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1. Introduction 

Surface defect detection is a crucial component of quality 
control in the manufacturing industry [1]. Automatic surface 
defect detection in industrial settings has been shown to have 
numerous benefits over manual quality inspection [2], such as 
enhanced inspection speed and accuracy and the capability to 
process large quantities of parts. However, automatic surface 
defect detection faces numerous challenges, including 
variations in the appearance and location of defects, the 
complex shapes and geometries of the target objects, and the 
varying degrees of cleanliness of the target surfaces [3].  

Researchers have been working to address these challenges. 
A review paper [4] summarized the state-of-the-art industrial 

surface defect detection techniques, including optical 
illumination, image acquisition, processing, and analysis. 
Besides, Chen et al. [3] reviewed traditional machine vision 
and deep learning methods for surface defects detection, while 
Zheng et al. [2] compared and emphasized deep learning 
advantages. For example, deep learning techniques are able to 
learn high-level features without expert knowledge, making 
them more automatic, generic, and robust [2].  

Among deep learning techniques, object detection is 
commonly used for surface defect detection, as it can detect and 
classify multiple objects in an image. Recent literature on 
object detection of surface defects has focused on improving 
the network architecture to enhance performance and 
efficiency, as seen in studies such as [5–8]. However, object 
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This paper presents an approach to automatic surface defect detection by a deep learning-based object detection method, particularly in 
challenging scenarios where defects are rare, i.e., with limited training data. We base our approach on an object detection model YOLOv8, 
preceded by a few steps: 1) filtering out irrelevant information, 2) enhancing the visibility of defects, namely brightness contrast, and 3) increasing 
the diversity of the training data through data augmentation. We evaluated the method in an industrial case study of crown wheel surface 
inspection in detecting Unclean Gear as well as Deburring defects, resulting in promising performances. With the combination of the three 
preprocessing steps, we improved the detection accuracy by 22.2% and 37.5% respectively while detecting those two defects. We believe that 
the proposed approach is also adaptable to various applications of surface defect detection in other industrial environments as the employed 
techniques, such as image segmentation, are available off the shelf. 
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detection is heavily dependent on data availability. In instances 
where defects are infrequent, it can result in a lack of labeled 
data and class imbalances, potentially causing the overfitting of 
deep learning models [1].  

To address this challenge, Jin and Chen [9] conducted a 
review of surface defect detection methods in industrial 
settings with a focus on utilizing a small amount of labeled 
data. Their study categorized the methods into two main 
groups: traditional image processing methods, such as 
statistical, spectral, and model-based approaches, and deep 
learning methods, including data augmentation, transfer 
learning, model-based fine-tuning, semi-supervised, weakly 
supervised, and unsupervised methods. Other studies [10,11] 
have integrated image processing techniques, such as Gaussian 
filtering, Hough transform, and ROI image augmentation, with 
deep learning techniques to address issues of limited samples 
and imbalanced datasets for the specific purpose of detecting 
defects on round shape objects or strip steel surfaces.  

Despite the availability of these methods, there is currently 
a lack of clear guidance on effectively utilizing object detection 
for surface defect detection with limited training data. The 
abundance of available methods can make it difficult for 
industrial end users to determine an appropriate one for their 
specific use cases. Furthermore, most of these methods have 
been evaluated on benchmark datasets, such as MVtec AD 
[12], or specific datasets, such as fixed-shape objects [10], 
which may not fully reflect the complexities of real-world 
industrial scenarios.  

To provide guidance for production end users, this paper 
presents a method for surface defect detection with limited 
training data.  The method utilizes an object detection model 
YOLOv8 [13], pre-trained on the COCO dataset [14] for defect 
detection, and incorporates three preprocessing steps to 
mitigate the limitation of insufficient training data: 1) filtering 
out irrelevant information, 2) enhancing the visibility of 
defects, and 3) increasing the diversity of the training data. The 
method implements classic and easy-to-implement computer 
vision models to achieve each step. Specifically, semantic 
segmentation and image cropping are applied for filtering out 
irrelevant information; image processing techniques, such as 
contrast enhancement, are employed to improve the visibility 
of defects; and data augmentation is used to diversify the 
training data. 

The proposed method was evaluated in an industrial case 
study on crown wheel surface inspection and showed promising 
results. The key observations of the proposed method are 

 its ability to achieve promising results with limited 
training data thanks to the proposed combination of 
the three preprocessing steps, 

 its ease of implementation due to its reliance on mature 
and off-the-shelf models, making it a potential starting 
solution for various surface defect detection 
applications in industrial environments. 

2. Industry case study 

We chose crown wheel surface inspection as our case study. 
A crown wheel is a critical component of the drivetrain system 
in a vehicle. It is a circular gear with teeth on its edge that mesh 

swith the teeth of another gear, known as pinion, to transmit 
torque and rotation. In Scania, there is zero tolerance for defects 
on the surfaces of crown wheels, because the defects may cause 
dissonance in the gear system and ultimately cause damage to 
the crown wheel or its connected pinion, which may eventually 
break down the entire gear or truck. Therefore, the quality of 
the surface of the crown wheel is important for vehicle 
manufacturing. 

In Scania, various sizes of crown wheels must go through 
turning, grinding, and washing processes during 
manufacturing. Different defects can be generated through 
these processes. In the case study, we focus on two typical 
defects, Unclean Gear and Deburring, which can appear on the 
side surfaces of the teeth of crown wheels. 

Unclean Gear defects refer to the black spots that can appear 
on the surface of the teeth of crown wheels, as shown in Fig. 1. 
They may arise due to a lack of removal of this raw material 
during the grinding process. The black spots are hardened raw 
material on the crown wheel. 

Fig. 1. Samples of Unclean Gear defects.  

Deburring defects refer to defects that can appear on the 
edges of the crown wheel teeth, as shown in Fig. 2. They may 
occur due to excessive material removal during the deburring 
process. 

Fig. 2. Samples of Deburring defects.  

Due to the circular shape of the crown wheel, it is 
challenging to capture all the side surfaces of teeth in a single 
image. To address this, we fixed a Poly Studio P5 webcam on 
the left side of the crown wheel and rotated the crown wheel to 
capture images of the surfaces of various teeth. 

3. Method 

In this paper, we propose a method for detecting surface 
defects with limited training data. The method utilizes object 
detection and involves three preprocessing techniques to 
overcome the limitations of insufficient training data. Fig. 3 
provides an overview of the method, including its associated 
techniques and the specific models used in this study. 
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Fig. 3. The proposed method, techniques, and the specific models employed 
in this study. 

3.1 Filtering out irrelevant information 

The preprocessing begins by differentiating between defects 
and non-pertinent information, which enables us to concentrate 
on the defects specifically and eliminate distractions or noise 
from the surrounding environment. 

In the process of filtering out unrelated information, we first 
segment the target object from its manufacturing background 
using semantic segmentation. Subsequently, if the defects are 
confined to specific regions of the object, since the camera is 
fixed, we can then crop the image with fixed coordination to 
focus solely on the area containing the defects.  

Semantic segmentation is a technique that assigns a 
semantic label to each pixel of an image. This pixel-level 
semantic information is valuable to intelligent systems as it 
enables them to highlight the spatial positions of objects and 
make crucial judgments [15]. 

Recent review papers [15,16] have summarized state-of-the-
art deep learning models for semantic segmentation and have 
reported that the DeepLabV3+ model [17] has demonstrated 
cutting-edge performance on various semantic segmentation 
benchmarks, such as Pascal VOC [18]. 

The DeepLabV3+ model, introduced by Google in 2018, is 
a deep learning model designed for semantic image 
segmentation. It comprises a CNN-based encoder that uses 
atrous convolution and a decoder that uses spatial pyramid 
pooling and atrous convolutional blocks to generate dense 
predictions. The model is trained end-to-end to produce high-
resolution and accurate semantic segmentation [17]. One of the 
key advantages of the DeepLabV3+ model over other semantic 
segmentation models is its ability to generate precise and 
detailed segmentations, even on images with objects at 
different scales and with significant occlusions [17]. 

Given its superior performance, we utilized the 
DeepLabV3+ model to segment the target object from its 
background for surface defect detection. We applied the 
DeepLabV3+ model with a Python library PyTorch 
Segmentation API [19].  

3.2 Enhancing the visibility of defects 

After isolating the potential defects from the irrelevant 
regions, the resulting image contains only the defects and their 
surrounding surfaces. In cases where the defects are small or 
have similar color or texture to the surrounding surface, image 
processing techniques can be applied to enhance the visibility 
of the defects. A commonly used technique is to adjust the 
brightness, contrast, and color of the image. Different image 
enhancement techniques have been summarized in [20], 
including histogram-based and fuzzy techniques.  

By enhancing the visibility of the defects, we can improve 
the accuracy and reliability of the defect detection process as 
well as reduce the potential for false positives and false 
negatives generated by the defect detection algorithm. 
However, if the defects are clearly visible and distinguishable 
from the surrounding surface, this step may be omitted. 

In our case study, since the defects and their surface are in 
grayscale and the defects are darker than the surface, we 
wanted to increase the contrast of the image to enhance the 
visibility of the defects. To achieve this, we applied the 
Contrast Limited Adaptive Histogram Equalization (CLAHE) 
algorithm [21], which is a modification of the Histogram 
Equalization (HE) algorithm. It applies HE locally to small 
regions of the image rather than the entire image, in order to 
improve image contrast and visibility while also minimizing 
the amplification of noise and other artifacts [21]. We applied 
the CLAHE model with a Python library OpenCV [22]. 

3.3 Increasing the diversity of the training data 

After the previous steps, images with more clearly visible 
defects should be obtained. However, due to the limited 
availability of training data, a comprehensive representation of 
the variations present in real-world crown wheel images might 
not be achieved. To address this issue, we aim to increase the 
diversity of the training data to improve the generalization 
ability and robustness of the defect detection algorithm. 

To achieve this, we employ data augmentation techniques. 
Several image data augmentation techniques for deep learning 
have been summarized in [23]. Furthermore, user-friendly and 
open-source libraries are readily available for easily applying 
data augmentation techniques [24,25]. In this study, we applied 
various techniques, such as random brightness, rotation, hue, 
saturation, horizontal flip, blur, and noise on the training 
dataset to increase the diversity of the data. We applied the data 
augmentation techniques with the Python library 
Albumentations [24]. 

3.4 Performing defect detection 

After the three preprocessing steps, we utilize object 
detection algorithms to perform defect detection.  

Previous research has provided a comprehensive overview 
of state-of-the-art object detection models [26], some with a 
particular emphasis on those used in the context of 
manufacturing quality inspection [27,28]. A thorough 
examination of the literature reveals that among the various 
object detection models available, YOLO models stand out for 
their speed and efficiency. They have been shown to achieve 
high frame-per-second (FPS) rates in detection tasks, 
outperforming other models [27]. Additionally, YOLO models 
are relatively easy to implement and require fewer 
computational resources than models such as Faster R-CNN, 
making them a cost-effective solution [29]. 

Among the various YOLO models, the latest version, 
YOLOv8 [13], has been designed to improve accuracy over 
previous models. It has demonstrated impressive results on 
several well-known object detection benchmarks, such as 
COCO and Pascal VOC [13,26]. Therefore, the YOLOv8 
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model is employed for surface defect detection in the present 
case study. We applied the YOLOv8 model with a Python 
library Ultralytics [13]. 

4. Experiments and results  

The proposed method was implemented and evaluated 
through the case study of crown wheel surface inspection.  

The number of images of each defect used for the 
experiments has been summarized in Table 1. Both positive 
(images with defects) and negative (images without defects) 
examples were utilized during the testing.  
Table 1. The number of images of different defects 

Defects  Unclean Gear Deburring 

Train  21 16 

Valid  6 4 

Test 
Positive 15 15 

Negative  12 17 

For each defect, we applied object detection with the three 
preprocessing steps. Each step and its visualization results are 
summarized in Figs. 4 and 6 for the Unclean Gear and 
Deburring defects, respectively. 

During the experiments, the DeepLabV3+ model, which 
utilizes a SE-ResNet encoder pre-trained on ImageNet, was 
trained for 30 epochs with a batch size of 4, an initial learning 
rate of 0.001, and a final learning rate of 10-5. The YOLOv8 
model, which was pre-trained on the COCO dataset, was 
trained for 600 epochs with a batch size of 8, an initial learning 
rate of 0.01, and a final learning rate of 10-4. All experiments 
were conducted using an Nvidia RTX 2080 GPU with 8GB 
GDDR6 memory.  

To gain a deeper understanding of the impact of each 
preprocessing step, we conducted an ablation study in which 
we evaluated each step individually. In the three preprocessing 
steps, step 2 may be best applied after step 1 for optimal model 
performance, but step 3 can be applied individually without 
steps 1 or 2. 

The results of the ablation study were analysed at both 
image level and defect level. In some surface quality inspection 
scenarios, it is essential to determine the presence of defects but 
not necessarily their individual locations. In such cases, an 
image-level evaluation, which assesses the ability of the model 
to identify the presence of any defects on an image, is 
sufficient. Conversely, in scenarios where identifying the 
location of each individual defect is crucial, a defect-level 
evaluation is required. In the context of our case study, as the 
crown wheels have zero tolerance for defects on their surface, 
an image-level evaluation was of primary interest for 
evaluating the proposed method. However, a defect-level 
evaluation was also conducted to provide insight into potential 
future improvements in the robustness of the proposed method. 

At the image level, the models were evaluated using 
commonly accepted metrics, including precision, recall, F1 
score, and accuracy [30]. At the defect level, the evaluation was 
performed using mean average precision (mAP) [18], which 
assesses both the precision and recall of the detector and the 
quality of the bounding boxes produced.  

The image-level F1 score and accuracy of the ablation study 
were plotted against a range of confidence thresholds from 0 to 
1 in Figs. 5 and 7, respectively, for detecting the Unclean Gear 
and Deburring defects. Furthermore, the detailed scores of the 
image-level and defect-level evaluations were outlined in 
Tables 2 and 3, respectively, for detecting the two defects at a 
confidence threshold of 0.5. All the experiments were repeated 
three times, and we then reported the average top 1 results in 
Tables 2 and 3. 

5. Discussion 

5.1 Model performance and ablation study 

The proposed method exhibited high accuracy in detecting 
Unclean Gear and Deburring defects with a limited number of 
training images. The results presented in Tables 2 and 3 
indicate that Experiment 6, which involved three preprocessing 
steps, achieved 100% scores at the image level for both defects 
with only 21 and 16 training images, respectively. The 
accuracy score was improved by 22.2% and 37.5% for each 
defect compared with Experiment 1 without any preprocessing. 
Additionally, the mAP score at the defect level was 93.2% for 
the Unclean Gear defects and 98.9% for the Deburring defects, 
demonstrating the robustness of the model. 

The results of the ablation study, depicted in Figs. 5 and 7, 
further confirm the superiority of Experiment 6, which involves 
all three steps. Compared with other experiments, it achieved 
the highest F1 score and accuracy across a wide range of 
confidence thresholds for both defects. This indicates that the 
efficacy of our method can be attributed to the implementation 
of three preprocessing steps. 

Comparing Experiments 1 and 3, 2 and 4 reveals that step 1, 
which filters out irrelevant information, can improve the model 
performance at both image level and defect level. This is likely 
because step 1 ensures that the detection model is not affected 
by extraneous background or surface information, resulting in 
consistent and comparable training and testing images. 

Comparing Experiments 3 and 5 suggests that step 2, which 
enhances the visibility of defects, may lead to an improvement 
in recall for defect detection. This improvement can be 
attributed to the emphasis placed on defects, which makes the 
model more sensitive to their presence. Although this may also 
increase the false positive detections and reduce the precision, 
in the context of manufacturing defect detections, a low recall 
value, which indicates that some existing defects have been 
missed, may result in more critical consequences than a low 
precision value. 

Further, comparing Experiments 4 and 6 shows that the 
reduction in precision resulting from step 2 may be 
compensated by the increased diversity of the training data 
provided by step 3. The data augmentation may enhance the 
diversity of the defects, thus reducing the risk of overfitting the 
model to the trained defects. Comparing Experiments 1 and 2, 
3 and 4, and 5 and 6 shows that step 3 improves model 
performance most notably among all steps, at both image level 
and defect level. Additionally, adding randomization to the 
training set in step 3 may allow the model to better adapt to 
variations in production environments. This finding is 
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Fig. 4. A sample of the result of the proposed method on detecting the 
Unclean Gear defects. (a) An original image of the crown wheel with Unclean 

Gear defects, (b) Step 1, use instance segmentation to separate the crown 
wheel from its background, (c) Step 1, crop the crown wheel to focus on the 
defect area, (d) Step 2, enhance the visibility of the defects, (e) Step 3, use 
data augmentation to increase the diversity of the training data, (f) After 
preprocessing, use object detection to detect the defects on the surface. 

 Fig. 5. YOLOv8 image-level results of Unclean Gear defect detection 
ablation study. (a) F1 confidence curve, (b) accuracy confidence curve. 

Table 2. YOLOv8 results (%) of Unclean Gear defect detection ablation study 
at confidence threshold 0.5  

Experiment 1 2 3 4 5 6 

Step 1 (filter out 
irrelevant information) 

✔ ✔ ✔ ✔

Step 2 (enhance the 
visibility of defects) 

✔ ✔

Step 3 (increase 
training data diversity) 

✔ ✔ ✔

Image 
level 

Precision 100 93.3 100 100 82.4 100 

Recall 60 93.3 73.3 93.3 93.3 100 

F1 score 75 93.3 84.6 96.6 87.5 100 

Accuracy 77.8 92.6 85.2 96.3 85.2 100 

Defect 
level mAP 59.5 70.6 65.4 88.1 67.1 93.2 

consistent with the reported benefits of data augmentation for 
deep learning, as summarized in prior research [23]. 
    In conclusion, the three preprocessing steps have notably 
enhanced defect detection performance with limited training 
data. The most significant improvement was achieved by step 
3, which increased the diversity of the training data.  

Fig. 6. A sample of the result of the proposed method on detecting the 
Deburring defects. (a) An original image of the crown wheel with Deburring 

defects, (b) Step 1, use instance segmentation to separate the crown wheel 
from its background, (c) Step 1, crop the crown wheel to focus on the defect 

area, (d) Step 2, enhance the visibility of the defects, (e) Step 3, use data 
augmentation to increase the diversity of the training data, (f) After 

preprocessing, use object detection to detect the defects on the surface. 

 Fig. 7. YOLOv8 image-level results of Deburring defect detection ablation 
study. (a) F1 confidence curve, (b) accuracy confidence curve.  

Table 3. YOLOv8 results (%) of Deburring defect detection ablation study at 
confidence threshold 0.5 

Experiment 1 2 3 4 5 6 

Step 1 (filter out 
irrelevant information) 

✔ ✔ ✔ ✔

Step 2 (enhance the 
visibility of defects) 

✔ ✔

Step 3 (increase 
training data diversity) 

✔ ✔ ✔

Image 
level 

Precision 55.5 78.9 70 93.8 83.3 100 

Recall 100 100 93.3 100 100 100 

F1 score 71.4 88.2 80 96.8 90.9 100 

Accuracy 62.5 87.5 78.1 96.9 90.6 100 

Defect 
level mAP 44.6 67.7 87.6 97.3 89.2 98.9 

5.2 Potential impacts 

By incorporating three preprocessing steps, our proposed 
method has demonstrated promising results in automating 
surface defect detection tasks with limited training data. 
Compared with manual inspection methods, our approach 
offers significant advantages, including improvements in speed 
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and accuracy, the ability to handle large quantities of parts, and 
the generation of detailed inspection records [31]. Additionally, 
our method may provide ergonomic benefits for operators, such 
as reducing physical strain, minimizing exposure to hazards, 
and mitigating the risk of repetitive strain injuries. 

Moreover, compared with other automatic quality inspection 
methods, our approach requires limited training data, making it 
a possible solution for production end users seeking to establish 
cost-efficient and time-saving automated surface quality 
inspection stations. 

5.3 Limitations and future improvement 

    The training and testing data were acquired under similar 
conditions in the case study. Further evaluations, utilizing data 
from a broader range of environments, are necessary to 
ascertain the robustness of the proposed method. Additionally, 
the two types of defects were not observed simultaneously. 
Future research should explore the capabilities of the proposed 
method with regard to simultaneously detecting multiple 
defects on the same surface. 

6. Conclusion 

In this paper, we present a method for automatic surface 
defect detection with limited training data. The method 
employs an object detection model with three preprocessing 
steps: filtering out irrelevant information, enhancing defect 
visibility, and increasing training data diversity. We evaluated 
the method in an industrial case study on crown wheel surface 
inspection, demonstrating its efficiency and ease of adaptation 
to detect two specific defects: Unclean Gear and Deburring. 
The results show that the combination of these steps 
significantly improves detection accuracy by 22.2% and 37.5% 
for the two defects, achieving 100% accuracy with only 21 and 
16 training images, respectively. Therefore, our method may 
potentially serve as a starting solution for different surface 
defect detection applications in industrial settings. In the future, 
we will explore its robustness and capabilities for simultaneous 
detection of multiple defects in various environments. 
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