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Abstract 
The study explores the integration of mathematical modelling and machine learning to understand 

tumour-macrophage interactions in the tumour microenvironment. It details mathematical models 

based on biochemistry and physics for predicting tumour dynamics, highlighting the role of 

macrophages. Machine learning, particularly unsupervised and supervised techniques like K-means 

clustering, logistic regression, and support vector machines, are implemented to analyse simulation 

data. The thesis's integration of K-means clustering reveals distinct tumour behaviour patterns 

through the classification of tumour cells based on their microenvironmental interactions. This 

segmentation is crucial for understanding tumour heterogeneity and its implications for treatment. 

Additionally, the application of logistic regression provides insights into the probability of 

macrophage polarization states in the tumour microenvironment. This statistical model underscores 

the significant factors influencing macrophage behaviour and their consequent impact on tumour 

progression. These analytical approaches enhance the understanding of the complex dynamics 

within the tumour microenvironment, contributing to more effective tumour study strategies. The 

study presents a comprehensive analysis of tumour growth, macrophage polarization, and their 

impact on cancer treatment and prognosis. Ethical considerations and future directions focus on 

enhancing model accuracy and integrating experimental data for improved cancer diagnosis and 

treatment strategies. The thesis concludes with the potential of this hybrid approach in advancing 

cancer biology and therapeutic approaches. 
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Background 

Mathematical Modelling 
Mathematical models based on physics and biochemistry rules offer accurate descriptions of 

biological processes, enabling researchers to replicate experimental scenarios, develop novel 

hypotheses and allowing researchers to predict how biological systems behave and test these 

predictions using experimental data (Alden et al., 2020; Procopio et al., 2023; Salerno et al., 2013, 

2015).  

Such models have been long used to define biological functions. Previous research has utilised 

mathematical models to simulate biological assumptions, predict tumour dynamics, and evaluate 

treatment strategies (Frieboes et al., 2006; Hatzikirou, 2018; Macklin, 2017; Mascheroni et al., 

2021a). These models have also contributed to understanding the impact of immune cells, including 

macrophages, in the tumour microenvironment (TME), while offering predictive capabilities and 

suggesting experimental directions, (de Pillis et al., 2005; Eftimie et al., 2011; Jansen et al., 2019; 

Mahlbacher et al., 2019; Makaryan et al., 2020; Shojaee et al., 2022). 

Machine Learning 
Machine learning, as a sub-branch of artificial intelligence (AI), relies on algorithms that learn from 

large datasets without explicit programming of rules or complex mechanisms and can predict 

outcomes or find patterns in input data, making them scalable and efficient tools (Baker et al., 2018; 

Benzekry, 2020). Machine learning techniques, particularly Deep Learning, have gained popularity in 

cancer research for diagnosis, prognosis, drug development, and personalised medicine (Benzekry, 

2020; Gaw et al., 2019; L. S. Hu et al., 2015, 2017; Korfiatis et al., 2018; Kourou et al., 2015; Z. Li et 

al., 2017; Magazzù et al., 2022; Prasanna et al., 2017; Xi et al., 2018). AI algorithms have shown 

promise in various cancer-related tasks, including histology-based image analysis, molecular 

subtyping, and patient survival prediction (Bychkov et al., 2018; Ching et al., 2018; Courtiol et al., 

2019; F. Hu et al., 2020; Huang et al., 2020; Jing et al., 2019; Katzman et al., 2018; Lai et al., 2020; Nir 

et al., 2019; Ryu et al., 2019; Saillard et al., 2020; Tabibu et al., 2019; K. Wang et al., 2018; Zadeh 

Shirazi et al., 2020). 

Macrophages in Tumour Microenvironment 
A complex interaction of several cell types, including cancer cells, immune cells, endothelial cells, and 

fibroblasts, occurs in the tumour microenvironment (TME). Macrophages, one of the non-tumour 

stromal cells within TME, play a crucial role in tumour growth, metastasis, as well as drug resistance 

(DeNardo & Ruffell, 2019; Ngambenjawong et al., 2017). They are traditionally classified into "M1" 

and "M2" subtypes based on pro-inflammatory and anti-inflammatory functions, but new data 

suggests a more complex polarisation system beyond the traditional "M1-M2" paradigm (Kerneur et 

al., 2022; Lantz et al., 2020; Lee et al., 2013; Yang et al., 2021; L. Zhang et al., 2020). Molecules within 

the tumour microenvironment influence the functional diversity of these particular macrophages, 

and their presence is often associated with poor prognosis in solid tumours (Gentles et al., 2015; 

Komohara et al., 2014; Pan et al., 2020; Q. Zhang et al., 2012). As a result, tumour-macrophage 

interactions have been extensively studied for their roles in tumour immunity and immunotherapy 

(Xiang et al., 2021). 
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Problem Definition 
While machine learning isolates relevant inputs to predict outputs, mathematical modelling 

generates hypotheses for causal mechanisms based on observations (Baker et al., 2018). Both 

mathematical models and AI approaches have limitations that researchers have attempted to 

address. Mathematical models offer causality, but they rely on a comprehensive understanding of 

underlying biological mechanisms, fail to efficiently combine large datasets from different sources 

and different levels of resolution, oversimplifying complex biological processes while lacking the 

universal predictive capabilities of machine learning, which excels in providing patterns and 

predictions from data (Alber et al., 2019; Baker et al., 2018). On the other hand, AI algorithms have 

limitations like interpretability issues, the need for large datasets and ignoring the fundamental laws 

of physics that can result in ill-posed problems or non-physical solutions (Alber et al., 2019; Baker et 

al., 2018; Benzekry, 2020; Mascheroni et al., 2021a).  

Advances in the field of medicine has enabled us to generate a vast variety of medical data from 

various different types of studies (Torkamani et al., 2017). Simultaneous, Artificial Intelligence has 

also made advances with the introduction of artificial neural networks and deep-learning (Y. Li et al., 

2018). However, the recently developed machine learning models are dependent on relatively larger 

data sets (Nickel et al., 2016) and the field of medicine is yet to generate reliable data sufficient for 

the use of advance AI models (Camacho et al., 2018).  

To overcome these limitations, hybrid approaches between mathematical modelling and machine 

learning have been explored to expand our understanding of cancer, with potential applications in 

clinical and industrial contexts (Alber et al., 2019; Baker et al., 2018; Peng et al., 2021; Procopio et al., 

2023; von Rueden et al., 2020; Yauney & Shah, 2018).  

Understanding macrophage subsets in cancer remains challenging, and further studies are needed to 

discover interactions with other immune cell indicators (Azizi et al., 2018; Chen et al., 2021; Müller et 

al., 2017; Q. Zhang et al., 2019), Since the most properties of such macrophages were mainly studied 

in mouse models, further investigation is needed to understand their role in humans due to species 

differences between rodents and humans (Yan & Wan, 2021; Zhu et al., 2017), imposing a challenges 

that can be further studied. While hybrid approaches that merge mathematical modelling with 

machine learning have been recently adopted in tumour biology, their application in understanding 

of tumour-macrophage interaction remains unexplored. 

Problem Motivation 
While both the computational techniques address important applications in the field of clinical 

oncology, it's evident that the research discussed in artificial intelligence and mathematical modeling 

has been undertaken by various communities (including AI/ML, pharmacometrics, statistics, and 

mathematicians). However, these communities have made separate advancements without 

significant collaboration. Uniting these disciplines could undoubtedly result in more robust 

techniques capable of enhancing our comprehension of cancer (Benzekry, 2020).  

Despite their respective limitations, both mathematical modelling and machine learning show 

synergy where each technique seemingly compensates for the limitations imposed by the other, 

somehow complimenting the pros and cons of one another and opening exciting opportunities.  
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Where machine learning reveals correlation, multiscale modeling can probe whether the correlation 

is causal; where multiscale modeling identifies mechanisms, machine learning, coupled with Bayesian 

methods, can quantify uncertainty (Alber et al., 2019; Lytton et al., 2017; A. M. Tartakovsky et al., 

2018; G. Tartakovsky et al., 2018). Incorporating biological knowledge into models can enhance 

interpretability, and mathematical approaches can develop physiologically relevant models that link 

input and output for simulating biological processes and treatments  (Benzekry, 2020).  

Various mathematical models exist that describe different aspects of tumour-macrophage 

interactions. In particular, cancer biology and immunology are research intensive fields, where a 

plethora of biological mechanisms remained to be discovered. As a result, developing a model at the 

best case involves assumptions of phenomenological terms that account for this lack of knowledge. 

Therefore, quantitative and personalised predictions are a daunting task. Meanwhile, in order to 

overcome these problems, data-driven techniques combined with mathematical modelling can 

improve the prediction accuracy of the models. Such methods have the potential to bring 

mathematical closer to the clinical practice (Benzekry, 2020; Mascheroni et al., 2021a; Shojaee et al., 

2022). 

Overview of Previous Research  
Hybrid approaches that use mathematical modelling and machine learning together have recently 

been studied. One such research that studies the effects of radiation on cells and Boolean cancer 

modeling reveals that, when dealing with limited training data sets, simulation-based kernel methods 

that utilize approximate simulations to construct a kernel enhance the subsequent machine learning 

outcomes and outperform conventional machine learning approaches that lack prior knowledge 

(Alber et al., 2019; Deist et al., 2019).  

Another such study conducted to anticipate the metastasis relapse in early-stage breast cancer. 

Rather than employing a biologically agnostic model for analyzing survival, Nicolò et al. developed a 

mathematical model to predict the specific timing of relapse. Furthermore, to address the relatively 

extensive set of covariates (21 in total), the authors turned to machine learning to perform feature 

selection (Benzekry, 2020; Nicolò et al., 2020).  

Alternatively, a combined approach involving systems biology model and machine learning was 

developed using clinical data to forecast how patients would respond to anti-PD-1 immunotherapy 

with the goal of enhancing response rates. Through this methodology, the research pinpointed 

patient response biomarkers and uncovered potential mechanisms behind drug resistance. The 

model was employed to compute patient-specific kinetic parameters and make predictions about 

clinical outcomes, demonstrating the advantageous use of transfer learning with simulated clinical 

data to substantially enhance the accuracy of response predictions (Przedborski et al., 2021). 

One specific study focused on clinical tumor predictions has introduced a Bayesian combination of 

machine learning and mathematical modeling, known as BaM3, designed to enhance clinically 

relevant predictions. This method leverages predictions from a mathematical model (C2) as 

intelligent priors, even when only partial knowledge of mechanisms and parameters is available. In 

addition, it rectifies model predictions by harnessing the predictive capabilities of infrequent non-

modelable data (referred to as C1 and C3). The study showcased the potential of BaM3 using a 

synthetic dataset for glioma and two actual patient cohorts with leukemia and ovarian cancer. The 
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predictions generated by this approach closely align with real clinical data for individual patients, 

suggesting its potential utility in facilitating precise personalized clinical predictions (Mascheroni et 

al., 2021a). 

In a recent study, a 3D simulation model was created, encompassing both angiogenesis and tumor 

growth. This model was employed to determine the concentration of vascular endothelial growth 

factor and to visually track the development of a microvascular network. Subsequently, the 

effectiveness of three distinct anti-angiogenic drugs at varying concentrations was assessed. 

Furthermore, a comprehensive understanding of tumor cell proliferation and endothelial cell 

angiogenesis mechanisms was put forth to offer precise forecasts for optimizing drug therapies. By 

employing machine learning techniques, the analysis of simulation output data also revealed 

additional characteristics, including tumor volume, tumor cell count, and the length of newly formed 

vessels. These parameters were investigated to gain insights into various stages of tumor growth and 

to assess the effectiveness of different pharmaceuticals (Mousavi et al., 2022).  

Project Plan 

Aim  
To analyse dataset generated from mathematical model simulation, designed to stimulate tumour 

microenvironment with the implementation of various machine learning techniques. 

Objectives 
 

1. Simulate the chosen mathematical model (Ganguli & Sarkar, 2018) for tumour-macrophage 

interaction and obtain simulation results for machine learning analysis. 

2. Apply unsupervised and supervised machine learning algorithms on simulation data to study the 

effects of tumour-macrophage interactions on overall tumour microenvironment. 

3. Utilize K-means clustering algorithm to identify natural relationships and groupings within the 

simulation data.  

4. Visualize clustering results, interpreting patterns in the dataset and label the data for supervised 

learning. 

5. Implement logistic regression and SVM on the dataset obtained from K-means clustering for 

classification tasks.  

6. Validate the integrated approach using experimental data, comparing predictions with observed 

outcomes. 
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Methods Description and Implementation 

This study aimed to integrate machine learning techniques with mathematical modelling into a 
hybrid approach to study tumour-macrophage interaction in the tumour microenvironment. Figure 1. 
provides an outline of the proposed methodology. 

Selection of Mathematical Model 

This study aimed to integrate machine learning techniques with mathematical modelling into a 
hybrid approach to study tumour-macrophage interaction in the tumour microenvironment. Figure 1 
provides an outline of the methodology implemented in this study. Appropriate mathematical 
models, fitting with the goal of this study, were explored to meet the expectations of this study. An 
extensive literature search was performed to find a suitable and publicly available mathematical 
model demonstrating the interaction between macrophages and tumour cells within the tumour 
microenvironment. Also, the BioModels Database (Glont et al., 2018; Malik-Sheriff et al., 2020) was 
searched to find manually curated and publicly available mathematical models to serve this study. 
The model was selected based on the parameters, variables, and factors used to build the respective 
model. 

Based on all the above criteria, the mathematical model defined by (Ganguli & Sarkar, 2018) was 
used for this study. This model explored the interactions between the tumour microenvironment, 
composed of immune cells and cytokines, and the heterogeneous population of tumour cells 
originating from Cancer Stem Cells, giving the model a unique characteristic that expanded beyond 
studying tumour growth solely. The model attempted to encompass the interaction between the 
tumour and the immune system regarding cancer stem cell differentiation. Not only that, but the 
model also tested known treatment strategies and proposed improved protocols for potentially 
better cancer remission outcomes, along with addressing the processes behind cancer progression 
(Ganguli & Sarkar, 2018). 

Mathematical Model Simulation 

The purpose of this mathematical model simulation was to assess the data concerning each step of 
tumour-macrophage interaction, measuring how tumour-associated macrophages and their 
polarization could affect the tumour at different levels of growth while predicting the outcome in 
terms of overall tumour growth. The ordinary differential equation based mathematical model 
developed by (Ganguli & Sarkar, 2018), implemented in this study, mainly focused on tumour-
macrophage interactions. The mathematical model obtained was tested and validated with 
experimental data. CellDesigner 4.4.2 (Funahashi et al., 2006, 2007), a specialized modelling 
platform, was used to simulate the mathematical model and to obtain results from the same. 
Validation method AUC, ROC and K-fold Cross validation were conducted on the obtained results. 

Macrophages perform diverse functions, including pathogen phagocytosis, antigen presentation 
through major histocompatibility complex molecules, and cytokine production like IL-1, IL-6, and 
TNF-α (Sica et al., 2015; Wynn et al., 2013). Their identity and activities were influenced by factors 
such as developmental origin, tissue residence, and acute microenvironmental cues, making them a 
diverse collection of cell types with various functional roles in both homeostasis and pathological 
conditions (Bonnardel & Guilliams, 2018; DeNardo & Ruffell, 2019; Epelman et al., 2014; Ginhoux & 
Guilliams, 2016; Lavin et al., 2015). Although essential for defending against microorganisms, 
macrophages were also associated with autoimmune diseases and tumours, and they could 
contribute to tissue damage during infections and inflammatory diseases (Bashir et al., 2016; Benoit 
et al., 2008; Beschin et al., 2013; Dall’Asta et al., 2012; Das et al., 2015; Davies et al., 2013; Eguchi & 
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Manabe, 2013; Ginhoux & Jung, 2014; Kadomoto et al., 2021; Leopold Wager et al., 2015; Mantovani 
et al., 2013; Mège et al., 2011; Patel et al., 2017; Shapouri-Moghaddam et al., 2018; Shi & Pamer, 
2011). 

A complex interaction of several cell types, including cancer, immune, endothelial, and fibroblast 
cells, occurred in the tumour microenvironment. Tumour-associated macrophages, one of the non-
tumour stromal cells within tumour microenvironment, played a crucial role in tumour growth, 
metastasis, and drug resistance (DeNardo & Ruffell, 2019; Ngambenjawong et al., 2017). Molecules 
within the tumour microenvironment influenced the functional diversity of t umour-associated 
macrophages, and their presence was often associated with poor prognosis in solid tumours (Gentles 
et al., 2015; Glont et al., 2018; Komohara et al., 2014; Q. Zhang et al., 2012). Tumour-associated 
macrophages were traditionally classified into "M1" and "M2" subtypes based on pro-inflammatory 
and anti-inflammatory functions (Kerneur et al., 2022; Lantz et al., 2020; Lee et al., 2013; Yang et al., 
2021; L. Zhang et al., 2020). As a result, TAMs were extensively studied for their roles in tumour 
immunity and immunotherapy (Xiang et al., 2021). 

The simulation in this study followed the initial parameter and variable values stated by (Ganguli & 
Sarkar, 2018). Simulation was carried out through ControlPanel of CellDesigner 4.4.2 software, where 
the Solver was set as SimulationCore and Error Tolerance was set as -6, which is the default value for 
the same. The model was simulated to replicate the temporal evolution and growth kinetics of 
tumour using the parameters discussed in their research. As such, the simulation was carried out for 
a time equivalent to 800 days until the system reached equilibrium, as stated in their study. The 
change in cellular concentrations of various cells was obtained, this included cancer cells, stem cells 
along with major immune cells and cytokines. Variables associated with M1 and M2 macrophages as 
well as cytokine IL10 were monitored closely to provide further information on tumour-associated 
macrophages and to study the regulatory behaviour of macrophages in the tumour 
microenvironment. 

Data Collection 

The results obtained from the mathematical model simulation were analysed and interpreted. The 
datasets obtained from the mathematical simulation represented various aspects of tumour growth 
and progression with the composition of the tumour microenvironment. For this study, data relevant 
to tumour-associated macrophages were given the main focus. The differential regulatory behaviour 
of type I and type II TAMs on the tumour cell data could be obtained by varying the specific 
parameters that governed the growth rate of the M1 and M2 macrophages. The M1:M2 ratio 
concerning tumour progression was the primary data in this study. Also, the production of cytokine 
IL10 and its concentration were taken into consideration due to its involvement with M2 
macrophages. 

The data collection method was based on the (Mousavi et al., 2022) protocol. For each time step, 1 
minute in this simulation, a snapshot of tumour growth and changes in the microenvironment was 
collected in vital parameters of the growth process. To this end, three different simulation runs were 
performed, each for 800 days, to study the temporal evolution of the tumour and its 
microenvironment, from the early stages of tumour development to a supposedly steady state 
tumour growth stage. Each step (in seconds) provided the M1:M2 ratio and changes in IL10 
concentration throughout the tumour development, growth, and progression. 

This data collected from the mathematical model simulation was used as datasets for the machine 
learning algorithm later in the study. The data was reviewed to ensure the information's integrity and 
eliminate missing or incomplete data. This was carried out in R 4.3.2 and RStudio 2023.09.1 Build 
494, where the data was checked for any missing values and data was analyse using elbow method 
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prior to labelling. However, the data was not preprocessed before clustering analysis, as it was 
obtained from a simulation and was considered to be complete and consistent.  

The dataset size held significant importance for learning accuracy. In line with the requirements of 
machine learning, it was necessary to develop a simulation to generate an appropriate dataset for 
input into ML algorithms. Even though the trained algorithms contributed to reducing overall 
computation time, the duration of the simulation remained crucial in the dataset creation process 
(Mousavi et al., 2022). As a result, the simulation was configured with time steps set at 2 hours over 
800 days. This configuration ensured the availability of sufficient tumour data at each time step. 

Based on these assumptions, the dataset encompassed 9600-time steps. Each time step included 
information on the various interactions taking place within the tumour microenvironment, virtually, 
over the period of time stated above. The participating cells were deemed as variables for the given 
data. 

Machine Learning Implementation 

Implementing a machine learning algorithm aimed to address concerns about the interactions 
between tumours and macrophages in the tumour microenvironment without delving into the 
complexities of simulation models, and it was based on the (Mousavi et al., 2022) protocol. As 
previously mentioned, the primary input for the machine learning models was the mathematical 
simulation output, providing tumour data at various time steps during the simulation. To achieve the 
stated goals of the machine learning implementation, it was decided to employ two fundamental 
types of AI methods: supervised and unsupervised learning.  

The primary motivation is to utilize machine learning for extracting meaningful insights from complex 
biological data. This is particularly crucial in understanding the dynamic tumor environment, which is 
characterized by a myriad of interactions and changes. The study aims to provide a nuanced 
understanding of these interactions, contributing to the broader field of oncology research. Also, 
machine learning is a suitable technique to analyze large datasets that can be generated by 
mathematical models’ simulation, as these techniques are capable of handling large amount of data 
in a relatively short interval of time.  

Unsupervised Learning: K-means Clustering 

Unsupervised learning focuses on identifying natural relationships and groupings within the data 
without referencing specific outcomes (Bi et al., 2019). The approach aimed to discover patterns and 
similarities in the data. K-means is renowned for its straightforward implementation and 
computational efficiency, making it a practical choice for large datasets typically found in biological 
studies. This algorithm excels in identifying hidden patterns and natural groupings in unlabeled data, 
a crucial aspect when dealing with complex biological systems like tumor microenvironments. Given 
the potential for extensive datasets in tumor studies, K-means is ideal for its scalability and 
robustness in handling vast amounts of data.  

K-Means is an unsupervised learning algorithm used for clustering. It partitions the dataset into K 
distinct, non-overlapping subgroups (clusters) where each data point belongs to only one group. It 
tries to make the intra-cluster data points as similar as possible while also keeping the clusters as 
different (far apart) as possible. It does this by assigning data points to the cluster such that the sum 
of the squared distance between the data points and the cluster's centroid (arithmetic mean of all 
the data points that belong to that cluster) is at the minimum (Yadav & Sharma, 2012). 
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K-means clustering was used to perform feature selection and identify clusters in the simulation 
data, which was further used to label the dataset obtained from the mathematical model simulation 
before proceeding to supervised learning. The need to structure and simplify the simulation output 
for further analysis underpins the choice of K-means, as it effectively organizes data into coherent 
clusters that can be more easily interpreted and labeled for supervised learning. 

The package cluster (Maechler et al., 2015) was implemented in this study to perform K-means 
clustering and to find the clusters. The number of cluster (K) was set to 2 after the dataset was 
analysed using elbow method and silhouette analysis. Principle component analysis was carried out 
to reduce the dimensionality of the dataset for efficient analysis of the same. The clustering results 
after analysis the simulation data was visualized through various plots and graphs for further 
interpretation of the results. The code for K-Means Clustering is provided in Appendix 1. 

Supervised Learning: Support Vector Machines 

Supervised learning is beneficial for estimating the machine learning model's proficiency, as it 
worked well when the outcome was known for each observation. This study implemented the 
commonly used supervised learning method, Logistic Regression and Support Vector Machines (SVM) 
(Bi et al., 2019). The results obtained from K-Means Clustering was used as the dataset to perform 
supervised learning. This was done as the dataset obtained from the mathematical model simulation 
was unlabelled and clustering this dataset provided this study with relevant data labels to carry out 
supervised learning. 

SVM is a supervised learning model used for classification and regression analysis. The goal of the 
SVM algorithm is to find a hyperplane in an N-dimensional space (N - the number of features) that 
distinctly classifies the data points. To separate two classes of data points, there are many possible 
hyperplanes that could be chosen. The optimal hyperplane is the one that has the largest margin, i.e., 
the maximum distance between data points of both classes. SVM is effective in high-dimensional 
spaces and in situations where the number of dimensions exceeds the number of samples (Abaszade 
& Effati, 2018). 

Support Vector Machine and its ability to perform both classification and regression makes SVM a 
versatile tool for various aspects of tumor analysis. For the binary classification task in the context of 
this thesis, the implementation of Support Vector Machines (SVM) is advocated. SVM is highly 
effective in high-dimensional spaces, typical in genetic and molecular data, ensuring robust 
performance even with a large number of features. The use of the Radial Basis Function (RBF) kernel 
allows for handling non-linear relationships in the data, which is a common scenario in complex 
biological interactions. Prudent preprocessing steps, including feature scaling and rigorous model 
validation using K-fold cross-validation (fold set at 5) was implemented to the data for the application 
of SVM. SVM kernel was set as Radial Basis Function and the packages used for the SVM were e1071, 
caret, pROC.The code for SVM is provided in Appendix 1. 

Supervised Learning: Logistic Regression 

Both SVM and logistic regression were used on the dataset to compare their performances and 
results. Logistic Regression is a supervised learning classification algorithm used to predict the 
probability of a target variable. The nature of the target or dependent variable is dichotomous, which 
means there would be only two possible classes. It uses a logistic function to model a binary 
dependent variable, although it can be extended to model several classes of events. Logistic 
regression fits a special s-shaped curve by taking the linear regression and transforming the numeric 
estimate into a probability with the logistic function, which is an S-shaped curve (Fleiss et al., 1986).  
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Logistic Regression is particularly apt for binary classification tasks, which is common in medical 
studies where outcomes are often dichotomous (e.g., presence or absence of a tumor response), 
assuming a linear relationship between predictors and the log-odds of the outcome. This algorithm 
provides clear and interpretable results, crucial in medical research for understanding and 
communicating the relationship between variables. Assuming a linear relationship between 
variables, logistic regression could provide accurate and interpretable results in a computationally 
efficient and simple way. Logistic Regression not only classifies data but also provides probabilities, 
offering a nuanced view of the tumor-macrophage interactions, which is valuable in uncertain 
biological contexts. This was done to learn more about the nature of the data obtained from the 
mathematical model. Scaling and k-fold cross validation (fold set to 5) was also for logistic regression 
used to pre-process the data before analysis and result visualization. The packages used for logistic 
regression were tidyverse, caret, glmnet, pROC.  The code for logistic regression is provided in 
Appendix 1.  

Relevant Methods Not Chosen for this Project 
Baker et al. (2018) proposed two synergistic approaches, combining mathematical modeling and 

machine learning. The first involved using machine learning to create surrogate models for 

computationally demanding multiscale simulations, expediting future predictions. The second 

approach enriched machine learning-based pipelines by incorporating derived parameters from a 

mathematical approach, enhancing probabilistic models (Baker et al., 2018; Binder et al., 1997; Xu et 

al., 2012). This project implemented only the first approach due to challenges in establishing the 

second approach in tumor-related studies. Limited data availability in public databases and the need 

for a deeper understanding of macrophage polarization were key considerations (Baker et al., 2018). 

Reinforcement learning technique, specifically the Q-learning algorithm, was initially considered but 

deemed incompatible due to the static nature of the dataset implemented in this study (Bi et al., 

2019). Mascheroni et al. (2021b) introduced the Bayesian combination, a novel method for 

personalized tumor growth prediction, integrating mathematical modeling and machine learning in a 

Bayesian framework. However, it was unsuitable for our project due to the need to replace the 

existing model and its computational intensity (Mascheroni et al., 2021b). Deep learning, based on 

artificial neural networks, was another compatible technique considered but faced challenges within 

our project's time constraints (Bi et al., 2019). Various mathematical models describe tumor-

macrophage interactions in the tumor microenvironment (den Breems & Eftimie, 2016; Eftimie & 

Eftimie, 2019; X. Li et al., 2019). However, these were deemed unsuitable due to unavailability in 

databases like BioModels (Glont et al., 2018; Malik-Sheriff et al., 2020). The selected model met 

these criteria for inclusion in our project. The simulation data was also run through using linear 

regression (Appendix 4) and neural networks (Appendix 5). However, no further data analyses were 

carried out as the initial goal of the project was already achieved and also due to the time constrains 

regarding the project. 
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Figure 1: Outline of the methodology implemented in this study; Flowchart depicting data analysis progression: from literature review to database search, model selection, simulation, 
clustering, labelling, and final analysis with logistic regression and SVM in R. 
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Results and Discussion  

Mathematical Model Simulation 
The mathematical model chosen for this study had 14 variables, each corresponding to a cell type, as 

mentioned in Table 1. The variables/cell type and the initial cell concentration of each respective cell 

type at the beginning of the simulation for each variable are provided in Table 1. Various interactions 

between the variables are shown in Figure 2. The simulation lasted for a period that is equivalent to 

800 days. Data for cellular concentration was recorded once every 2 hours. Thus, each variable 

consisted of data from 9600-time stamps. The results of this simulation are plotted in Figure 3 and 

Figure 4. The data obtained from this simulation was found to be linear and longitudinal in structure. 

Upon examination of the simulation result, it was found that data represented a comprehensive 

array of variables relevant to cancer research and immune responses. The values of Cancer Stem 

Cells and Cancer Cells showcase a broad spectrum, indicating significant heterogeneity in cell 

populations. An exponential increase is predicted in cancer stem cells during the latter half of the 

simulation, reflecting a potential increase in cancer stem cells, which could indicate proliferation or 

treatment resistance. 

In parallel, the variables Resistant Stem Cells and Resistant Cancer Cells shed light on the resistance 

distribution, offering insights into potential variations concerning treatment resistance within both 

stem and cancer cell populations. An increased concentration of these two cell types throughout 

simulation indicates potential challenges in treatment effectiveness or the development of resistance 

mechanisms. 

Turning attention to the immune components, Tumor-Associated Macrophages (M1 and M2) exhibit 

substantial, underscoring their prominent role in the tumor microenvironment, providing nuanced 

insights into the inflammatory or anti-inflammatory states within the tumor throughout the 

simulation. The simulation predicts M2 concentration to increase with cancer stem cells, suggesting a 

potential shift towards an immunosuppressive environment, which could impact the immune 

system's ability to mount an effective anti-tumor response. 

Similarly, the counts of T Helper Cells (T_H1 and T_H2) appear balanced, which also partake in 

inflammatory or anti-inflammatory states within the tumor. An increasing T_H2 is observed in the 

middle phase of the simulation, suggesting a potential shift towards an anti-inflammatory response, 

indicating a complex interplay between immune components that may influence cancer progression. 

Cytotoxic T Cells (T_C) feature prominently in the dataset, suggesting a robust immune response 

against cancer cells. An increase in cytotoxic cells in the middle phase of the simulation is observed 

along with TH2, suggesting a rise in cytotoxic immune response, which is crucial for evaluating the 

immune system's capacity to target and eliminate cancer cells. 

Concurrently, Regulatory T Cells (T-reg) were present, emphasizing the importance of maintaining a 

balance between an effective immune response and immune tolerance within the tumor 

microenvironment. A widening range of values is observed for this cell type in the simulation over 

time, suggesting variability in the degree of immunosuppression, emphasizing the complex interplay 

between regulatory T cells and the overall immune response. 
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Further examination delves into specific immune factors such as Interferon-gamma and Cytokines 

(IL10 and IL2), with their respective concentrations providing insights into the strength of immune 

responses and potential immunosuppressive conditions. However, it is crucial to interpret these 

findings in the broader biological context, considering the multifaceted roles these factors play in 

modulating immune responses. The concentration of interferon-gamma and IL2 are observed to be 

increasing in the middle phase of the simulation, suggesting immune activation, and indicating the 

potential for enhanced antitumor immune responses. 

 

Figure 2. The interactions present in the mathematical model by (Ganguli & Sarkar, 2018). Obtained from Cell Designer 
software; Network diagram depicting the intricate web of interactions among cell populations and signalling molecules 
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within the tumor microenvironment model, highlighting the regulatory circuits, growth factors, and feedback loops that 
govern tumor progression and immune response over time. 

 

Figure 3. Change in concentration of different cells and cytokines in the tumour microenvironment with time (days); 
Graphical representation of the dynamic interplay between various cell populations and cytokines in the tumour 
microenvironment over an 800-day period, highlighting the exponential increase of cancer stem cells post-550 days and 
illustrating the complex immunological landscape within cancerous tissue. 

 

Figure 4. Change in concentration of different cells and cytokines in the tumour microenvironment with time (days) in 
logarithmic scale; Logarithmic scale visualization of cell and cytokine dynamics in the tumor microenvironment over 800 
days, showcasing initial rapid changes and subsequent stabilization across various cell types, including cancer stem cells, 
resistant cells, and immune cells, emphasizing the nuanced evolution of tumor-immune interactions. 
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Table 1: Table of Model Variables and their respective initial values (Ganguli & Sarkar, 2018); Reference table for initial 
conditions in a mathematical model simulating tumor microenvironment, listing cell types and cytokines with 
corresponding symbols, as denoted in the graphical simulations, along with their respective initial quantities at the start 
of the 800-day period. 

Variable Symbol Variable Name on Graph and Model Initial Values 

Stem Cell S Cancer_Stem_Cells_S 1 

Stem Resistant Cell SR Resistant_Stem_Cells_S_R 0 

Cancer Cell C Cancer_Cells_C 0 

Cancer Resistant Cell CR Resistant_Cancer_Cells_C_R 0 

Type-I Tumor Associated 

Macrophage 
M1 M1_Tumor_Associated_Macrophages 85000 

Type-II Tumor Associated 

Macrophage 
M2 M2_Tumor_Associated_Macrophages 15000 

Type-I Helper T Cell TH1 Type_I_T_helper_Cell_T_H1 71000 

Type-II Helper T Cell TH2 Type_II_T_helper_cells_T_H2 12000 

Cytotoxic T Cell Tc Cytotoxic_T_Cells_T_C 56000 

Regulatory T Cell Treg Regulatory_T_Cells_T_reg 8000 

Interleukin-10 IL10 Cytokine_IL10 0.0085 

Interferon-γ IFN-γ Interferon_gamma 0.12 

Interleukin-2 IL2 Cytokine_IL2 0.0094 
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Unsupervised Learning: K-Means Clustering 
The k-means clustering results reveal two distinct clusters in the dataset: Cluster 1 and Cluster 2. 

Cluster 1 contains 2211 samples, while Cluster 2 is substantially more significant with 7390 samples, 

indicating an inherent imbalance in the cluster sizes and suggesting that the clustering algorithm is 

biased towards forming larger clusters. The clusters were formed on the basis of time. 

Upon closer examination of the cluster, several noteworthy patterns emerge (Figure 7). In Cluster 1, 

the count of Cancer Stem Cells (Cancer_Stem_Cells_S) is significantly higher than in Cluster 2, 

suggesting a potential distinction in the stem cell population between the two clusters. Moreover, 

the counts of M1 and M2 Tumor-Associated Macrophages are notably elevated in Cluster 1, 

indicating a potential variation in the immune response. Likewise, Cluster 1 exhibits higher counts for 

both Type I and Type II T helper cells and cytotoxic T cells, suggesting a more active immune 

response in this cluster.  

The overall analysis suggests that the clusters represent distinct biological profiles, with Cluster 1 

potentially associated with a more active immune response and a higher population of cancer stem 

cells. The clusters may either indicate transition from healthy to disease state or early to late stages 

of cancer proliferation. The time-based clusters are diagrammatically represented in Figure 5.  

The analysis of heatmap of clustering results (Figure 9) reveals diverse ranges and distributions 

among key features. Notably, features such as Cancer_Stem_Cells_S, and 

Resistant_Cancer_Cells_C_R exhibit wide-ranging values, indicating substantial variability. The 

increase in Cancer_Stem_Cells_S seems to correlate with the formation of cluster 1 as interpreted by 

the K-means clustering model. On analysis of the correlation matrix (Figure 6), we can immediately 

observe that the variable Resistant_Cancer_Cells_C_R has negative correlations with all the other 

variables suggesting an inverse relation between it and all the other variables, especially 

Resistan_Cancer_Stem_Cells_S_R, Cancer_Stem_Cells_S and Cancer_Cells_C. 

The PCA results show the importance of each principal component. PC1 explains the most variance 

(89.94%), followed by PC2 (6.66%) (Figure 10). The cumulative proportion of variance reaches 99.02% 

by the third principal component. The low variance explained by the later components suggests that 

the data may be well-represented in lower dimensions. 

However, the clustering results reveal notable imbalances, with one cluster containing 2211 data 

points and the other 7390, suggesting potential sensitivity to the initial conditions of the K-means 

algorithm or an inherent imbalance in the underlying data distribution (Figure 7). Analysis of clusters 

indicates significant differences in cell concentration, particularly in features related to cancer stem 

cells and resistant cell types. Upon inspection of the excel sheet generated by the algorithm, the 

clustering was found to occur at the time stamp that corresponds to 615 days and 20 hours, may 

suggest a varied state, possibly indicating phenotypic heterogeneity or a transitional phase in tumor 

evolution. 

Interpretation of K-Means clustering results with respect to tumor-macrophage 

interaction 

The k-means clustering results highlight intriguing patterns in the distribution of different cancer cell 

types and macrophages across the identified clusters. In Cluster 1, there is a pronounced elevation in 
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the count of Cancer Stem Cells. This finding suggests that Cluster 1 may be associated with a higher 

proportion of cells with stem cell properties, which could have implications for the aggressiveness 

and therapeutic response of the tumor. Cancer stem cells are often linked to tumor initiation, 

progression, and resistance to treatments, making their abundance a critical factor in understanding 

the nature of the identified clusters (Ahmed et al., 2018; Atashzar et al., 2020; Najafi et al., 2020). 

Furthermore, the increased counts of M1 and M2 Tumor-Associated Macrophages (TAMs) in Cluster 

1 introduce an intriguing aspect of the tumor microenvironment. Both M1 and M2 TAMs imply a 

complex interplay between pro-inflammatory and anti-inflammatory responses. This balance is 

crucial in shaping the immune landscape within the tumor, impacting tumor progression and 

therapeutic outcomes (Pan et al., 2020; Rakaee et al., 2019). The elevated levels of these 

macrophage subtypes in Cluster 1 suggest a more dynamic and interactive immune response within 

this cluster. 

Moreover, the higher counts of Type I and Type II T helper cells and cytotoxic T cells in Cluster 1 point 

towards a potentially more robust antitumor immune response. These immune cell types play pivotal 

roles in recognizing and eliminating cancer cells (Cachot et al., 2021; Farhood et al., 2019; Jeong et 

al., 2023; Montfort et al., 2017). The increased presence of these cells in Cluster 1 may indicate a 

more favorable immunological environment for combating the tumor. 

Additionally, In Cluster 1, an elevated count of Cancer Stem Cells (Cancer_Stem_Cells_S) is 

accompanied with increase in IL10 expression introduces an intriguing aspect. The higher levels of 

IL10 may indicate an immunosuppressive microenvironment, as IL10 is known to suppress the 

activity of immune cells, particularly T cells and natural killer cells. This suggests a potential 

mechanism by which the tumor creates an immunosuppressive niche, allowing cancer stem cells to 

evade immune surveillance and promoting tumor progression (Mittal & Roche, 2015; Qiao et al., 

2019). 

The differential expression of IL10 is also closely tied to the M1 and M2 Tumor-Associated 

Macrophages (TAMs) observed in Cluster 1. M2 TAMs are generally associated with an 

immunosuppressive phenotype, and their presence and elevated IL10 could synergistically contribute 

to establishing an immunosuppressive microenvironment. This has implications for therapeutic 

strategies, as an immunosuppressed tumor microenvironment is often resistant to immunotherapies 

(F. Wang et al., 2018). 

However, it is crucial to approach these findings cautiously due to the imbalanced cluster sizes, as 

Cluster 2 is substantially larger. The observed patterns may partly be influenced by the algorithm's 

bias towards forming larger clusters, and validation through alternative clustering methods or 

statistical techniques is warranted. Also, the increased count/concentration of the variable 

Cancer_Stem_Cells_S overshadowed the other variables with significantly lower 

count/concentration, which hindered the visualization of these variables. 
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Figure 5: Dynamic Profiles of Cellular and Immune Factors Over Time in Two Clusters from Tumor Microenvironment 
Analysis; Graphical representation of the dynamic interplay between various cell populations and cytokines in the tumour 
microenvironment over an 800-day period, differentiated into two clusters. Cluster 2 (blue) exhibits a relatively stable 
profile, suggesting a controlled tumor environment or a dormant phase, whereas Cluster 1 (red) shows a marked 
escalation around day 616, indicative of a potential aggressive tumor growth phase or a significant shift in the 
microenvironmental dynamics. 

 

Figure 6. Correlation Matrix of Variables present in the simulation dataset. Correlation matrix showcasing the strength of 
associations between different cell types and cytokines within the tumour microenvironment, as revealed by k-means 
clustering, with values close to 1 indicating strong positive relationships, values near -1 indicating strong negative 
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relationships, and values around 0 suggesting no linear correlation. Highlighted anomalies in the matrix suggest unusual 
or unexpected associations, such as the negatively correlated clusters of Resistant_Cancer_Cells_C_R, especially with the 
variables Cancer_Stem_Cells_S, Resistant_Stem_Cells_S_R, Cancer_Cells_C that could reveal counterintuitive or regulatory 
interactions pivotal to understanding the complex biology of tumour immunology. 

 

 

Figure 7. K-Means Clustering of Tumor Data: Visualizing Major and Minor Groups; This bar chart showcases the results of 
a K-Means clustering algorithm applied to tumor microenvironment data. It features two bars: a shorter red bar for 
Cluster 1 on the left, and a taller cyan bar for Cluster 2 on the right. The x-axis represents the two clusters, while the y-
axis shows the number of data points in each. The noticeable size difference between the clusters (less than 3000 points in 
Cluster 1 and around 7000 in Cluster 2) suggests significant variance in data distribution, potentially indicating different 
tumor behaviors or patient groups. This disparity offers valuable insights into the tumor microenvironment, aiding in 
tailored therapeutic strategies and further biological research. 

 

 

Figure 8. Comparison of Variable Means Between Two Clusters in K-Means Clustering of Tumor Microenvironment Data; 
This chart presents a comparison of variable means in two clusters identified by K-Means clustering in tumor 
microenvironment data. Each row on the y-axis signifies a distinct variable and the x-axis displays the average values of 
these variables in each cluster, with Cluster 1 (red) showing significantly higher averages for most variables compared to 
Cluster 2 (cyan). Notably, Cluster 1 is characterized by a high prevalence of cancer stem cells. 
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Figure 9: Heatmap of K-Means Clustering Results (x = variables, y = observation/data points) Highlighting Variability in 
Tumour Microenvironment; This heatmap visualizes the distribution of key cellular features across different samples, 
using a blue-white-red gradient to indicate low to high values, respectively. Notably, 'Cancer_Stem_Cells_S' and 
'Resistant_Cancer_Cells_C_R' show significant variability, suggesting distinct biological behaviors. The clustering pattern, 
particularly the formation of cluster 1, demonstrates a correlation with increased levels of 'Cancer_Stem_Cells_S', which 
may have implications for understanding cancer progression and resistance mechanisms. 

 

Figure 10: K-Means Clustering Results after Principal Component Analysis reduced visualisation (x = PC1, y = PC2); This 
scatter plot visualizes the segmentation of the tumour microenvironment into two distinct clusters using PCA for 
dimensionality reduction. The tightly grouped blue cluster may represent a homogenous state of cellular components, 
whereas the dispersed red cluster may suggest a varied state, possibly indicating phenotypic heterogeneity or a 
transitional phase in tumour evolution. Each point symbolizes the integrated profile of cancerous and immune cells at a 
given time point, highlighting the complex interactions within the tumour ecology. 
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Supervised Learning using Logistic Regression 
The logistic regression analysis of the provided dataset revealed compelling insights. The model, 

trained on a comprehensive array of features encompassing cancer cells, stem cells, macrophages, T 

helper cells, and cytokines, exhibited statistical significance, as demonstrated by a substantial F-

statistic (1.083e+04) with an exceptionally low p-value (< 2.2e-16). Coefficients for specific variables, 

such as "Cancer Cells" and "Resistant Stem Cells," were significantly different from zero (p < 0.05), 

indicating their importance in predicting the target variable "Cluster", whereas "Cancer Stem Cells" 

and "Resistant Cancer Cells" have high negative coefficients, suggesting a negative relationship with 

the variable "Cluster". The intercept was highly significant (p < 2e-16), reflecting the baseline level 

when all predictors are zero, implying their substantial influence on the target variable, "Cluster."  

The model achieved an impressive multiple R-squared value of 0.9618, indicating that approximately 

96.18% of the variance in the training data is explained. The Adjusted R-squared is also 0.9618, 

indicating that the model's goodness of fit is reliable even with multiple predictors. However, rank-

deficient fit was observed during predictions, suggesting potential multicollinearity issues.  

The Root Mean Squared Error (RMSE) on the testing set was 0.0795, signifying an average deviation 

of this magnitude between predicted and actual values. Validation on a separate dataset yielded a 

high R-squared value of 0.9706, reinforcing the model's predictive capability. The ROC curve 

highlighted the model's excellent discrimination between cancer and immune cell classes, with an 

AUC 1 (Figure 11). 

Visualization tools, including residual and QQ plots, offered a nuanced understanding of the model's 

adequacy. The residuals appear centered around zero, indicating that the model captures the overall 

trend in the data (Figure 12). However, the result is sparsely spread, indicating that the model might 

only capture some variability. The histogram shows a roughly normal distribution of residuals (Figure 

12), and the QQ plot indicates that the residuals are approximately normally distributed (Figure 14). 

Also, the confusion matrix indicates perfect performance (all diagonal elements are non-zero), which 

aligns with the high accuracy (Figure 15). 

Interpretation of Logistic Regression results with respect to tumor-macrophage 

interaction 

The coefficients calculated by the logistic regression model shed light on the relationship between 

cancer cells, macrophages, IL-10, and the assigned cluster. The coefficients for "Cancer Stem Cells" 

and "Resistant Stem Cells" emerge as highly significant (Figure 16), implying a significant influence on 

the assigned cluster. The negative coefficient for both the variables indicates an inverse relationship, 

hinting at the potential role of two in influencing a lower assigned cluster.  

Surprisingly, the coefficients for M1 (pro-inflammatory) and M2 (anti-inflammatory) tumor-

associated macrophages lack statistical significance. This finding is intriguing, suggesting that, in the 

context of this study, the specific subtypes of macrophages may not be primary determinants of the 

assigned cluster. This nuance underscores the complexity of the role played by macrophages in 

cancer and prompts further investigation. 

Also, the coefficient for Cytokine IL10 is not statistically significant, implying that the abundance of IL-

10 may not be a decisive factor in determining the assigned cluster. This unexpected result warrants 



 
 

28 

further exploration, especially given the well-established immunosuppressive role of IL-10. 

Understanding its potential interactions with other variables could unveil intricate relationships. 

 

Figure 11. Logistic Regression ROC Curve Demonstrating Optimal Classifier Performance with an AUC of 1.0: This ROC 
curve illustrates an ideal classifier that perfectly distinguishes between the two classes with 100% sensitivity and 100% 
specificity, indicating no overlap between the positive and negative class distributions. 

 

Figure 12: Evaluating Model Accuracy: Residuals in Logistic Regression Analysis; This chart analyses the accuracy of a 
logistic regression model, mapping predicted values (0 to 1) on the horizontal axis against residuals on the vertical axis. 
The residuals represent the differences between observed and predicted values, offering insight into the model's precision. 
Most residuals hover near the zero line, indicating a strong fit at lower predicted values. The red dotted line at zero is a 
benchmark for assessing fit deviations.  
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Figure 13: Assessing Model Precision: Histogram of Residuals from Logistic Regression; This histogram visually 
represents the residuals from a logistic regression model, plotted on the x-axis, ranging from approximately -0.3 to 0.2, 
against their frequency on the y-axis. The prominent central bar, closely hugging the zero mark, indicates that most 
residuals are minimal, suggesting a high accuracy of the model for the majority of data. The sparse bars at the extremes, 
particularly beyond -0.1 and 0.1, show that large prediction errors are uncommon, reinforcing the model's reliability.  

 

Figure 14: Normality of Residuals: Q-Q Plot Analysis in Logistic Regression; This Q-Q plot compares the theoretical 
quantiles of a standard normal distribution (horizontal axis) against the sample quantiles of residuals from a logistic 
regression model (vertical axis). The close alignment of points with the red line in the central part of the plot suggests 
that residuals largely conform to normality in this range, indicating random and unbiased errors in the middle range of 
predictions 
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Figure 15. Evaluating Predictive Accuracy: Confusion Matrix in Logistic Regression; This confusion matrix illustrates the 
performance of a logistic regression model in predicting binary outcomes, such as the presence or absence of specific cell 
types or states in the tumour microenvironment. The matrix has two rows and columns, corresponding to the actual and 
predicted classes (0 for 'event did not occur', 1 for 'event occurred'). The intense dark blue in the true positive quadrant 
(top right) and the significant count in the true negative quadrant (bottom left), with the absence of false negative (top 
left) and false positive (bottom right), suggest a highly accurate model. 

 

 

Figure 16. Interpreting Variable Impact: Coefficient Plot in Logistic Regression; This coefficient plot from a logistic 
regression model visualizes the influence of each predictor variable on the log-odds of the dependent variable. On the x-
axis, the coefficients represent the effect of a one-unit change in each variable, keeping others constant. The y-axis 
enumerates predictor variables. Most variables show small coefficients near zero, implying limited individual impact. 
However, "Resistant_Stem_Cells_S_R" and "Cancer_Stem_Cells_S" stand out with longer leftward bars, indicating these are 
significant negative predictors; their increase correlates with decreased log-odds of the predicted outcome. This could be 
key in understanding tumour dynamics or treatment effectiveness. 

 

Supervised Learning using Support Vector Machines (SVM) 
The SVM analysis on the cancer data yielded compelling results, with hyperparameter tuning 

identifying optimal values of a cost of 0.01 and a gamma of 0.03125. The model achieved perfect 

classification during cross-validation on the training data, reflected in a confusion matrix with 
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accuracy, sensitivity, and specificity equal to 1 on the testing data. The ROC curve highlighted the 

model's excellent discrimination between cancer classes, with an AUC 1. While these results 

showcase the model's high predictive performance, SVM, as a black-box model, lacks biological 

interpretability (Camacho et al., 2018). 

The visualization techniques in analyzing the cancer data provide valuable insights into the SVM 

model's performance. The ROC curve, a critical diagnostic tool, demonstrates the model's excellent 

discrimination with a curve close to the top-left corner and an AUC of 1 (Figure 17). Also, the 

confusion matrix indicates perfect performance (all diagonal elements are non-zero), which aligns 

with the high accuracy (Figure 18). 

Interpretation of SVM results with respect to tumor-macrophage interaction 

Due to its black box model, the results from the SVM model could not provide any significant data of 

biological interpretability. While the model can make accurate predictions, it's difficult to understand 

or interpret exactly how and why it's making these decisions based on the input data. This is a 

common challenge in many complex machine learning models. However, the accurate and perfect 

prediction results from SVM and logistic regression provide us insights on how simulation data might 

behave when implemented in machine learning algorithms. Simulation data is often considered 

'idealistic' because it's usually cleaner and more controlled than real-world data. In real-world 

scenarios, data often contains noise (unwanted variations or irrelevant information), which can 

complicate analysis and model training. The success of the SVM model in this context might be partly 

due to the clean, noise-free nature of the simulation data. However, further studies need to be 

performed to learn more about the nature of simulation data for machine learning analysis. 

 

 

Figure 17: Ideal Classification: ROC Curve Analysis of SVM Classifier; This ROC (Receiver Operating Characteristic) curve 
illustrates the performance of a Support Vector Machine (SVM) classifier. The x-axis measures Specificity (False Positive 
Rate, FPR), and the y-axis measures Sensitivity (True Positive Rate, TPR). The curve, hugging the top and left plot borders, 
indicates an Area Under the Curve (AUC) of 1, symbolizing perfect classifier performance with exceptional sensitivity and 
specificity. It suggests the SVM classifier accurately identifies all positive and negative cases without any false positives or 
negatives. 
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Figure 18: Optimal Prediction: Confusion Matrix of SVM Classifier; This confusion matrix visually represents the 
impeccable performance of a Support Vector Machine (SVM) classifier, with rows and columns correlating to actual and 
predicted classes, '1' and '2'. Deep colour shades reflect higher counts, and the matrix displays perfect classification 
accuracy, with a 100% success rate and no false predictions. 

Machine Learning Analysis of a Larger Simulation Dataset 
Another analysis was carried out where the time stamps in simulation dataset was increased by 4 

times. The simulation period remained the same, i.e. 800 days, however the number of time stamps 

was increased to 38400, each corresponding to 30 mins within the 800 days period. This was carried 

out to validate and reciprocate the results obtained previously from the machine learning algorithms 

and to observe any differences due change in number of time stamps. The same method and 

protocol were followed as mentioned in the Methods Description and Implementation section, 

except changing the input file. 

However, there were no significant changes observed after increasing the time stamps by 4 times, as 

seen in the Figures 16 – 32 in Appendix 3. The results obtained after running K-means Clustering, 

Logistic regression and SVM, were found to be consistent and identical with the results obtained 

previously (9600-time stamps). As the results were found to be identical for both, 9600-time stamps 

and 38400-time steps, the results for the latter are covered in Appendix 3. The calibration plot for 

logistic regression of 38400-time steps (Appendix 3, Figure 30) showed a relatively higher model 

confidence with its steep, almost vertical calibration curve, unlike the curve for 9600-time stamps 

(Appendix 2, Figure 19). A possible reason for this outcome can be the use of simulation data instead 

of real-world data, where the former would follow a stringent set of mathematical and physical 

principles for consistent outcome each time the model is simulated. 

Ethical Issues 
Although the project manages to circumnavigate through the ethical issues that arises from the use 

of medical or clinical data, it is to be noted that this study did not collect real-world data directly; 

instead, uses a computational model to generate the data. Mathematical models often make 

assumptions or simplifications to make the simulations more manageable. This can lead to data that 

may not fully capture the complexities and variations found in the real world. One notable 

characteristic of simulation data is the absence of noise. In real-world data, noise refers to random 

variations or errors that can be present in measurements. Simulation data, being idealistic, does not 
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incorporate such noise, making it cleaner and potentially easier for machine learning algorithms to 

learn patterns. Machine learning models often perform better when trained on clean and well-

behaved data, as they can more easily discern patterns and relationships without interference from 

noise. 

Another ethical issue that needs to be addressed is the potential data bias that was generated during 

K-Means Clustering. The algorithm generated two clusters, one of which was relatively larger than 

the other cluster, accounting to approximately 76% of the entire data set. Larger clusters may 

dominate the interpretation, overshadowing meaningful patterns in smaller clusters. This can lead to 

an incomplete or distorted understanding of the dataset. This may have been occurred due to certain 

variables being overrepresented and the rest being underrepresented in the dataset. Also, other 

clustering techniques maybe applied to further understand the dataset. 

Scientific Contributions and Future direction 
This study showcases the power of a data-driven approach in cancer research, where mathematical 

models are theoretical and validated and refined using machine learning techniques. This approach 

aligns with the current trend in biomedical research, emphasizing the importance of leveraging large 

datasets and computational methods for insights that can guide clinical decision-making. By 

examining cancer cells, stem cells, macrophages, T helper cells, and cytokines, the study provides a 

comprehensive overview of the intricate interplay within the tumor microenvironment, shedding 

light on potential factors influencing cancer progression.  

Using unsupervised learning (K-Means Clustering) to identify distinct biological profiles is a significant 

step in understanding the heterogeneity within cancer populations. Identifying clusters with varying 

immune responses and cancer stem cell populations can provide nuanced insights into cancer's 

different stages and characteristics, offering potential avenues for targeted therapies and 

treatments. Using machine learning to validate mathematical models enhances the credibility of 

simulation results, and this cross-validation ensures that the mathematical models, often based on 

simplifications and assumptions, align with real-world data. The convergence of results from two 

different methodologies strengthens the reliability of the findings. The findings from machine 

learning can also be used to improve the pre-existing mathematical models by putting weightage on 

variables or simulation phases that are important through machine learning analysis.   

This study is a step towards bridging the gap between simulations and real-world scenarios for future 

research to focus on validating mathematical models and machine learning predictions using clinical 

data. Future studies can be directed towards developing more sophisticated hybrid approaches 

between mathematical modelling and machine learning to improve the understanding of complex 

biological processes and enable more accurate predictions of outcomes. Another interesting aspect 

would be exploring the potential of combining mathematical models and AI approaches with 

experimental data to develop more accurate and reliable predictive models for cancer diagnosis, 

prognosis, and treatment. Likewise, new AI techniques incorporating the fundamental laws of physics 

and biology can be developed to generate more accurate and biologically plausible predictions. 

Conclusion 
In conclusion, this thesis has delved into the intricate dynamics of tumor-macrophage interactions, 

employing a dual approach of mathematical model simulation and various machine learning 
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techniques. The mathematical model, featuring 14 variables, revealed significant heterogeneity in 

cancer cell populations, with a noteworthy exponential increase in cancer stem cells suggesting 

potential implications for proliferation or treatment resistance. Unsupervised learning through K-

means clustering identified distinct biological profiles, emphasizing an active immune response and 

higher cancer stem cell populations in Cluster 1. Supervised learning, particularly Logistic Regression, 

demonstrated a highly significant model with strong predictive capability, shedding light on the 

influence of specific variables like "Cancer Cells" and "Resistant Stem Cells" on assigned clusters. 

Support Vector Machines (SVM) showcased compelling results in classification, underscoring 

associations between different cancer cell types and tumor-associated macrophages.  

The data used in this study is obtained from a mathematical model simulation and is bound to be 

idealistic. Unlike actual data, simulation data does not contain noise. This nature of the simulated 

data contributed to the machine learning algorithms to perform with high accuracy. One way to 

improve the machine learning models would be to combine simulated and real-world clinical data, 

thus providing higher-value results. Simultaneously, the mathematical simulation model used for this 

study encompassed a wide variety of variables contributing within the tumor microenvironment, 

instead of focusing solely on the tumor associated macrophages interactions. Contributing to results 

that do not heavily lean towards understanding impact of macrophages on the tumor cells. 

The concept used in this thesis can be used to overcome the scarcity of data, especially in terms of 

deep learning analysis, which is a data-hungry model for precise analysis of biological functions such 

as cancer. The findings underscore the complexity of tumor-macrophage interactions, calling for 

further research to refine clustering methods and explore alternative machine-learning techniques. 

Furthermore, the observations from machine learning can help us understand and improve the 

existing mathematical models by understanding what factors and variables play significant roles in 

the model interaction. Integrating mathematical modelling and machine learning opens avenues for 

developing more sophisticated models capturing the nuances of these interactions, contributing to 

advancements in cancer biology and therapeutic strategies. 
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Appendix/Appendices 

Appendix 1: Code 
 

The following is the code for K-means Clustering, 

# Load necessary libraries 
library(ggplot2) 
library(cluster) 
library(factoextra) 
library(corrplot) 
library(pheatmap) 
 
# Set seed for reproducibility 
set.seed(123) 
 
# Read data from file 
MMSimData <- read.table("./MMSimData.txt", header = TRUE, as.is = TRUE, 
row.names = 1) 
 
# Check and handle missing values 
if (any(is.na(MMSimData))) { 
  MMSimData <- na.omit(MMSimData)   
} 
 
# Choose the number of clusters (K) using the elbow method 
wss <- numeric(10) 
for (i in 1:10) { 
  kmeans_temp <- kmeans(MMSimData, centers = i, iter.max = 1000000) 
  wss[i] <- sum(kmeans_temp$withinss) 
} 
# Plot the elbow method graph 
plot(1:10, wss, type = "b", main = "Elbow Method", xlab = "Number of 
Clusters (K)", ylab = "Within-cluster Sum of Squares") 

# Choose an optimal value for K based on the elbow method 
optimal_k <- 2  # Set initial choice of K 
 
# Apply K-means algorithm with the optimal K 
kmeans_result <- kmeans(MMSimData, centers = optimal_k, iter.max = 
1000000) 
 
# Silhouette Analysis 
silhouette_avg <- silhouette(kmeans_result$cluster, dist(MMSimData)) 
print(summary(silhouette_avg)) 

# Extract cluster assignments 
cluster_assignments <- as.factor(kmeans_result$cluster) 
 
# Perform PCA for 2D visualization 
pca_result <- prcomp(MMSimData, scale. = TRUE) 
pca_data <- as.data.frame(pca_result$x) 
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# Combine PCA data with cluster assignments 
pca_data <- cbind(pca_data, Cluster = cluster_assignments) 
 
# Visualization 
# 1. Plot PCA using ggplot 
ggplot(pca_data, aes(x = PC1, y = PC2, color = Cluster)) + 
  geom_point(size = 3) + 
  labs(title = "K-means Clustering Visualization (2D PCA)", x = "Principal 
Component 1", y = "Principal Component 2") + 
  theme_minimal() 

# 2. Plot PCA using factoextra 
fviz_pca_ind(pca_result, geom.ind = "point", col.ind = 
cluster_assignments, title = "K-means Clustering Visualization (2D PCA)") 

# Plot clustering results using factoextra 
fviz_cluster(kmeans_result, data = MMSimData, geom = "point",  
             stand = FALSE, ellipse = TRUE,  
             ellipse.type = "norm", main = "K-means Clustering (9600 time 
steps)") 

# 3. Heatmap 
heatmap_data <- MMSimData 
heatmap_data$Cluster <- cluster_assignments 
# Order rows by cluster 
heatmap_data <- heatmap_data[order(heatmap_data$Cluster), -
ncol(heatmap_data)] 
# Data visualization through heatmap 
heatmap_matrix <- as.matrix(heatmap_data[, 1:14])  
heatmap(heatmap_matrix, Colv = NA, scale = "row", Rowv = NA, 
        col = colorRampPalette(c("darkblue", "white", "darkred"))(50), 
        main = "Heatmap of Clustering Results", cexCol = 0.8) 

# 4. Correlation Plot 
# Calculate the correlation matrix 
corr_matrix <- cor(MMSimData[, -ncol(MMSimData)]) 
# Correlation Heatmap with adjustments 
corrplot(corr_matrix, method = "color", type = "upper", order = "hclust",  
         addCoef.col = "black", tl.col = "black", tl.srt = 45, tl.cex = 
0.7,  
         mar = c(0, 0, 2, 0), number.cex = 0.7, width = 10, height = 10, 
         title = "Correlation Heatmap") 

# Saving clustering results for supervised analysis  
# Extract cluster assignments 
cluster_assignments <- as.factor(kmeans_result$cluster) 
# Assign cluster labels to MMSimData 
MMSimData$Cluster <- as.factor(kmeans_result$cluster) 
# Save the results to a CSV file 
write.csv(MMSimData, file = "KMeansClusteringOutput.csv") 
 
 

The following is the code for Logistic Regression, 
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# Load necessary libraries 
library(tidyverse) 
library(caret) 
library(glmnet) 
library(Matrix) 
library(pROC) 
library(ggplot2) 
library(RColorBrewer) 
 
# Load your data 
KMCdata <- read.csv("KmeansClusteringOutput.csv", header = TRUE, as.is = 
TRUE, row.names = 1) 
 
# Check for missing values 
missing_values <- colSums(is.na(KMCdata)) 
print(missing_values) 

# Convert cluster to a factor 
KMCdata$Cluster <- as.factor(KMCdata$Cluster) 
 
# Convert Cluster to a factor with consistent levels 
level <- levels(KMCdata$Cluster) 
KMCdata$Cluster <- factor(KMCdata$Cluster, levels = level) 
 
# Split the data into training and testing sets 
set.seed(123)  # Set seed for reproducibility 
 
# Shuffle the data 
set.seed(123) 
shuffled_indices <- sample(nrow(KMCdata)) 
KMCdata <- KMCdata[shuffled_indices, ] 
 
 
# Manual K-fold cross-validation 
num_folds <- 5 
fold_size <- nrow(KMCdata) %/% num_folds 
cv_auc_values <- numeric(num_folds) 
predictions_list <- list() 
 
for (fold in 1:num_folds) { 
  # Define the indices for the current fold 
  start_index <- (fold - 1) * fold_size + 1 
  end_index <- fold * fold_size 
   
  # Extract the fold for validation 
  validation_fold <- KMCdata[start_index:end_index, ] 
   
  # Extract the remaining folds for training 
  training_folds <- KMCdata[-(start_index:end_index), ] 
   
  # Fit logistic regression model using glmnet 
  x_train <- as.matrix(training_folds[, -ncol(training_folds)]) 
  y_train <- as.numeric(training_folds$Cluster) - 1 
  scaled_x_train <- scale(x_train) 



 
 

47 

   
  model <- cv.glmnet(scaled_x_train, y_train, alpha = 1, family = 
"binomial", nfolds = num_folds) 
   
  # Make predictions on the validation set 
  x_validation <- as.matrix(validation_fold[, -ncol(validation_fold)]) 
  scaled_x_validation <- scale(x_validation) 
  predictions <- predict(model, newx = scaled_x_validation, s = 
"lambda.min", type = "response") 
   
  # Save predictions for later analysis 
  predictions_list[[fold]] <- data.frame(Actual = validation_fold$Cluster, 
Predicted = as.numeric(predictions[, 1])) 
   
  # Calculate AUC for the current fold 
  roc_curve <- roc(y_train, as.numeric(predict(model, newx = 
scaled_x_train, s = "lambda.min", type = "response")[, 1])) 
  cv_auc_values[fold] <- auc(roc_curve) 
} 

 
# Average AUC across folds 
average_auc <- mean(cv_auc_values) 
cat("Average AUC across folds:", round(average_auc, 3), "\n") 

# Individual AUC-ROC curves 
for (fold in 1:num_folds) { 
  pred <- predictions_list[[fold]] 
  roc_curve <- roc(as.factor(pred$Actual), pred$Predicted) 
  auc_value <- auc(roc_curve) 
   
  # Plot individual AUC-ROC curve 
  plot(roc_curve, col = "blue", main = "AUC-ROC Curve", col.main = 
"darkblue", lwd = 2, 
       sub = paste("AUC =", round(auc_value, 3))) 
} 

legend("bottomright", legend = paste("Fold", 1:num_folds), col = "blue", 
lty = 1, cex = 0.8) 

# Calculate and plot overall AUC-ROC curve 
# Use the predictions from the last fold for the overall AUC 
overall_predictions <- predict(model, newx = scaled_x_validation, s = 
"lambda.min", type = "response") 
roc_curve <- roc(as.factor(validation_fold$Cluster), 
as.numeric(overall_predictions[, 1])) 

# Plot overall AUC-ROC curve 
plot(roc_curve, col = "red", main = "Overall AUC-ROC Curve", col.main = 
"darkred", lwd = 2) 
text(0.8, 0.2, paste("Overall AUC =", round(auc(roc_curve), 3)), col = 
"black", cex = 1.2, pos = 4) 

# ... (rest of your existing code) 
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# Calculate RMSE 
rmse <- sqrt(mean((as.numeric(validation_fold$Cluster) - 1 - 
as.numeric(overall_predictions[, 1]))^2)) 
cat("Root Mean Squared Error (RMSE):", round(rmse, 3), "\n") 

# Histogram of Residuals 
residuals <- as.numeric(validation_fold$Cluster) - 1 - 
as.numeric(overall_predictions[, 1]) 
hist(residuals, main = "Histogram of Residuals", col = "skyblue", border = 
"black", xlab = "Residuals") 
legend("topright", legend = "Residuals", fill = "skyblue") 

# Residual Plot 
# Residual Plot 
plot(as.numeric(overall_predictions[, 1]), residuals, main = "Residual 
Plot", col = "blue", xlab = "Predicted Values", ylab = "Residuals") 
abline(h = 0, col = "red", lty = 2) 
legend("topright", legend = "Residuals", fill = "blue") 

# QQ Plot 
# QQ Plot 
qqnorm(residuals) 
qqline(residuals, col = 2) 
legend("topleft", legend = "Residuals", col = "black") 

# Actual vs. Predicted Plot 
plot(as.numeric(overall_predictions[, 1]), 
as.numeric(validation_fold$Cluster) - 1, main = "Actual vs. Predicted", 
col = "green", xlab = "Predicted Values", ylab = "Actual Values") 
abline(a = 0, b = 1, col = "red", lty = 2) 

 
# 2. Confusion Matrix Heatmap using ggplot2 
conf_matrix <- table(Actual = as.numeric(validation_fold$Cluster) - 1,  
                     Predicted = as.numeric(overall_predictions > 0.5)) 
 
# Extract confusion matrix values 
conf_matrix_values <- as.table(conf_matrix) 
 
# Convert the confusion matrix to a data frame 
conf_matrix_df <- as.data.frame.matrix(conf_matrix_values) 
 
# Add row and column names to the data frame 
conf_matrix_df <- cbind(Actual = rownames(conf_matrix_df), conf_matrix_df) 
rownames(conf_matrix_df) <- NULL 
 
# Reshape the data for ggplot 
conf_matrix_long <- gather(conf_matrix_df, key = "Predicted", value = 
"Count", -Actual) 
 
# Confusion Matrix Heatmap 
ggplot(conf_matrix_long, aes(x = Predicted, y = Actual, fill = Count)) + 
  geom_tile(color = "white") + 
  geom_text(aes(label = Count), vjust = 1, color = "black") + 
  scale_fill_gradient(low = "white", high = "blue") + 



 
 

49 

  labs(title = "Confusion Matrix", x = "Predicted", y = "Actual") + 
  theme_minimal() + 
  theme(axis.text = element_text(size = 10), axis.title = 
element_text(size = 12), 
        plot.title = element_text(size = 14, face = "bold")) + 
  guides(fill = guide_legend(title = "Count")) 

# 3. Variable Importance Plot 
coefficients <- as.vector(coef(model)[-1, ]) 
feature_names <- colnames(x_train) 
 
# Check if lengths match 
if (length(coefficients) == length(feature_names)) { 
  # Create a data frame 
  coef_df <- data.frame(Feature = feature_names, Coefficient = 
coefficients) 
   
  # Variable Importance Plot 
  variable_importance_plot <- ggplot(coef_df, aes(x = reorder(Feature, 
Coefficient), y = Coefficient)) + 
    geom_bar(stat = "identity", fill = "skyblue") + 
    coord_flip() + 
    labs(title = "Variable Importance Plot", x = "Feature", y = 
"Coefficient") + 
    theme_minimal() + 
    theme(axis.text = element_text(size = 10), axis.title = 
element_text(size = 12), 
          plot.title = element_text(size = 14, face = "bold")) + 
    guides(fill = guide_legend(title = "Coefficient")) 
  print(variable_importance_plot) 
   
}   

# 4. Calibration plot 
# Fit the final model on the full training set 
final_glmnet_model <- glmnet(scaled_x_train, y_train, alpha = 1, family = 
"binomial", lambda = model$lambda.min) 
final_model <- glm(as.numeric(validation_fold$Cluster) - 1 ~ 
predict(final_glmnet_model, newx = scaled_x_validation, type = 
"response"), family = "binomial", maxit = 1000) 

# Predict on the validation set 
validation_probabilities <- predict(final_glmnet_model, newx = 
scaled_x_validation, type = "response") 
 
# Combine predictions and actual values 
calibration_data <- data.frame(Predicted = 
as.numeric(validation_probabilities), Actual = 
as.numeric(validation_fold$Cluster) - 1) 
 
# Calibration Plot with Custom Legend 
calibration_plot <- ggplot(calibration_data, aes(x = Predicted, y = 
Actual)) + 
  geom_point(aes(color = "Actual vs. Predicted"), show.legend = TRUE) + 
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  geom_smooth(method = "glm", method.args = list(family = "binomial"), se 
= FALSE, aes(color = "Smoothed Line"), show.legend = TRUE) + 
  geom_abline(intercept = 0, slope = 1, linetype = "dashed", color = 
"red", aes(color = "Ideal Line"), show.legend = TRUE) + 
  labs(title = "Calibration Plot", x = "Predicted Probability", y = 
"Actual Probability") + 
  theme_minimal() + 
  theme(axis.text = element_text(size = 10), axis.title = 
element_text(size = 12), 
        plot.title = element_text(size = 14, face = "bold")) + 
  scale_color_manual(values = c("black", "blue", "red"), guide = "legend", 
                     labels = c("Actual vs. Predicted", "Smoothed Line", 
"Ideal Line")) 

The following is the code for Support Vector Machine, 

# Install and load necessary packages 
library(e1071) 
library(pROC) 
library(corrplot) 
library(ggplot2) 
library(reshape2) 
library(caret) 

# Load your data 
KMCdata <- read.csv("KmeansClusteringOutput.csv", header = TRUE, as.is = 
TRUE, row.names = 1)  
 
# Convert response variable to a factor with two levels 
KMCdata$cluster <- factor(KMCdata$Cluster) 
 
# Set the number of folds for cross-validation 
num_folds <- 5 
 
# Create a data partition for cross-validation 
set.seed(123)  # Set seed for reproducibility 
folds <- createFolds(KMCdata$cluster, k = num_folds, list = TRUE) 
 
# Initialize variables to store cross-validation results 
cv_results <- NULL 
all_true_labels <- all_predicted_probs <- NULL 
 
# Initialize a list to store confusion matrices for each fold 
confusion_matrices <- list() 
 
# Define the parameter grid for tuning 
param_grid <- expand.grid( 
  cost = c(0.1, 1, 10),  # Adjust the range of cost values 
  kernel = c("linear", "radial")  # Include other kernel types if needed 
) 
 
# Perform K-fold cross-validation with parameter tuning 
for (i in 1:num_folds) { 
  # Split the data into training and testing sets for the current fold 
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  training_data <- KMCdata[-folds[[i]], ] 
  testing_data <- KMCdata[folds[[i]], ] 
   
  # Convert cluster variable to a factor with two levels 
  training_data$cluster <- factor(training_data$cluster) 
  testing_data$cluster <- factor(testing_data$cluster) 
   
  # Scale the feature variables 
  training_data[, -which(names(training_data) == "cluster")] <- 
scale(training_data[, -which(names(training_data) == "cluster")]) 
  testing_data[, -which(names(testing_data) == "cluster")] <- 
scale(testing_data[, -which(names(testing_data) == "cluster")]) 
   
  # Train the SVM model with parameter tuning 
  svm_model <- svm( 
    cluster ~ .,  
    data = training_data,  
    kernel = "radial",  # Adjust the kernel type 
    cost = 1,           # Use a default cost value 
    probability = TRUE 
  ) 
   
  # Make predictions on the testing set 
  predictions <- predict(svm_model, newdata = testing_data, probability = 
TRUE) 
   
  # Evaluate the performance (you can replace this with your own 
evaluation metric) 
  accuracy <- confusionMatrix(predictions, 
testing_data$cluster)$overall["Accuracy"] 
   
  # Store the results for this fold 
  cv_results <- rbind(cv_results, data.frame(Fold = i, Accuracy = 
accuracy)) 
   
  # Store true labels and predicted probabilities for ROC curve 
  all_true_labels <- c(all_true_labels, as.numeric(testing_data$cluster) - 
1) 
  all_predicted_probs <- c(all_predicted_probs, 
attributes(predictions)$probabilities[, 2]) 
   
  # Store confusion matrix for this fold 
  confusion_matrices[[i]] <- as.table(confusionMatrix(predictions, 
testing_data$cluster)$table) 
} 
 
# Display the cross-validation results 
print(cv_results) 

# Calculate the mean and standard deviation of the accuracy across folds 
mean_accuracy <- mean(cv_results$Accuracy) 
sd_accuracy <- sd(cv_results$Accuracy) 
 
cat("Mean Accuracy:", mean_accuracy, "\n") 
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cat("Standard Deviation of Accuracy:", sd_accuracy, "\n") 

# Visualize the mean ROC curve 
roc_curve <- roc(all_true_labels, all_predicted_probs) 

# Convert roc_curve to a data frame 
roc_data <- data.frame( 
  specificity = 1 - roc_curve$specificities, 
  sensitivity = roc_curve$sensitivities 
) 
 
# Plot ROC curve 
roc_plot <- ggplot(roc_data, aes(x = 1 - specificity, y = sensitivity)) + 
  geom_line(color = "blue") + 
  geom_abline(intercept = 0, slope = 1, linetype = "dashed", color = 
"red") + 
  labs(title = "Mean ROC Curve", x = "1 - Specificity", y = "Sensitivity") 
+ 
  theme_minimal() 
 
roc_plot + theme_minimal() + theme(axis.text.x = element_text(angle = 45, 
hjust = 1), text = element_text(size = 12)) 

# Add AUC to the plot 
auc_value <- auc(roc_curve) 
cat("Mean AUC:", auc_value, "\n") 

roc_plot + 
  annotate("text", x = 0.8, y = 0.2, label = paste("AUC =", 
round(auc_value, 2)), color = "black", size = 4) + 
  theme_minimal() 

 

# Visualize the precision-recall curve using pROC package 
pr_curve <- roc(all_true_labels, all_predicted_probs) 

# Set a threshold (you can choose a threshold based on your preference) 
threshold <- 0.5  # For example, you can use 0.5 as a threshold 
 
# Extract precision-recall curve data for the specified threshold 
pr_data <- coords(pr_curve, threshold = threshold, input = "threshold", 
ret = c("sensitivity", "specificity")) 
 
# Plot precision-recall curve 
pr_plot <- ggplot(pr_data, aes(x = sensitivity, y = specificity)) + 
  geom_line(color = "green") + 
  labs(title = "Precision-Recall Curve", x = "Recall", y = "Precision") + 
  theme_minimal() 
pr_plot + theme_classic() 

print(pr_plot) 
 
# Plot confusion matrix for each fold 
for (i in 1:num_folds) { 
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  # Convert confusion matrix to a data frame 
  cm_df <- as.data.frame(as.table(confusion_matrices[[i]])) 
   
  # Plot confusion matrix 
  cm_plot <- ggplot(data = cm_df, aes(x = Prediction, y = Reference, fill 
= Freq)) + 
    geom_tile(color = "white") + 
    scale_fill_gradient(low = "white", high = "steelblue") + 
    labs(title = paste("Confusion Matrix - Fold", i), x = "Predicted", y = 
"Actual") + 
    theme_minimal() + 
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) 
   
  print(cm_plot) 
} 

# Visualize the calibration plot 
calibration_data <- data.frame( 
  observed = all_true_labels, 
  predicted = all_predicted_probs 
) 
 
calibration_plot <- ggplot(calibration_data, aes(x = predicted, y = 
observed)) + 
  geom_smooth(method = "loess", se = FALSE, color = "orange") + 
  geom_point() + 
  labs(title = "Calibration Plot", x = "Predicted Probability", y = 
"Observed Outcome") + 
  theme_minimal() 
 
print(calibration_plot) 
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Appendix 2: Miscellaneous Result Visualization (9600-time stamps) 
 

 

Figure 19. Calibration Plot for Logistic Regression 

 



 
 

55 

Appendix 3: Result Visualization (38400-time stamps) 

K-means Clustering 

 

Figure 20. Correlation Matrix Heatmap 

 

Figure 21. Heatmap of Clustering Results 



 
 

56 

 

Figure 22. K-means Clustering results using factoextra package 

 

Figure 23. K-means Clustering results after 2D-PCA 
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Logistic Regressions 

 

Figure 24. AUC-ROC for Logistic Regression 

 

Figure 25. Histogram of Residuals for Logistic Regression 
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Figure 26. Residual Plot for Logistic Regression 

 

Figure 27. Normal QQ Plot for Logistic Regression 

 

Figure 28. Confusion Matrix for Logistic Regression 
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Figure 29. Variable Importance Plot for Logistic Regression 

 

 

Figure 30. Calibration Plot for Logistic Regression 
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Support Machine Vector 

 

 

Figure 31. AUC-ROC for SVM 

 

 

Figure 32. Confusion Matrix for SVM 
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Appendix 4: Linear Regression 
library(caret) 

## Loading required package: ggplot2 

## Loading required package: lattice 

library(ROCR)   
 
# Load your data 
KMCdata <- read.csv("KmeansClusteringOutput.csv", header = TRUE, as.is = 
TRUE, row.names = 1) 
 
# Display summary and head of the data 
summary(KMCdata) 

##  Cancer_Stem_Cells_S Cancer_Cells_C      Resistant_Stem_Cells_S_R 
##  Min.   :1.000e+00   Min.   :        0   Min.   :    0.000        
##  1st Qu.:5.581e+03   1st Qu.:      150   1st Qu.:    0.006        
##  Median :8.727e+06   Median :   232626   Median :    8.852        
##  Mean   :6.796e+09   Mean   :170380392   Mean   : 6236.114        
##  3rd Qu.:9.581e+09   3rd Qu.:248804039   3rd Qu.: 9384.785        
##  Max.   :3.016e+10   Max.   :749320004   Max.   :27143.956        
##  Resistant_Cancer_Cells_C_R M1_Tumor_Associated_Macrophages 
##  Min.   :0.000e+00          Min.   :        0               
##  1st Qu.:3.137e+08          1st Qu.:261287298               
##  Median :5.211e+08          Median :261379969               
##  Mean   :4.279e+08          Mean   :312766740               
##  3rd Qu.:5.215e+08          3rd Qu.:339875793               
##  Max.   :1.416e+09          Max.   :640468287               
##  M2_Tumor_Associated_Macrophages Type_I_T_helper_Cell_T_H1 
##  Min.   :     9028               Min.   :        0         
##  1st Qu.:111497154               1st Qu.:278474790         
##  Median :111532479               Median :278572608         
##  Mean   :123486405               Mean   :332998762         
##  3rd Qu.:125184679               3rd Qu.:361279033         
##  Max.   :199627612               Max.   :652741109         
##  Type_II_T_helper_cells_T_H2 Cytotoxic_T_Cells_T_C 
Regulatory_T_Cells_T_reg 
##  Min.   :        0           Min.   :        0     Min.   :       0         
##  1st Qu.:111396601           1st Qu.:151011165     1st Qu.:23448654         
##  Median :111432289           Median :151059080     Median :23459587         
##  Mean   :123261125           Mean   :175750560     Mean   :26874892         
##  3rd Qu.:124878559           3rd Qu.:189930089     3rd Qu.:27389977         
##  Max.   :199517068           Max.   :327354323     Max.   :49880509         
##  Interferon_gamma Cytokine_IL10       Cytokine_IL2     X_100000_SR        
##  Min.   : 0.000   Min.   :0.000000   Min.   :0.0000   Min.   :0.000e+00   
##  1st Qu.: 4.796   1st Qu.:0.005757   1st Qu.:0.3214   1st Qu.:5.660e+02   
##  Median : 4.798   Median :0.005759   Median :0.3215   Median :8.852e+05   
##  Mean   : 5.725   Mean   :0.006375   Mean   :0.3842   Mean   :6.236e+08   
##  3rd Qu.: 6.204   3rd Qu.:0.006460   3rd Qu.:0.4165   3rd Qu.:9.385e+08   
##  Max.   :11.119   Max.   :0.010351   Max.   :0.7522   Max.   :2.714e+09   
##     Cluster     
##  Min.   :1.00   
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##  1st Qu.:2.00   
##  Median :2.00   
##  Mean   :1.77   
##  3rd Qu.:2.00   
##  Max.   :2.00 

head(KMCdata) 

##            Cancer_Stem_Cells_S Cancer_Cells_C Resistant_Stem_Cells_S_R 
## 0                     1.000000      0.0000000             0.000000e+00 
## 0.08333333            1.008655      0.2615118             4.286760e-09 
## 0.16666667            1.017437      0.4926588             8.648148e-09 
## 0.25                  1.026328      0.7040165             1.308557e-08 
## 0.33333333            1.035317      0.8987405             1.760023e-08 
## 0.41666667            1.044396      1.0787727             2.219322e-08 
##            Resistant_Cancer_Cells_C_R M1_Tumor_Associated_Macrophages 
## 0                        0.000000e+00                        85000.00 
## 0.08333333               1.633207e-05                        78094.29 
## 0.16666667               7.080665e-05                        71743.79 
## 0.25                     1.751859e-04                        65905.64 
## 0.33333333               3.456643e-04                        60539.97 
## 0.41666667               6.040955e-04                        55609.54 
##            M2_Tumor_Associated_Macrophages Type_I_T_helper_Cell_T_H1 
## 0                                 15000.00                  71000.00 
## 0.08333333                        14941.14                  65737.31 
## 0.16666667                        14879.92                  60545.29 
## 0.25                              14818.24                  55460.28 
## 0.33333333                        14756.66                  50526.85 
## 0.41666667                        14695.31                  45798.72 
##            Type_II_T_helper_cells_T_H2 Cytotoxic_T_Cells_T_C 
## 0                            12000.000             56000.000 
## 0.08333333                   10388.337             37457.518 
## 0.16666667                    8995.065             25084.708 
## 0.25                          7790.032             16796.095 
## 0.33333333                    6747.397             11231.999 
## 0.41666667                    5844.973              7495.692 
##            Regulatory_T_Cells_T_reg Interferon_gamma Cytokine_IL10 
Cytokine_IL2 
## 0                          8000.000       0.12000000  8.500000e-03 
0.0094000000 
## 0.08333333                 7360.631       0.07252665  1.638763e-03 
0.0046065887 
## 0.16666667                 6772.359       0.04397805  3.162704e-04 
0.0022750107 
## 0.25                       6231.103       0.02679639  6.131982e-05 
0.0011393616 
## 0.33333333                 5733.103       0.01644284  1.213379e-05 
0.0005847317 
## 0.41666667                 5274.903       0.01019175  2.612872e-06 
0.0003124488 
##             X_100000_SR Cluster 
## 0          0.0000000000       2 
## 0.08333333 0.0004286760       2 
## 0.16666667 0.0008648148       2 
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## 0.25       0.0013085570       2 
## 0.33333333 0.0017600228       2 
## 0.41666667 0.0022193224       2 

# Set seed for reproducibility 
set.seed(123) 
 
# Create training and testing sets 
index_train <- createDataPartition(KMCdata$Cluster, p = 0.7, list = FALSE) 
training_data <- KMCdata[index_train, ] 
testing_data <- KMCdata[-index_train, ] 
 
index_valid <- createDataPartition(testing_data$Cluster, p = 0.5, list = 
FALSE) 
validation_data <- testing_data[index_valid, ] 
testing_data <- testing_data[-index_valid, ] 
 
# Scale the features 
preproc <- preProcess(training_data[, -ncol(training_data)], method = 
c("center", "scale")) 
training_data_scaled <- predict(preproc, training_data) 
testing_data_scaled <- predict(preproc, testing_data) 
validation_data_scaled <- predict(preproc, validation_data) 
 
# Train the linear regression model 
lm_model <- lm(formula = Cluster ~ ., data = training_data_scaled) 
summary(lm_model) 

##  
## Call: 
## lm(formula = Cluster ~ ., data = training_data_scaled) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.54832 -0.00617  0.00257  0.00285  0.45001  
##  
## Coefficients: (1 not defined because of singularities) 
##                                   Estimate Std. Error  t value Pr(>|t|)     
## (Intercept)                       1.768338   0.000968 1826.880  < 2e-16 
*** 
## Cancer_Stem_Cells_S             -33.632214   0.448739  -74.948  < 2e-16 
*** 
## Cancer_Cells_C                   66.021999   1.007314   65.543  < 2e-16 
*** 
## Resistant_Stem_Cells_S_R        -31.908899   0.428318  -74.498  < 2e-16 
*** 
## Resistant_Cancer_Cells_C_R        0.533919   0.202806    2.633  0.00849 
**  
## M1_Tumor_Associated_Macrophages   0.437615   0.381733    1.146  0.25167     
## M2_Tumor_Associated_Macrophages   0.076917   1.070830    0.072  0.94274     
## Type_I_T_helper_Cell_T_H1        -3.440746   3.317173   -1.037  0.29966     
## Type_II_T_helper_cells_T_H2      -0.050667   1.050945   -0.048  0.96155     
## Cytotoxic_T_Cells_T_C            -0.828937   0.382273   -2.168  0.03016 
*   
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## Regulatory_T_Cells_T_reg          0.012587   0.007067    1.781  0.07494 
.   
## Interferon_gamma                 -3.033047   3.159067   -0.960  0.33704     
## Cytokine_IL10                    -0.059239   0.055842   -1.061  0.28880     
## Cytokine_IL2                      6.385987   5.967586    1.070  0.28461     
## X_100000_SR                             NA         NA       NA       NA     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.07935 on 6707 degrees of freedom 
## Multiple R-squared:  0.9647, Adjusted R-squared:  0.9646  
## F-statistic: 1.41e+04 on 13 and 6707 DF,  p-value: < 2.2e-16 

# Make predictions 
predictions <- predict(lm_model, newdata = testing_data_scaled) 

## Warning in predict.lm(lm_model, newdata = testing_data_scaled): 
prediction from 
## rank-deficient fit; attr(*, "non-estim") has doubtful cases 

summary(predictions) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##   0.886   1.976   1.997   1.788   1.999   2.039 

# Evaluate the model 
rmse <- sqrt(mean((testing_data_scaled$Cluster - predictions)^2)) 
cat("Root Mean Squared Error (RMSE):", rmse, "\n") 

## Root Mean Squared Error (RMSE): 0.07746983 

# Visualization Section 
 
# 1. Actual vs. Predicted 
plot(testing_data_scaled$Cluster, predictions,  
     main = "Actual vs. Predicted",  
     col = "blue",  
     pch = 16, 
     xlab = "Actual Values", 
     ylab = "Predicted Values") 
abline(0, 1, col = "red", lty = 2) 
legend("topleft", legend = c("Observations", "Regression Line"), col = 
c("blue", "red"), pch = c(16, NA), lty = c(NA, 2)) 

# 2. Residual Plot 
residuals <- testing_data_scaled$Cluster - predictions 
plot(predictions, residuals,  
     main = "Residual Plot",  
     xlab = "Predicted Values",  
     ylab = "Residuals",  
     col = "blue",  
     pch = 16) 
abline(h = 0, col = "red", lty = 2) 
legend("topright", legend = "Residuals", col = "blue", pch = 16) 
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# 3. Histogram of Residuals 
hist(residuals,  
     main = "Histogram of Residuals",  
     xlab = "Residuals",  
     col = "lightblue",  
     border = "black") 
legend("topright", legend = "Residuals", fill = "lightblue", border = 
"black") 

# 4. QQ Plot 
par(mfrow = c(1, 2))  # Set up a 1x2 grid for plots 
qqnorm(residuals, main = "QQ Plot") 
qqline(residuals, col = 2) 
legend("topleft", legend = "QQ Line", col = 2, lty = 1) 
 
# Train the linear regression model on validation data 
lm_model_validation <- lm(formula = Cluster ~ ., data = 
validation_data_scaled) 
summary(lm_model_validation) 

##  
## Call: 
## lm(formula = Cluster ~ ., data = validation_data_scaled) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.49083 -0.01169  0.00305  0.00365  0.49044  
##  
## Coefficients: (1 not defined because of singularities) 
##                                   Estimate Std. Error t value Pr(>|t|)     
## (Intercept)                        1.77175    0.01945  91.095  < 2e-16 
*** 
## Cancer_Stem_Cells_S              -35.41326    1.18391 -29.912  < 2e-16 
*** 
## Cancer_Cells_C                    61.98430    3.91705  15.824  < 2e-16 
*** 
## Resistant_Stem_Cells_S_R         -35.91396    1.26920 -28.297  < 2e-16 
*** 
## Resistant_Cancer_Cells_C_R        -5.18128    2.27089  -2.282 0.022660 
*   
## M1_Tumor_Associated_Macrophages   47.12238   13.99668   3.367 0.000781 
*** 
## M2_Tumor_Associated_Macrophages   -1.82621    2.93317  -0.623 0.533643     
## Type_I_T_helper_Cell_T_H1       -372.12606  111.82396  -3.328 0.000898 
*** 
## Type_II_T_helper_cells_T_H2        8.10057   22.22790   0.364 0.715589     
## Cytotoxic_T_Cells_T_C             20.54013    7.41116   2.772 0.005652 
**  
## Regulatory_T_Cells_T_reg           0.29050    0.64187   0.453 0.650916     
## Interferon_gamma                -272.94778   83.67674  -3.262 0.001133 
**  
## Cytokine_IL10                     -6.73587   22.06576  -0.305 0.760210     
## Cytokine_IL2                     583.24940  176.45407   3.305 0.000972 
*** 
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## X_100000_SR                             NA         NA      NA       NA     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.08603 on 1426 degrees of freedom 
## Multiple R-squared:  0.9602, Adjusted R-squared:  0.9599  
## F-statistic:  2649 on 13 and 1426 DF,  p-value: < 2.2e-16 

# Make predictions on validation data 
validation_predictions <- predict(lm_model_validation, newdata = 
validation_data_scaled) 

## Warning in predict.lm(lm_model_validation, newdata = 
validation_data_scaled): 
## prediction from rank-deficient fit; attr(*, "non-estim") has doubtful 
cases 

summary(validation_predictions) 

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
##  0.8636  1.6425  1.9964  1.7563  1.9992  2.0724 

# 5. Validation: Actual vs. Predicted 
plot(validation_data_scaled$Cluster, validation_predictions,  
     main = "Validation: Actual vs. Predicted",  
     col = "green",  
     pch = 16, 
     xlab = "Actual Values", 
     ylab = "Predicted Values") 
abline(0, 1, col = "red", lty = 2) 
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Appendix 5: Neural Network 
# Load required libraries 
library(neuralnet) 
library(caret) 

## Loading required package: ggplot2 

## Loading required package: lattice 

# Load your data 
MMSimData <- read.csv("KmeansClusteringOutput8000.csv", header = TRUE, 
as.is = TRUE, row.names = 1) 
 
# Convert response variable to a factor with two levels 
MMSimData$cluster <- factor(MMSimData$Cluster) 
 
set.seed(123) 
index_train <- createDataPartition(MMSimData$cluster, p = 0.7, list = 
FALSE) 
training_data <- MMSimData[index_train, ] 
testing_data <- MMSimData[-index_train, ] 
 
index_valid <- createDataPartition(testing_data$cluster, p = 0.5, list = 
FALSE) 
validation_data <- testing_data[index_valid, ] 
testing_data <- testing_data[-index_valid, ] 
 
# Convert cluster variable to a factor with two levels 
training_data$cluster <- factor(training_data$cluster) 
testing_data$cluster <- factor(testing_data$cluster) 
validation_data$cluster <- factor(validation_data$cluster) 
 
# Scale the features 
preproc <- preProcess(training_data[, -ncol(training_data)], method = 
c("center", "scale")) 
training_data_scaled <- predict(preproc, training_data) 
testing_data_scaled <- predict(preproc, testing_data) 
 
# Train the neural network 
nn_model <- neuralnet(cluster ~ ., data = training_data_scaled, hidden = 
c(5, 2), linear.output = TRUE) 
 
# Make predictions 
predictions <- as.factor(round(predict(nn_model, newdata = 
testing_data_scaled))) 
predicted_levels <- levels(testing_data_scaled$cluster) 
 
# Trim predictions to match the length of testing data 
predictions <- factor(predictions[1:length(testing_data_scaled$cluster)], 
levels = predicted_levels) 
 
# Create confusion matrix 
conf_matrix <- table(Reference = testing_data_scaled$cluster, Prediction = 
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predictions) 
print(conf_matrix) 

##          Prediction 
## Reference   1   2 
##         1 331   0 
##         2   0   0 

# Calculate other performance metrics 
accuracy <- sum(diag(conf_matrix)) / sum(conf_matrix) 
sensitivity <- diag(conf_matrix) / rowSums(conf_matrix) 
specificity <- colSums(conf_matrix) - diag(conf_matrix) / 
colSums(conf_matrix) - diag(conf_matrix) 
 
print(paste("Accuracy:", accuracy)) 

## [1] "Accuracy: 1" 

print(paste("Sensitivity:", sensitivity)) 

## [1] "Sensitivity: 1"   "Sensitivity: NaN" 

print(paste("Specificity:", specificity)) 

## [1] "Specificity: -1"  "Specificity: NaN" 

 

 


