This is a postprint. The original paper appeared in Proc. 2023 ACM/IEEE 26th International Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C 2023), Workshop MULTI 2023, Visteras, Sweden, © 2023 IEEE, pp. 639-648, DOI 10.1109/MODELS-C59198.2023.00105.

Field Types for Deep Characterization in
Multi-Level Modeling

, Jodo Paulo A. Almeida™ ®, Colin Atkinson* @, Manfred A. Jeusfeld®
* Victoria University of Wellington, Wellington, New Zealand
T Federal University of Espirito Santo (UFES), Vitéria, Brazil
¥ University of Mannheim, Mannheim, Germany
§ University of Skovde, Skovde, Sweden
1 Budapest University of Technology and Economics, Budapest, Hungary

Thomas Kiihne* , Gergely Mezeil

Abstract—Traditional two-level modeling approaches distin-
guish between class- and object features. Using UML parlance,
classes have attributes which require their instances to have
object slots. Multi-Level Modeling unifies classes and objects to
“clabjects”, and it has been suggested that attributes and slots
can and should be unified to “fields” in a similar way. The notion
of deep instantiation for clabjects creates the possibility of “deep
fields”, i.e., fields that expand on the roles of pure attributes or
pure slots. In this paper, we discuss several variants of such a
“deep field” notion, pointing out the semantic differences and
the various resulting trade-offs. We hope our observations will
help clarify the range of options for supporting clabject fields in
multi-level modeling and thus aid future MLM development.

Index Terms—multi-level modeling, attribute definition

I. INTRODUCTION

Conventional two-level object-oriented approaches are
based on a class-object dichotomy: classes capture invariant
aspects of the objects that instantiate them. An integral part
of instantiation is that class attributes are expressed as object
slots'. For example, if a class Product defines the attribute
price : Double, an instance prod1 : Product will then be required
to have a slot such as price = 9.95, where the slot value 9.95
must conform to the attribute type Double. The attribute type
therefore constrains the set of admissible slot values and
often is a datatype, i.e., has instances that, unlike objects,
are immutable and lack identity. Datatypes often have an
associated set of operations, e.g., arithmetic operations for
numeric values.

Multi-level modeling (MLM) unifies the notions of “class”
and “object” into a single clabject concept [2], [3]. Clabjects
therefore may have both an instance (object) role and a type
(class) role. This suggests a similar unification of attributes
and slots into so-called “fields” [3], since a clabject’s fields
can in general be expected to both

1) be required to conform to the fields of its classifying
clabject, and

Gergely Mezei is supported by the Ministry of Culture and Innovation and
the National Research, Development and Innovation Office (Grant No. 2022-
2.1.1-NL-2022-00012). Jodo Paulo A. Almeida is supported by CNPq (Grant
No. 313687/2020-0) and FAPES (Grants No. 281/2021, 1022/2022).

IThe term “slot”, in this context, traces back to Minsky’s seminal work on
frame-based knowledge representation [1].

2) control the fields of its instances.

As a result, deep (more than two-level) clabject classification
hierarchies will give rise to deep “field chains”, i.e., sequences
of corresponding fields within a clabject instantiation branch.
Note that references like “top-level”- or “bottom-level”-field
do not necessarily align with the top- and bottom-level of the
entire MLM hierarchy, since a field chain may not span the
entire multi-level hierarchy.

Naturally, fields, other than the top- or bottom-level fields,
may have roles beyond that of a pure attribute or pure slot.
Moreover, the top-level field definition may be used to exert
control not only over the field directly below it, but instead over
more fields, potentially including all fields in the field chain
(cf. “deep characterisation” [4]). As with many MLM notions,
there is a plurality of different approaches to realize such
deep field control over multiple levels. Existing approaches
range from the use of traditional shallow fields, in combination
with the powertype pattern [5], to elaborate “deep field”
mechanisms with widely different semantics.

The goal of this paper is to characterize and document
the essential nature of major canonical “deep field” design
choices which are embodied in existing approaches, with a
view to catalog them and identify their trade-offs. In order
to define a realistic scope, we specifically refrain from com-
paring concrete field designs of existing MLM technologies,
but rather focus on the evaluation of the essence of their
approaches to using fields to support deep characterization.
We hope our observations will help clarify the range of
options for supporting clabject fields in MLM and thus aid
in fostering consensus in the MLM community regarding
relevant concepts, terminology, and the evaluation of design
alternatives.

In this paper, we first provide a brief background to how
current ways of supporting field evolved (Section II) and then
present a deep modeling scenario that we use as a motivation
and benchmark for our analysis (Section III). We subsequently
present five canonical field variants including appraisals of
their respective trade-offs (Section IV). Finally, we discuss the
observations made so far — attempting to gain an overview of
the design landscape and critiquing our analysis with respect

https://dx.doi.org/10.1109/MODELS-C59198.2023.00105
https://orcid.org/0000-0002-7674-2209
https://orcid.org/0000-0002-9819-3781
https://orcid.org/0000-0002-3164-5595
https://orcid.org/0000-0002-9421-8566
https://orcid.org/0000-0001-9464-7128

to its potential limitations — before concluding with closing
remarks (Section VI).

II. A Brier History or FIELDS

The notion of fields (including their two-level variants)
has been relevant in numerous computer science disciplines,
specifically in databases, knowledge representation, ontologies,
conceptual modeling and object-oriented programming.

In relational databases, a domain type attribute can be
represented as a table column. Each such column has a
datatype, and values for the column in a given database row
must conform to this datatype. The SQL standard for relational
databases provides a fixed set of datatypes such as integer,
float, date/time, and string. The implied relationship between
the datatype of a column and all values in that column can
be characterized as a “schema-data” relationship which is
compatible with the concept of the values being classified by
the datatype.

In the Semantic Web’s RDF formalism, triples of the
form “subject-predicate-object” are used to represent informa-
tion about entities of interest. Such information includes the
association of values to subject properties. The object position
of the respective triple may contain URIs (which denote an
entity) or RDF literals, which represent values. Hence, RDF
“slots” are not limited to containing values of datatypes. The
UML is another example reiterating this generality of “slots”,
as it also supports classes, next to datatypes, to be used as
attribute types. Indeed, while we are only using dataypes as
field types in our domain example, we do so without loss of
generality.

Note that allowing slots to contain more than just (order-
zero) values of (order-one) datatypes, opens up the possibility
of letting them contain type-valued (order-one) content, or
content of any order, for that matter. The term ‘“value” hence
becomes overloaded because it is often used to refer to both an
identity-lacking constant, and the content of a slot (order-zero
field). We will make use of order-one content for slots, and
will occasionally refer to slot contents as “values” without the
intent to imply that only identity-lacking constants are referred
to.

Another aspect exemplified by RDF and the UML’s liberal
treatment of “slot” contents is that the boundary to “links”
becomes blurred. A slot containing a reference to an ob-
ject/entity can be regarded as the equivalent of a unidirectional
UML “link”. Again, our domain example has been chosen to
support a straightforward discussion of deep characterization
approaches, but is not meant to imply that the observations
made are only valid regarding traditional slots that contain
datatype values. Note that even operations/methods could be
the subject of deep characterization.

In the object-oriented database GEMSTONE, an object was
regarded as a “chunk of private memory” [6]. Fields of objects
were therefore part of that memory chunk. GemStone inherited
this view from SmallTalk [7], and this view influenced a
number of current object-oriented programming languages,
such as Java. This view emphasises the understanding of

“fields” as a representation concept. In other words, there is no
claim that fields or slots conceptually occur in a domain, rather
they are part of a modeling vocabulary to represent domain
properties, analogous to how clabjects represent concepts of
domain entities.

III. DOMAIN SCENARIO

In order to simultaneously motivate our discussion of the
design space of alternative field approaches for deep character-
isation (see Section IV) and define a benchmark for evaluation,
we use the example of a software system to support the man-
agement of cars from various manufacturers. In this section,
we describe salient concepts occurring in the domain and
establish several domain requirements that respective models
need to adhere to and/or must enforce. The subject domain
not only includes individual cars (e.g., myC5lIl and myCLK200),
but also their models (e.g., the Citroén-designed C5lll or the
Mercedes-Benz-designed CLK200). Cars have properties such
as a vehicle identification number (— vin) and a paint color
(— color) (cf. Figure 1). Note the absence of VIN values at
the middle level (e.g., at C5lll); respective values at this level
do not make sense ontologically, and therefore should not
exist. Regardless of which car models may be added to the
car management system in the future, these properties must
always be available for a particular car. Hence, it is a domain
requirement that the respective properties must be stipulated at
the level of CarModel, i.e., a model element CarModel needs to
deeply characterize the instances of its instances so that they
feature color and vin fields.

CarModel

lastUpdated = 1/6/23
vin : VIN
color : ColorModel

Cslll CLK200

lastUpdated = 10/6/23 lastUpdated = 20/6/23
color : RGBColor color : HSLColor

A A

!
|
|
|
|
|
1

|
|
|
|
|
|
|
myC5llil myCLK200

lastUpdated = 11/6/23
vin = VF7TRDRFJF54064321
color = <r: 26, g: 46, b: 112>

lastUpdated = 21/6/23
vin = WDB2093412F245827
color = <h: 149, s: 255, |: 5>

Fig. 1. Car Sales System

The domain requirements furthermore prescribe that all sys-
tem model elements, i.e., CarModel, its instances, as well as all
instances representing individual cars, must have a lastUpdated
property since they are used in the car management software
system and need to be appropriately version-managed.

Several property types that govern the allowed values for
concept properties naturally arise in our sample domain:

VIN, defining the form of “Vehicle Identification Number”
values, RGBColor and HSLColor, defining the form of RGB and
HSL color representation values, respectively, and ColorModel,
classifying these color models (see Table I). Datatypes, like
RGBColor typically support operations such as brighten() and
impose well-formedness rules on their instances, e.g. that
the value range for the red, green, and blue components is
[0..255].

Note that ColorModel can be recognized as a second-order
type since its instances RGBColor and HSLColor are (first-order)
datatypes that have their own (zero-order) datatype values.
In other words, one can observe that property types and
their corresponding type definitions in models can form a
classification hierarchy, analogous to concept hierarchies (cf.
Figure 2).

CarModel ColorModel

C5lll RGBColor

<r: 26, g: 46, b: 112>

myC5lil ‘

Fig. 2. Concept and Property Hierarchies

TABLE I
ProPErRTY DOMAIN TYPES

Property Type | Description

VIN | characterizes vehicle identification numbers

RGBColor | characterizes colors represented in an RGB color model
HSLColor | characterizes colors represented in an HSL color model
ColorModel | characterizes color models (e.g, RGBColor)

A. Deep Property Kinds

In order to examine the strengths and weaknesses of the
deep characterization variants, we have chosen each property
in our domain scenario to represent a particular kind of deep
property. We identified three main kinds of properties that
occur in the context of deep domain properties:

1) Single type, Single value (STSV): A property like “vin”
is commonly found in domains; it only manifests with an
associated value once at the bottom level of its associated
instantiation branch. There are no respective values above
that relative bottom level as they would lack an ontological
justification. All instances at this bottom level have values of
exactly the same type (here datatype VIN). Hence, in case one
wants to guarantee a “vin” property for each car, regardless of
future car model additions, this shared type must be fixed at the
top level of the hierarchy (here at CarModel). See Figure 1 for
how the top-level “vin: VIN” declaration is meant to ensure that

all car identification values at the bottom-level must conform
to the VIN datatype.

2) Single type, Multiple values (STMV): A variation of the
above property kind is a property kind that still has only
one type associated with it, but for which it makes sense to
associate a value to each element in an instantiation chain, as
opposed to just the bottom concept. In our domain scenario, for
example, each element in the car management software system
has, and must have, a value for the lastUpdated property (cf.
Figure 1).

3) Multiple types, Single value (MTSV): Unlike the VIN
values, the color values at the bottom level in Figure 1 are not
of exactly the same type. Here, we assume that cars made by
Citroén need to have their colors specified using an RGB color
model. Hence the Citroén-designed car model C5lIl specifies
a color field “color : RGBColor”. In contrast, we assume that
Mercedes-Benz uses the HSL color model to specify car colors,
which is why the Mercedes-Benz-designed car model CLK200,
specifies a “color : HSLColor” field. Note that these types, i.e.,
the types characterizing the bottom-level values cannot be
chosen arbitrarily. Both must be characterized by a common
type ColorModel. In other words, the top-level ColorModel type
ensures that while car manufacturers are given freedom over
their color model choice, the values at the bottom-level are
all instances of some color model, i.e., exhibit conceptual
affinity. The top-level ColorModel type could, for example,
deeply specify the existence of a luminance() operation which
is supposed to return the brightness level of a color. An HSL
color instance could just return its | (luminance) value, whereas
an RGB color instance would have to calculate the perceived
brightness from its red, green, and blue components.

Note that at each intermediate level, an MTSV-property
plays a dual role: it is both a “value” that conforms to the
property at the level above, and a “type” that characterizes
the property “values” below it. See Figure 1, where the Color
properties at the middle level are instances of ColorModel
but also characterize fields below them. Although one could
conceptualize the respective presence of many (non-order-
zero) “values” — as many as the respective concept hierarchy
is deep — as “multi-value”, we characterize this property kind
as *SV (“single value”) since there is only a single order-
zero value, at the very bottom of an instantiation chain. All
other “values” have at least order one and can be regarded
as characterizing the bottom-level values in a hierarchical
manner.

One way to appreciate the difference between STSV- and
MTSV-properties is to observe that the former allows values
of one single type only, whereas the latter supports the use
of subtypes of a single common type. This becomes evident
by observing that RGBColor and HSLColor can be generalized
to Color. This common supertype Color would have to be used
to accommodate all desired values with a “single type” at the
top level. The relationship between such a common supertype
of the flexible type choices at the middle level and the top-
level type is the so-called “powertype” relationship [5]. Every
instance of the top-level type (here ColorModel) must be a

subtype of the common supertype (here Color).

4) Multiple types, Multiple values (MTMV): Our catego-
rization scheme for property kinds suggests that a fourth
MTMV-property kind may exist. Properties of this kind would
have to be compound in nature as they would have to, at each
non-bottom-level, simultaneously have an order-zero value,
and a higher-order type. We are unaware of a respective
domain example and most modeling technologies do not
accommodate this property kind (DMLA being a notable
exception [8]). We therefore do not cover this property kind
in our comparisons.

IV. FiELD VARIANTS

In this section we apply five different deep characterization
approaches to the domain scenario, to analyze how they handle
the three different property kinds of the domain scenario.

All five approaches are inspired by existing field semantics
designs but we deliberately present and discuss the essential
deep characterization aspects of those designs only, to avoid
distractions and biases that could potentially be caused by
other design decisions coupled to the respective existing field
designs. For all five distilled design choices we adhered to
the convention of linking fields within a field chain to each
other via field name equality. For instance, a price = 9.95 field
is known to be controlled by a price : Double field due to the
name equality between those fields.

Note that the first four approaches use a hierarchy of clas-
sification levels as their foundation, whereas the last approach
is based on refinement.

A. Variant 1: Shallow Fields

“Shallow fields” (e.g., the combination of UML attributes
and UML slots), are characterized by the fact that their control
depth does not exceed that of an attribute from a two-level
approach, i.e., they only control fields one level below them.
In contrast to two-level approaches, however, shallow fields
can be defined for clabjects at any level, i.e., may give rise
to class-level slots, for example, if defined at the level above
the class level. Initially, it may appear to be futile to attempt
the deep characterization we referred to earlier with fields that
are per definition not “deep”. It seems necessary, in order to
control even only the second level further down, to either target
it directly, or somehow control the type facet of elements at the
adjacent level lower down. Fortunately, the latter effect can be
achieved by using the well-known concept of a “powertype”,
specifically in this case the “Odell variant” [5], [9], [10].
Figure 3 shows a solution for our domain using shallow fields
only.

Odell powertypes were originally not conceived to achieve
deep characterization, but rather to clarify and explain class-
level slots, partitioning generalization sets, and the latter’s
relationship to metatypes [9]. However, since powertypes link
a supertype to a metatype, the latter can use the former to
influence the class facet of its instances. The Car class in
Figure 3 can impart its vin and color fields on the instances
of CarModel since the powertype-relationship between Car and

context CarModel(2,2)
inv: self.color.#getType()#.#getName()# =
self #getDirectType()#.colorModel.#getName()#

Updatable

lastUpdated : Date

——-> ColorModel [<——
|

CarModel : Updatable

| |
| |
| H |
| lastUpdated = 1/6/23 < | «powertype» l
: colorModel : ColorModel [! |
| A : { «dataType» :
! I [Color I
! : [I
| «pOWelrtype» | | |
| | | |
I l [I
| | | |
! Car [|
I [I
I i I
: vin : Y'N : «dataType» «dataType»
| color : Color i | RGBColor HSLColor
| |
| |
| |
| |
| |
| |
| 1
C5lll : Updatable CLK200 : Updatable
lastUpdated = 10/6/23 lastUpdated = 20/6/23
colorModel = RGBColor colorModel = HSLColor
A A

I
|
! I
I !
myCS5llil : Updatable

myCLK200 : Updatable

lastUpdated = 11/6/23
vin = VF7RDRFJF54064321
color = <r: 26, g: 46, b: 112>

lastUpdated = 21/6/23
vin = WDB2093412F245827
color = <h: 149, s: 255, |: 5>

Fig. 3. Shallow Fields Model

CarModel ensures that every CarModel instance must also be a
subtype of Car. Hence, all instances of CarModel inherit the vin
and color fields, thus effectively achieving deep control over the
order-zero vin and color fields of particular cars at the bottom
level. In some approaches, supertype Car is referred to as the
“most general instance” [11]. The above approach works very
well for field vin, since all cars are guaranteed to have vin fields
of type VIN. Note that an order-one vin field is introduced at the
middle level, which is technically not required by the example
domain. However, since no values can be assigned to such a
field in a “shallow” fields scheme, no harm is caused.

Arguably, the necessity to explicitly introduce a super-
type (Car for all car models) could be regarded as adding
accidental complexity. In many cases, such a supertype is
desirable anyway, but when its only purpose is to serve as
a type facet template for car model types then it could be
considered to be a workaround artefact (compare Figure 3
with Figure 4 to see the respective difference). Note that the
powertype approach shown here is capable of supporting deep
fields with an unbounded depth control by chaining respective
powertype configuration in a hierarchical sequence, potentially
compounding the aforementioned concern regarding accidental
complexity.

Regarding field color, shallow fields are not as good a match,
as they are for field vin. Field color requires a more precise
specification of object properties — one that allows subtypes
(here RGBColor and HSLColor) to constrain the color model
used by bottom-level color fields to the manufacturer-stipulated

one. Since the color field is defined once in Car with a fixed
type, all car model types have to share the same fixed type,
i.e., lack the required precision regarding the choice of color
model (cf. Figure 1). In Figure 3 we illustrate one of many
possible workarounds. Here, we introduce the supertype Color
so that both value types can be supported at the bottom-level
color fields. Note the second use of a powertype-relationship; in
this case it is necessary to ensure that instances of ColorModel
are also subtypes of Color, so that their respective instances
can be assigned the color field of type Color in Car.

Note that a deep constraint (attached to CarModel in Fig-
ure 3), expressed using a deep constraint language [12] and
targeting the bottom level (see the ““(2,2)” notation), is required
to link the color subtype choice made at the bottom level
(to represent a color in a certain color model) to the color
model choice made at the middle level, since all instances
from the same branch must share the same color model
respectively. A functionally equivalent constraint using OCL
would be longer and would exhibit bad maintainability due
to the need to alter it each time a new car model is added
to the system. Although the aforementioned constraint ensures
the integrity between car models and their instances, the color
fields at the bottom of the hierarchy are still typed with the
unspecific Color type. Therefore, a comparison in a query, or an
assignment in a transformation, along the lines of myC5lll.color
== myCLK200.color would pass a static typecheck (since both
expression types are of the general type Color) which is not
ideal. The constraint would flag a respective inconsistency as
soon as its evaluation is triggered somehow at some point
in time, but this corresponds to runtime error checking, i.e.,
is not equivalent to static typechecking. The constraint could
be avoided altogether by employing covariant redefinitions
of the color field in subclasses RGBColor or HSLColor. This
solution would even support static type checking of color value
assignments. However, it would require language support for
covariant redefinitions and entail all the associated benefits and
downsides of respective approaches.

It should be noted that the workaround of using a Color su-
pertype as shown in Figure 3 only works under the assumption
that the provided domain types RGBColor and HSLColor can be
placed into respective subtype roles. In case this is not possible
(e.g., due to lack of control over the domain datatypes) then a
union-type variant that uses a custom Color type definition like
a variant record by explicitly recording the chosen color model
and delegating operations to internally stored color values,
would have to be employed.

The solution chosen for STMV-properties (— field lastUp-
dated) in the model in Figure 3 uses multiple classification as
supported by DeepTelos [11] or Orthogonal Ontological Clas-
sification [13]. Note the definition of a secondary-classification
type Updatable and that every element is declared to be an
instance of this type using the textual “:” notation. Since
there are not only ‘“:” classifications but also “instance-of”
arrows, this means that each element has two ontological
types. Hence, this solution would not be available in every
modeling language. Furthermore, to ensure the requirement

that all elements in a system must have a lastUpdated field, some
mechanism (e.g., a constraint, or allowing system elements to
be constructed as instances of Updatable only) is required to
ensure that each element is indeed specified as an instance of
Updatable.

Without support for multiple classification, workarounds
may be required. For example, one could introduce various
lastUpdated declarations, distributing them over all relevant
elements. This redundancy would be detrimental in that it
would make it impossible to change the field’s type at one
place only and/or to access all lastUpdated values in a uniform
manner.

An advantage of Variant 1 is the close match to the
traditional use of shallow fields in UML. A disadvantage is
the introduction of additional specialization relations to the
powertype instance, which adds to the complexity of the model
and may negatively impact the substitutability of operation
arguments.

B. Variant 2: Single Fields

Single fields, introduced in [3], extrapolate the semantics
of shallow fields by repeating the field type of the first-order
field (which is comparable to a UML attribute) up to the
top level. They align very well with STSV-properties, since
they support one value at the bottom-level (order-zero field)
and fix the type of the latter at the very top (and at every
level in between). In Figure 4, the field vin is straightforwardly
represented with a “single field”, thus enabling the top-level
deep characterization of the value type at the bottom, and
prohibiting any intermediate values in elements at the middle

levgingle fields imply an order-one vin field at the middle level
analogous to the shallow fields case. This time, the interme-
diate field is the result of an intentionally simple clabject
instantiation semantics in which positive field potencies are
reduced by one upon each instantiation [3]. An alternative
scheme could feature single fields at the very top and the very
bottom of a field chain only. However, this would compromise
“characterization locality”, i.e., the ability of a modeler to
look up the type of a field by moving up by at most one level.
Without the intermediate field occurrences, a modeller would
have to scan the hierarchy upwards until the top-level field
declaration is found.

If “object primacy” is assumed, i.e., if all higher levels are
primarily thought of as scaffolding to define desired object
scenarios, then single fields seem to be ideally suited for that
due to their ability to shape objects directly from any level.

However, single fields suffer the same limitations as shallow
fields plus powertypes when it comes to representing STMV-
or MTSV-properties. As a result, single fields yield a very
similar outcome to shallow fields, i.e., entail very similar
workarounds (compare Figures 4 and 3), they do however,
not require the introduction of a Car supertype. In particular,
deeper control (exceeding the two levels covered here) is much
more concisely obtained using single fields.

Updatable

lastUpdated : Date

——> ColorModel [<——
|

context CarModel(2,2)
inv: self.color.#getType()#.#getName()# =

I I
| |
| . |
| |
self.#getDirectType()#.colorModel.#getName()# | <<pow?rtype» |
| |
: «dataType» :
| Color |
| |
CarModel? : Updatable : :
| |
lastUpdated = 1/6/23 | |
vinZ : VIN : :

colorModel : ColorModel
color? : Color «dataType» «dataType»
A RGBColor HSLColor

|

C5lIl : Updatable CLK200 : Updatable

lastUpdated = 10/6/23
colorModel = RGBColor
vin! : VIN

color® : Color

lastUpdated = 20/6/23
colorModel = HSLColor
vint : VIN

color! : Color

A A
l
I

|
|
|
1

myC5llil : Updatable myCLK200 : Updatable

lastUpdated = 11/6/23
vin = VF7RDRFJF54064321
color = <r: 26, g: 46, b: 112>

lastUpdated = 21/6/23
vin = WDB2093412F245827
color = <h: 149, s: 255, |: 5>

Fig. 4. Single Fields Model

C. Variant 3: Dual Fields

Dual fields, introduced in [3], are like single fields, except
that they also feature field values at every level, as opposed to
the bottom-level only.

There are several design options available as to where the
type and values of dual fields need to be present and/or shown
(see for instance the Melanee tool which aims to leverage the
dual field approach in a level-agnostic field design [14]), each
of them having their own set of trade-offs. In the interest
of supporting a comparison that focuses on the differences
regarding deep characterization aspects, we chose to present
dual fields as being identical to single fields, except that
dual fields always have a value. The latter makes dual fields
very well suited to represent STMV-properties, since they
determine a single type at the top of the field chain and allow
multiple values (of that type) across the field chain. As a
result, the STMV-property lastUpdated can be represented as
a dual field without the use of multiple classification and an
additional Updatable type (see Figure 5 in which dual fields are
undw@difadV-property vin is handled less ideally by dual fields,
since even though the bottom-level values are supported and
correctly typed, the dual field vin technically allows a value to
be assigned at both the top- and the middle levels (hence the
use of “=" that are not followed by a value in Figure 5). This is
incongruent with the “single value” quality of the vin property.

—-> ColorModel [<——
I

I i
context CarModel(2,2) : :
inv: self.color.#getType()#.#getName()# = |) |

self.#getDirectType()#.colorModel .#getName()# | «powe;rtype» |
| |

: «dataType» :

| Color :

|
CarModel? : :
| |
lastUpdated? : Date = 1/6/23 | |
vin? : VIN = : :

colorModel* : ColorModel =

color? : Color = «dataType» «dataType»
7 RGBColor HSLColor

|
|
___________ L __

C5lll CLK200

lastUpdated? = 10/6/23
colorModel® = RGBColor

lastUpdated! = 20/6/23
colorModel° = HSLColor

vin! : VIN = vin! : VIN =
color! : Color = color! : Color =
0 7
! |
| |
1 |
myC5lil myCLK200

lastUpdated® = 11/6/23
vin® = VF7RDRFJF54064321
color® = <r: 26, g: 46, b: 112>

lastUpdated® = 21/6/23
vin® = WDB2093412F245827
color® = <h: 149, s: 255, |: 5>

Fig. 5. Dual Fields Model

While sometimes additional values can be put to good use,
e.g., by specifying default values for lower levels, this is not
always the case. In short, dual fields essentially turn STSV-
properties into STMV-properties, whether that is adequate or
not. A potential remedy could be a constraint that restricts
intermediate fields to have an undefined value, provided such
a field state is supported.

Regarding the MTSV-property Color, dual fields suffer from
the same limitation as single fields, i.e., the inability to let
the type vary down the field chain. Therefore, the same
workaround of postulating a Color supertype and establishing a
constraint as employed for single fields, with all the associated
downsides, becomes necessary.

D. Variant 4: Hierarchical Fields

Hierarchical fields are potency-based, like single- and dual-
fields, but extrapolate the semantics of shallow fields by
consistently repeating the same relationship between field
contents. As mentioned before, in shallow field semantics
the value of a slot (potency-zero field) can be regarded as
being an instance of the type of the corresponding higher-
level attribute (potency-one field). Unlike single- and dual-
fields, hierarchical fields maintain this relationship between
higher-level field correspondences. For example, in Figure 6,
the field content RGBColor of field color in C5lll can be regarded
as being an instance of the field content of the field color
in CarModel, i.e., as an instance of ColorModel (cf. Figure 2).
Hence, hierarchical fields can be seen as having a uniform
semantics across an instantiation hierarchy, in contrast to single
fields which exhibit a discontinuity at the bottom two levels

where the previous repetition of the field type is replaced by a
value-type pair, with the value being an instance of the type.

CarModel? ;: Updatable Updatable

lastUpdated = 1/6/23
vin2 : {VIN}
color? : ColorModel

lastUpdated : Date

C5lll : Updatable

CLK200 : Updatable

lastUpdated = 10/6/23
vin! : VIN
color! : RGBColor

lastUpdated = 20/6/23
vint : VIN
color! : HSLColor

A
l
I
I
1

A

myC5IIl : Updatable

myCLK?200 : Updatable

lastUpdated = 11/6/23
vin = VF7RDRFJF54064321
color = <r: 26, g: 46, b: 112>

lastUpdated = 21/6/23
vin = WDB2093412F245827
color = <h: 149, s: 255, |: 5>

Fig. 6. Hierarchical Fields Model

As Figure 6 illustrates, hierarchical fields are particularly
well suited to modeling an MTSV-property like color. The
domain relationship between a color, its color model, and
the latter’s type ColorModel is naturally expressed, achieving
a “direct mapping”’-quality that mimics the direct mapping
between the domain instances, types, and metatypes and their
corresponding clabjects in the models shown in Figures 1-2.

Hierarchical fields do not offer the option of using multiple
values since the “value” of a hierarchical field at any level (but
the bottom-most) is the type that governs the well-formedness
of the field content one level further down. As a result, the
solution shown here to accommodate the lastUpdated property,
uses the same approach as the single fields solution, i.e., an
additional Updatable datatype and multiple classification.

At first glance, hierarchical fields appear to be ill-suited to
accommodate single type, single value properties like vin for
two reasons: First, given that the middle-level type for field
vin must be VIN — so that instances at the bottom have vin
fields whose values conform to datatype VIN — it appears to be
necessary for modellers to use a type abstraction for VIN at the
level of CarModel, e.g., declare a field vin? : IdentificationType. It
could be regarded as burdensome to have to come up with, and
define, a metatype like IdentificationType, if the only purpose of
the deep declaration for the vin field is to ensure VIN-valued
properties at the bottom-most level.

Second, there appears to be a loss of control over the types
of the vin fields at the bottom level. At the middle level, any
choice for the vin field type is valid, as long as it is an instance
of IdentificationType (assuming the aforementioned declaration
of vin? was made). This appears to allow undesirable choices

and, in particular, make it impossible to ensure that all
elements at the middle level use the same VIN field type.

Fortunately, a simple solution addresses both of the above
potential issues. Instead of using a general metatype like
IdentificationType for the vin? field type, one can use a Singleton
type, either in the form of a very restrictive type like VINType,
or an anonymous type like {VIN}, i.e., a type whose only
instance is the one that is desired at the middle level. Using a
Singleton type for the top-level field declaration removes any
choice for a modeller at the middle level and hence creates
a scenario that is equivalent to a single field scenario. Even
though the top-level type is not VIN, as it would be in a single
field scenario, the allowed options at the middle level are
exactly the same. N.B., if specifying the VIN type had been
necessary at one level higher up, the respective type would
have had to be {{VIN}}.

It should be noted that this way of using hierarchical fields
considerably benefits from an ability to create anonymous
types by enumerating their instances with a respective syntax.
In addition to the above described uses like {VIN} (cf. Figure 6),
multi-instance definitions like {RGBColor, HSLColor}, could re-
place types like ColorModel, if, in this case, the only desired
choices for color models are the aforementioned ones. Such a
facility would make it possible to forgo the explicit definition
of metatypes that are not needed for any other purpose. In
case the literal type definition syntax used above is deemed to
be insufficiently intuitive and/or concise, one could introduce
a convenience notation to create anonymous Singleton types,
e.g., using “IVIN”, which would be equivalent to “{VIN}”.

Note that not using a Singleton type for the top-level field
could still suggest that there is a loss of control over the precise
types used at the middle levels, due to modellers being given
a choice of the field types, while no such choice is available
for single- and dual-fields. However, actually the reverse is
true. Either by using a narrow metatype such as VINType —
whose associated supertype would be VIN, in the sense of
VIN’s powertype being VINType — or by only listing sufficiently
precise types (e.g., subtypes of VIN) in an extensional metatype
definition, one can ensure that the field types will be at least
as specific as VIN.

E. Variant 5: Level-Blind Fields

Level-blind fields are distinguished from the previously
presented field variations in several ways: They —

1) are used in the context of a refinement hierarchy, rather

than in a hierarchy of classification levels.

2) can be regarded as combining two notions: dual- and

hierarchical fields.

3) have no associated field potency that specifies the depth

of their control over other fields.

4) support separate control over field- and value presence.
Since they are based on refinement (as used in [8], for
example), the elements containing level-blind fields are not
organized in levels and afford much more flexibility. For
example, it is possible to add or remove elements in refinement
chains without invalidating existing elements (e.g., by affecting

their order and thus fundamentally changing their nature). The
terminating elements of refinement chains are often “objects”,
i.e., elements that can no longer be refined. The latter are
distinguished by “{Object}”” annotations (see Figure 7), and can
be specifically targeted via “{concrete}” annotations, i.e., making
sure that “object” fields receive concrete (order-zero) values.

Level-blind fields follow strict hierarchical instantiation
rules, i.e., “neighbouring” fields in a field chain must be in an
“instance-of” relationship, or, alternatively may differ in the
value they hold. Field neighbours may be separated by several
refinement steps between their enclosing elements, though. In
the sense that they, if the field type is changed, must change
the field type to an instance of the preceding field type, they
resemble hierarchical fields (see Section IV-D).

They resemble dual fields (see Section IV-C) in the sense
that they can simultaneously hold a field type and a field
value, albeit with the latter being optional. Like the dual
fields presented in Section IV-C, they exist across entire
field chains, in this case from the top till the very end of
refinement chains. That is why the declaration of lastUpdated
at CarModel in Figure 7 is sufficient to imply the presence of
this field everywhere “below”, and including, CarModel. Note
the constraint attached to the lastUpdated field which ensures
that the field has a date value everywhere, thus overriding the
optional nature of level-blind field values.

Unlike dual fields, level-blind fields support the explicit
“deactivation” of their value component; see the top right con-
straint in Figure 7, attached to the vin field, which ensures that
no VIN values may appear anywhere, apart from elements at the
end of refinement chains (marked with {Object} annotations).
The {concrete} annotation in front of the vin field guarantees
the presence of a value at the “bottom-level” objects.

The same annotation is applied to field color which is like-
wise forced to receive an order-zero value in the objects on the
“bottom-level”. Since the top-level property type ColorModel
of field color (in CarModel) is of order two, given the two
refinement steps used in the presented solution, its type must
be instantiated in the car model elements and then, once again,
when transitioning from the car models to the “bottom-level”
cars.

While the two refinement steps solution forces the instan-
tiation of the color field type ColorModel to one of the color
model choices at the car models C5Ill and CLK200, a model
featuring more refinement steps could not easily establish such
a guarantee.

Summarizing, level-blind fields can precisely associate
order-zero field values with “bottom-level” objects (through
the use of the {concrete} and {Object} annotations). However they
lack the depth control that potency-based field declarations
afford, i.e., they cannot precisely specify at which level a
particular type change (instantiation) or the transition to a
value should occur.

V. DiscussioN

After having observed the trade-offs entailed by the indi-
vidual approaches (versions 1-5) in isolation, we now take a

context vin:
inv: Iself.Container.Has(@Object)
==> IHasValue(self)

context lastUpdated:
inv: hasValue(self)

CarModel

+-{concrete} lastUpdated : Date = 1/6/23
{concrete} vin : VIN
{concrete} color : ColorModel =

A

C5lll CLK200

lastUpdated = 10/6/23
color : RGBColor =

lastUpdated = 20/6/23
color : HSLColor =

r r

{Object} myC5lll {Object} myCLK200

lastUpdated = 11/6/23
vin = VF7RDRFJF54064321
color = <r: 26, g: 46, b: 112>

lastUpdated = 21/6/23
vin = WDB2093412F245827
color = <h: 149, s: 255, |: 5>

Fig. 7. Level-Blind Fields Model

bird’s eye view to gain a broader perspective on the approaches
with the aim of characterising them and comparing them to
each other.

A. Analysis

“Shallow fields” demonstrate that deep characterization is
achievable even with just the traditional notions of “attributes”
and “slots”, when making use of an additional mechanism
like “powertypes”. As our trade-off observations revealed, they
require solutions that need additional mechanisms and have the
hallmarks of workarounds.

In this context, we consider a workaround to mean a solution
structure expressed in a language lacking native support for a
modeling feature, aimed at mimicking the effects of natural
modeling choices when using a language with such native
support. Respective solution structures often use a combination
of mechanisms, such as extra concepts, additional fields,
and constraints in a concerted manner that entails unnatural
modeling choices, adds complexity, and does not scale well.
Table II illustrates that while “shallow fields” are able to
fulfill all domain requirements, they do so at considerable
cost. The main reason is that any control over more than
the next level, i.e., “control depth”, must be pieced together
by using two-level building blocks. When used to address
an MTSV-property (here in the form of the color field), the
“shallow fields” solution is analogous to the ‘“cascading”
approach [15] used by two-level technologies to create multi-
level hierarchies. Note how the (instance-faceted) colorModel

TABLE 1II
FieLDp DEsiGN COMPARISON

Property Kind

ST ST MT
SV MV SV
shallow fields | @™ | @ | @
single fields (V] o= o
dual fields | © o o
hierarchical fields o= o= o
level-blind fields (V2 (V& @)

field in the middle-level elements in Figure 3 must be linked to
the (type-faceted) color field at the same level via a constraint
that insures that the instance-facet value in colorModel gains
type control over the color values at the level below. Clearly,
though feasible, using two-level technology to create multi-
level hierarchies, requires too much additional scaffolding to
be entirely convincing. This is why we evaluated the ‘“shal-
low fields” solutions for addressing the STMV- and MTSV-
properties as “workarounds” in Table II. In comparison, STSV-
properties can be addressed relatively straightforwardly, but
only by relying on an additional mechanism like “powertypes”.

“Single fields” and “dual fields” can be considered to be
an improvement over “shallow fields” since they support deep
characterization of fields in a more direct and concise manner,
without requiring an additional mechanism. Both approaches
share the property that the order range of the field contents
(types and values) does not exceed one. In other words, they
do not go beyond employing a single type that controls one or
more values. One can regard them as “shallow fields” whose
type- and/or value- components are “stretched” over more than
two levels. In both field approaches, the type component is
“stretched” from the one but last level of the field chain to
the top of the field chain. In the dual field approach, the same
“stretching up to the top” is applied to the value at the bottom,
allowing for different values (of the same type) to be used.

While this serves their “specialist applications” very well
(single fields for STSV and dual fields for STMV), both
approaches unsurprisingly require a workaround to account
for more than one property type in a field chain, i.e., when
addressing the MTSV case (cf. Table II).

Postulating the existence of values across the whole field
chain, as implied by the version of “dual fields” we evaluated,
means that every STSV-property is treated like an STMV-
property. The respective potential occurrence of values that
have no ontological justification (here, vin values at the middle
level of the diagram in Figure 5) lead to dual fields only being
able to partially address STSV-properties (cf. Table II).

In contrast to the previously discussed approaches, hier-
archical fields are ‘“specialists” for the MTSV case since
their field type mechanics match the hierarchical nature of
respective domain properties (cf. Figure 2). The use of a
“Singleton type” notion, harnesses their hierarchical nature to

match the requirements of STSV-properties. We categorized
this “trick” as an “additional mechanism” (see Tables II &
III).

In contrast to a “workaround”, the use of an “additional
mechanism” does not involve unnatural modeling choices
and does not add complexity proportional to the depth of a
hierarchy.

Like all approaches that do not directly support dual fields,
hierarchical fields require an additional mechanism to obtain
multiple values from an ultimately single-value approach. The
solution used here is to view an ostensibly deep hierarchy of
values as a flat arrangement of values, by using a “spanning”
(i.e., horizontal) perspective on the deep (i.e. vertical) value
sequence. Since the multiple classification mechanism needed
to support this solution can be regarded as acknowledging
multiple classification in the domain and the Updatable type can
also be considered to be a natural domain abstraction — some
model elements are updatable, others are not — we classified
this solution also as “additional mechanism” required.

Level-blind fields, like dual fields, face the challenge of
appropriately addressing STSV-properties, since they inher-
ently support multiple values in a field chain, as opposed to
just one value. The adequate modeling of an STSV-property
requires explicitly not allowing values except at the target
elements, which is why simply refraining from using the option
to add a value is not sufficient. In other words, adequate
field declarations for modeling STSV- and STMV-properties
must necessarily be different in order to express the different
modeling intent and to prevent undesired value occurrences.
The solution presented in Section IV-E addresses this by
suppressing undesired values with a constraint. The opposite,
i.e., the forcing of a value presence at every element is
achieved by the constraint attached to the lastUpdated field,
hence the respective table entries in Table II. The inherent
flexibility of refinement, in particular, the choice over refine-
ment chains lengths, makes it difficult to make any guarantees
as to where, i.e., at which associated concept, fields will
received a value. The {concrete} annotation represents a solution
regarding bottom-level presence, but there is no respective
mechanism to enforce the association of certain field values or
field redefinitions (e.g., color : RGBColor) to particular elements
(e.g., C5lil). In the small domain example we chose, it happens
to be the case that C5lll is the only possible place to redefine
color so that the bottom-level color field will have an order-
zero value, but in general (in a model with more refinement
steps), that redefinition could appear anywhere in the middle
of the respective refinement chain, i.e., there is no way to make
sure that color models are associated with car models. As a
result, MTSV-properties can be handled by level-blind fields
in principle, but not in a way that exactly meets the domain
requirements of our sample domain (cf. Table II).

B. Caveats

Several factors suggest that judgements about the presented
approaches should be made cautiously:

TABLE III
RATING CATEGORIES

rating | description
@ | fulfilled
(V& fulfilled, with constraints
@™ | fulfilled, with additional mechanism
@) only partially fulfillable
(V] workaround required

1) Incomplete Evaluation: We focused on a single aspect
— the ability to deeply characterize field types — of field
semantics only. While identifying differences in addressing
this sole aspect is useful, a particular complete field semantics
design will address other aspects as well, e.g., control over
the mutability of values. Furthermore, we solely considered
technical trade-offs and therefore did not cover the immensely
important aspect of end user usability.

2) Incomplete Benchmark: The choice of our sample do-
main scenario impacts on the evaluation of approaches. First,
its size — covering only three domain levels — does not
explicitly tease out all differences between the approaches.
Sometimes we pointed out how deeper structures would im-
pact on approaches but we did not do this comprehensively.
Neither did we cover all possible property types. For example,
“level-blind fields” would require further annotations, if so-
called direct properties [16] had to be modelled, and covering
“regularity properties” [16] would uncover more differences
between the approaches.

Furthermore the domain requirements are biased towards
regulating the properties of specific elements. This favours ap-
proaches based on classification level hierarchies, due to their
predictable level structure and respective modeling element
placement, plus the precise control over field occurrences via
potencies. Based on our analysis, it appears that a different set
of evaluation criteria that emphasises exploration over rigid
specification would most likely play more to the strengths
of refinement-based approaches. It is probably reasonable to
suspect that these different kinds of multi-level modeling
approaches will perform best in different application areas, due
to their differences regarding flexibility and ability to precisely
associate properties with specific modeling elements.

3) Incomplete Coverage: We chose deep characterization
approaches mostly based on their fundamental characteris-
tics and our expertise. There are many more approaches
that could have been included in our analysis. For instance,
concretization-based approaches [17]-[19], approaches sup-
porting level-jumping [20], or vitality-based variants of dual
fields [14].

In addition, variations of all approaches we have covered
and did not cover, could be considered, such as single fields
that do not feature intermediate occurrences of the field, etc. In
short, we only looked at a subset of existing and conceivable
deep characterization designs. Finally, in our analysis, we only
covered field multiplicities of exactly one ([1..1]), i.e., we

left considering the implications of optional and multi-valued
fields as future work.

VI. CoNCLUSION

Although multi-level modeling has reached some maturity
and acceptance, it is still hotly debated. For some aspects
of MLM, existing languages employ a variety of approaches,
sometimes with fundamentally different underpinnings. The
semantics of fields are chief among the concepts that lack a
common consensus in the community. In this paper we there-
fore attempted to illuminate the differences between existing
field approaches, restricting our focus to field types intended to
support deep characterization. While such a relatively narrow
focus bears the risk of missing a holistic understanding, we felt
it was necessary to start with one aspect of field semantics and
to widen the focus later on.

Since our concern was specifically about “deep fields” —i.e.,
ways to capture domain properties that demand regulation at
higher levels but do not necessarily involve the manifestation
of (order-zero) values before lower levels are reached — we
identified four theoretically possible kinds of deep domain
properties: STSV-, STMV-, MTSV-, and MTM V-properties.
However, since the last of these has no obvious practical uses,
we restricted our analysis to the first three. To the best of our
knowledge, this is the first time deep domain properties have
been categorized in this manner.

We then applied five canonical approaches that support
the deep characterization of fields — shallow fields, single
fields, dual fields, hierarchical fields, and level-blind fields
— to a domain scenario that embodies the above property
kinds. In the presentation of the approaches, as well as in
a dedicated discussion section, we identified trade-offs, the
nature of necessary workarounds, and how the approaches
relate to each other. We acknowledge the limitations of our
comparison with respect to approach coverage, breadth of
domain requirements, and evaluation aspects considered. We
nevertheless hope that our critical surveying of an important
part of the MLM design landscape will add clarity to the
understanding of which design options for deep fields are
available, what their respective merits are, and what a potential
future consensus might center around.

REFERENCES

[1] M. Minsky, “A framework for representing knowledge,” 1974.

[2] C. Atkinson, “Meta-modeling for distributed object environments,” in
Enterprise Distributed Object Computing. 1EEE, Oct. 1997, pp. 90—
101.

[3] C. Atkinson and T. Kiihne, “The essence of multilevel metamodeling,”
in Proceedings of the 4" International Conference on the UML 2000,
Toronto, Canada, ser. LNCS 2185. Springer, Oct. 2001, pp. 19-33.

, “Rearchitecting the UML infrastructure,” ACM Transactions on
Modeling and Computer Simulation, vol. 12, no. 4, pp. 290-321, Oct.
2003.

[5] C. Partridge, S. de Cesare, A. Mitchell, and J. Odell, “Formalization of
the classification pattern: survey of classification modeling in informa-
tion systems engineering,” Software & Systems Modeling, vol. 17, no. 1,
pp. 167-203, February 2018.

[6] J. Stein and D. Maier, Associative Access Support in GemStone.
Springer, 1991, pp. 323-339. [Online]. Available: https://doi.org/10.
1007/978-3-642-84374-7_20

[4]

https://doi.org/10.1007/978-3-642-84374-7_20
https://doi.org/10.1007/978-3-642-84374-7_20

[7]
[8]

[9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

A. Goldberg and D. Robson, Smalltalk-80: The Language and its
Implementation. Addison-Wesley, Reading, MA, 1983.

G. Mezei, Z. Theisz, S. Bécsi, F. A. Somogyi, and D. Palatinszky,
“Towards flexible, rigorous refinement in metamodeling,” in 2079
ACM/IEEE 22nd Int. Conf. on Model Driven Engineering Languages
and Systems Companion, 2019, pp. 455-459.

J. Odell, “Power types,” Journal of Object-Oriented Programming,
vol. 7, no. 2, pp. 8-12, May 1994.

V. A. Carvalho and J. P. A. Almeida, “Toward a well-founded theory
for multi-level conceptual modeling,” Software and Systems Modeling,
vol. 17, pp. 205-231, 2018.

M. A. Jeusfeld and B. Neumayr, “DeepTelos: Multi-level modeling with
most general instances,” in Conceptual Modeling - 35th International
Conference, ER 2016, 2016, pp. 198-211.

A. Lange, “dACL: the deep constraint and action language for
static and dynamic semantic definition in Melanee,” Master’s
thesis, University of Mannheim, 2016. [Online]. Available: http:
//ub-madoc.bib.uni-mannheim.de/43490/

T. Kiihne, “Multi-dimensional multi-level modeling,” Software and Sys-
tems Modeling, vol. 21, no. 2, pp. 543-559, 2022.

C. Atkinson and R. Gerbig, “Melanie: Multi-level modeling and ontol-
ogy engineering environment,” in Proc. Modeling Wizards’12. ACM,
2012.

C. Atkinson, R. Gerbig, and T. Kiihne, “Comparing multi-level modeling
approaches,” in Proceedings of the 1st International Workshop on Multi-
Level Modelling co-located with the 17" ACM/IEEE International
Conference MODELS 2014, ser. CEUR Workshop Proceedings, vol. Vol-
1286, 2014, pp. 43-52.

J. P. A. Almeida, V. A. Carvalho, C. M. Fonseca, and G. Guizzardi,
“A note on properties in multi-level modeling,” in 2021 ACM/IEEE Int
Conf Model Driven Engineering Languages and Systems Companion
(MODELS-C). 1EEE Computer Society Press, 2021, pp. 497-501.

B. Neumayr, M. A. Jeusfeld, M. Schrefl, and C. G. Schiitz, “Dual
deep instantiation and its ConceptBase implementation,” in Proceedings
CAISE 2014, Thessaloniki, Greece, June 16-20, 2014, ser. Lecture Notes
in Computer Science, vol. 8484. Springer, 2014, pp. 503-517.

B. Neumayr, C. G. Schuetz, M. A. Jeusfeld, and M. Schrefl, “Dual deep
modeling: multi-level modeling with dual potencies and its formalization
in F-Logic,” Software & Systems Modeling, pp. 1-36, 2016.

T. Clark and U. Frank, “Multi-level modelling with the FMMLx and the
XModelerML,” Modellierung 2020, pp. 191-192, 2020.

J. de Lara, E. Guerra, R. Cobos, and J. Moreno-Llorena, “Extending
deep meta-modelling for practical model-driven engineering,” The Com-
puter Journal, vol. 57, no. 1, pp. 36-58, 2012.

http://ub-madoc.bib.uni-mannheim.de/43490/
http://ub-madoc.bib.uni-mannheim.de/43490/

	Introduction
	A Brief History of Fields
	Domain Scenario
	Deep Property Kinds
	Single type, Single value (STSV)
	Single type, Multiple values (STMV)
	Multiple types, Single value (MTSV)
	Multiple types, Multiple values (MTMV)

	Field Variants
	Variant 1: Shallow Fields
	Variant 2: Single Fields
	Variant 3: Dual Fields
	Variant 4: Hierarchical Fields
	Variant 5: Level-Blind Fields

	Discussion
	Analysis
	Caveats
	Incomplete Evaluation
	Incomplete Benchmark
	Incomplete Coverage

	Conclusion
	References

