suspended process that is controlled by another
process for system level debugging purposes.

Priority Inversion

It is not possible to set priorities from another
process and, therefore, most solutions [BW89]
to the priority inversion problem cannot be ap-
plied.

Interprocess Communication and
Synchronization
OSE Delta supports:

sage passing, i.e., only the receiving process is
blocked, extended with the possibility to set a

i) asynchronous mes-

timeout on the receive primitive and selective
waiting — i.e., being able constrain what mes-
sage types a process can receive in an receive
operation, and ii) semaphores — both general
and fast semaphores (only the owning process
can wait on a fast semaphore).

Modularity

It is possible to emulate a virtual node [BW89)
- a virtual node consists of active components

(processes) and passive components (procedures
and shared variables), which can only be ac-
cessed through the virtual node’s common ex-
ternal interface — using the block concept, in
which processes can be grouped, and the simple
protection mechanism in OSE Delta. However,
it is not possible to create a sub block inside a
block.

Distribution

The link handler maintains communication and
logical channels — a logical channel hides the
physical channel to a process and makes the
handling of remote interprocess communication
almost transparent — between processes on dif-
ferent nodes.

The link handler can either be i) statically
configured — during compilation or booting; or
ii) dynamically configured — during run-time.
Static configuration is fully transparent to the
user, however, the static configuration is not
fault-tolerant, i.e., it is not possible to stati-
cally configure what should happen when a logi-
cal channel is broken. Dynamic configuration is
not fully transparent because there is no global
naming schema. Furthermore, in order to make
a fault-tolerant system the process requesting
monitoring of a logical channel must be designed
to handle a specific message which is sent from
the link handler when ever a monitored logical
channel is broken.

Distribution and Order

When distributed OSE Delta kernels are used,
total ordering is not supported because the
messages (OSE signals) are not time stamped,
which will lead to certain global properties be-
ing impossible to detect. E.g., it is impossible
to check for global states and to make correct
algorithms [SG94, Lam78] (see section 1.1.3).
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Distributed Debug Server

The Distributed Debug Server (DDS) is a system
level debugger, i.e., the DDS is only concerned
about processes, blocks and systems. and con-
tains no data about the source level language.
The DDS must be connected to an OSE Delta
kernel using the same physical communication
links that OSE Delta kernels themselves are us-
ing, i.e., no extra hardware is needed. The DDS
shares features with source language level de-
bugger, which will be explained below.

Structure

On each OSE Delta kernel there is a special
monitoring process, which has a tight coupling
with the kernel, i.e., data about the system can
be transferred to the monitoring process in an
efficient way. If an OSE Delta system on a node
must be debugged the DDS must be connected
to the monitoring process on the OSE Delta
kernel executing on that node. The DDS is a
front-end to the monitoring process, where the
DDS issues commands to the monitoring pro-
cess, which in turn performs the control and ob-
servation of the system.

The DDS can only be connected to one mon-
itoring process at a time, however, it is possible
switch between such processes. If more than one
kernel has to be debugged simultaneously, two
or more DDS instances can be executed simul-
taneously, each connecting to a different moni-
toring process. However, this has limited use as
total order is not supported (see section 1.1.3).

Features

The DDS can instruct the monitoring process
to: 1) trace events — traces the event to a buffer
that can be displayed analyzed post-mortem via
the DDS; ii) monitor events — displays the ev-
ent occurrence immediately via the DDS; and
ili) catching events, i.e., set a conditional or un-
conditional breakpoints on events (more than

one thread of execution can be halted).

Events are specified using event types which
currently are: i) send/receive message; ii) cre-
ate/dispatch/kill process; iii) system warm/cold
start; iv) system/user error.

It is
possible to specify a scope consisting of blocks

Scope of monitoring and catching:

and/or processes in order to constrain the over-
head caused by the monitoring and catching fea-
tures, i.e., only the processes and blocks within
the scope will be subjected to monitoring or
catching.

Tracing: It is possible to enable/disable trac-
ing of a specific event type (see section 2). Fur-
thermore, it is possible to specify under what

conditions tracing should be enabled.

Sequences: It is possible to place combina-
tions of trace, monitor and catch commands in
sequences. Debugger commands in one sequence
are valid as long as the debugger is using that
sequence. In order to handle different sequences
it is possible to make another sequence of de-
bugger commands the current sequence (called

“goto” in DDS).

Conclusions concerning OSE Delta

In order to avoid the priority inversion problem
there is a definite need for being able to set the
priority of another process.

A better support for distribution is desirable,
i.e., support for global ordering, a global time-
base, and a global naming schema (see section
1.1.3).

If the interface to the monitoring process
would be public it could be used for event mon-
itoring as described in sections 3 and 2.
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