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Abstract 
Sepsis is a dangerous and potentially fatal condition that has a mysterious origin, underscoring 
the significance of prompt and accurate diagnosis and treatment. Bacterial whole-genome 
sequencing, which is widely used in clinical microbiology, stands at the forefront of sequencing 
technologies, particularly to combat sepsis. The aim of this thesis is to improve sepsis treatment 
by examining the genetic characteristics and drug resistance patterns of the common sepsis-
causing bacteria Pseudomonas and Proteus spp., by analyzing the whole-genome sequencing data 
of bacterial isolates using an in-house-developed pipeline. The result was compared with a 
commercial cloud-based platform from 1928 Diagnostic (Gothenburg, Sweden), as well as the 
results from a clinical laboratory. Using Illumina HiSeq X next-generation sequencing technology, 
whole-genome data from 88 isolates of Pseudomonas and Proteus spp. was obtained. The isolates 
were obtained during a prospective observational study of community-onset severe sepsis and 
septic shock in adults at Skaraborg Hospital in Sweden's western region. The collected isolates 
were characterized using approved laboratory techniques, such as phenotypic antibiotic 
susceptibility testing (AST) in accordance with EUCAST guidelines and species identification by 
MALDI-TOF MS analysis. The species identification result matched the phenotypic method, with 
the exception of two isolates from Pseudomonas samples and four isolates from Proteus samples. 
When benchmarking the in-house pipeline and 1928 platform for Pseudomonas spp., predicted 
97% of the isolates were resistant to at least one class of the tested antibiotics, of which 94% 
shows multi-drug resistance. In phenotypes, 88% of the isolates had at least one antibiotic 
resistance future, of which 68% shows multi-drug resistance. The most prevalent sequence types 
(STs) identified were ST 3285 and ST111 (9.3%) and ST564 and ST17 (6.98%) each, and both 
pipelines accurately predicted the number of multilocus types. The in-house pipeline reported 
9820 Pseudomonas virulence genes, with PhzB1, a metabolic factor, being the most common gene. 
It was discovered that there was a significant correlation between the virulence factor gene count 
and the multilocus sequence typing (MLST) (p = 0.00001). With a Simpson's Diversity Index of 
0.98, the urine culture specimens showed the greatest ST diversity. Plasmids were detected in 
twelve samples (20.93%) in total. In general, this study provided a detailed description of the 
bacterial future for Pseudomonas and Proteus organisms using WGS data. This research shows the 
applicability of the in-house and 1928 pipelines in the identification of sepsis-causing organisms 
with accuracy. It also showed the need for an organized and easy-to-use international pipeline to 
implement and analyze WGS bacterial data and to compare it with laboratory results as needed. 

 

  



 
 

Popular Scientific Overview 
Infection prevention is considered one of the most common ways to keep humans healthy. As 
humans, numerous diseases can affect us; one of the most common is sepsis, also referred to as 
"blood poisoning." This condition is brought on by the body's exaggerated response to infection 
by its defense systems, which use more than necessary protection, leading to self-destruction. This 
condition will harm the majority of the vital organs. This will manifest in different symptoms, like 
fever, lowering blood pressure, and even the possibility of death. This devastating feature of 
sepsis, which has a widespread impact all over the world, makes it in need of accurate and timely 
intervention. The ultimate aim of many researchers who study biology is to identify the infection-
causing organisms behind sepsis and treat them as quickly as possible, but this have been 
challenging. Traditional techniques take a long time and frequently miss early-stage organisms. 
However, a revolutionary technique known as whole genome sequencing (WGS) has recently 
come to light. Thanks to this modern technology, the genetic code of bacteria like Pseudomonas 
and Proteus species can be fully decoded within minutes. These bacteria often coexist with us but 
can transform into harmful invaders, causing severe infections like sepsis. This research aimed to 
explore the "secret code" of these bacteria using WGS. By understanding the genes that enhance 
their different futures or make them resistant to antibiotics, one can essentially have a map that 
shows where the enemy's fortifications and weapons are located. This knowledge allows us to 
create specialized defenses against them. This study involved studying the genetic features of 88 
samples of Pseudomonas and Proteus spp. Using both an in-house-developed approach, having 
many software’s and a commercial platform developed with a lot of biological functions, the 1928 
combined with a comparison of the result to traditional clinical laboratory results. The results 
were fascinating. With the exception of a few samples, there was an excellent match between the 
organisms detected by the in-house organized software, the 1928 and the methods used in 
traditional labs. The identification of prevalent bacterial epidemiological areas of distribution and 
accurate prediction of their specific antibiotic resistance gene was an important achievement. The 
study was able to find a gene that makes them resistant to certain antibiotics among the isolates, 
with the pipelines somehow predicting different percentages of resistance to various antibiotics. 
This information is vital as it helps in the treatment of the infected patient with sepsis or other 
infectious condition. This test also found a lot of harmful genes in the Pseudomonas bacteria, with 
some types being more frequent than others. It was able to find a strong link between the number 
of these harmful genes and certain genetic features, suggesting that these features might make the 
bacteria more effective at causing infections. The future implications of this study are vast. By 
revealing the genetic features and resistance mechanisms of Pseudomonas and Proteus spp., it will 
create a pathway to develop an effective treatment strategy. Tools like 1928 and the in-house 
approach are essential in this development, using next-generation sequencing technology and 
driving researchers’ efforts towards a future where sepsis becomes a less terrifying and more 
manageable conditions. But acknowledging the challenges remains at the forefront. While these 
tools are powerful, there are obstacles to their widespread use. The time and cost involved in 
sequencing and analyzing the data are significant. In addition, there is not a lot of trained personal 
to use these mechanisms. And sometimes there will be miss-diagnosis due to certain conditions. 
However, with further development, training and investment, these barriers can be overcome. In 
conclusion, the world of medical research is on the edge of a new era where condition like sepsis 
can be understood and treated with unprecedented accuracy and efficiency. The combination of 
whole genome sequencing data with powerful tools like 1928 and in-house-developed pipelines 
has opened doors that were previously unimaginable. The fight against sepsis and other severe 
infections has been revolutionized, and this study contributes valuable insights to this rapidly 
advancing field. The path is now set; the journey continues. 
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Abbreviations: 
 

AMR Antimicrobial Resistance 

AST           Antibiotic Susceptibility Testing 

ANI           Average Nucleotide Identity 

CARD          The comprehensive Antibiotic Resistance genes 

Database 

CGE          Center for Genomic Epidemiology 

chewBBACA Comprehensive and Highly Efficient Workflow for 

BSR-Based Allele Calling Algorithm 

cgMLST        Core Genome Multi-Locus Sequence Typing 
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GC content    Guanine – Cytosine content 
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ME Major Error 

MALDI-TOF MS     Matrix-assisted laser desorption ionization-time 

of flight mass spectrometry 

MLST        Multi-Locus Sequence Typing 

MDR Multi Drug Resistance 

NCBI       National Center for Biotechnology Information 
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SBS           Sequencing by Synthesis 

SOFA          Sequential Organ Failure Assessment score 

SNP         Single Nucleotide Polymorphism 

SIRS          Systemic Inflammatory Response Syndrome 

VF            Virulence Factor 

VME Very Major Error 

1928          1928Diagnostic platforms 
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Introduction 

Sepsis 
Sepsis is a serious condition resulting from an overactive immune response to infection, which 
can lead to widespread inflammation, tissue damage, and organ dysfunction (Rhodes et al., 2017; 
Bone et al., 1992). It can escalate to septic shock, characterized by issues in the circulatory system 
and cellular metabolism, significantly increasing mortality (Cohen et al., 2015; Dellinger et al., 
2013). Diagnostic criteria for sepsis have evolved many times, starting with Sepsis-1 in the 1990s, 
based on SIRS which relied on clinical signs and symptoms but often led to overdiagnosis and 
unnecessary treatment (Bone et al., 1992; Dellinger et al., 2013). Sepsis-2, developed in 2001, 
based on the Systemic Inflammatory Response Syndrome (SIRS), which incorporated laboratory 
markers of inflammation for better differentiation but had challenges in patients with chronic 
illnesses or conditions (Levy et al., 2003; Dellinger et al., 2013). To address SIRS limitations, 
Sepsis-3 was introduced in 2016, defining sepsis as ‘’a life-threatening organ dysfunction caused 
by a dysregulated host response to infection’’ (Seymour et al., 2016; Singer et al., 2016; Vincent et 
al., 2015). It included the Sequential Organ Failure Assessment (SOFA) and quick SOFA (qSOFA) 
scores for improved diagnostic accuracy and early detection (Seymour et al., 2016; Singer et al., 
2016). Despite diagnostic advancements, sepsis remains a significant public health concern, with 
millions of cases globally each year and with one death every 2.8 seconds, especially in developing 
countries with limited healthcare resources (Kempker & Martin, 2020; Rudd et al., 2020; Vincent 
et al., 2013). Anyone can develop sepsis, which may be acquired from any infection. Sepsis present 
as Fever, shortness of breath, feeling very cold, extreme pain, and the like. Sepsis-associated 
mortality exceeds that of conditions like ST-segment elevation myocardial infarction (Shah et al., 
2015). 
 
In Sweden, Sepsis-3 is the current criteria for diagnosing sepsis according to Brink, M. (2018) and 
where sepsis is one of the commonest reasons of ICU admission and mortality, particularly in 
critically ill patients (Lengquist et al., 2020; Brink et al., 2018). The Skaraborg area of southern 
Sweden had a high incidence rate of community-onset sepsis at 838 cases per 100,000 people per 
year, which is among the highest reported in Sweden (Ljungström et al., 2017; Ljungström et al., 
2019). About 11% of hospital admissions met the criteria for septic shock, with a 33% mortality 
rate while in the hospital (Lengquist et al., 2020). To improve patient outcomes and lessen the 
impact of sepsis on healthcare systems, it is essential to understand the genotypic characteristics 
of bacterial pathogens that cause sepsis, such as Pseudomonas and Proteus spp. By characterizing 
the genotypes of these pathogens, researchers can better understand the mechanisms of 
pathogenesis and identify targets for the development of new treatments and interventions. 
Causative agents of sepsis can be bacteria, viruses, fungi, or parasites (Chun et al., 2015). 
According to Mayr et al. (2013), bacteremia due to Gram-negative bacteria was linked to a greater 
mortality rate than Gram-positive bacteria. In the same study, coagulase-negative staphylococci 
and Escherichia coli (E. coli) were the most frequent causes of bacteremia, which is a bloodstream 
infection, while Pseudomonas aeruginosa (P. aeruginosa), a gram-negative bacterium, had the 
greatest mortality rate of all. P. aeruginosa, is one of the sepsis-causing bacteria with numerous 
virulence genes (Alamu et al., 2022; Talbot et al., 2006). Proteus mirabilis (P. mirabilis) is an ESBL 
(extended spectrum beta-lactamase)-forming bacterium, which is the species that is mostly 
isolated from Proteus spp. clinical samples (Schaffer & Pearson, 2015). These two gram-negative 
bacteria possess features of resistance to different antibiotics (Chen et al., 2015; Shelenkov et al., 
2020). For now, there is no known therapeutic treatment that targets the exact mechanisms of 
sepsis. Fluid resuscitation and oxygen supplementation, combined with timely antibiotic therapy, 
are critical for reducing the severity of the illnesses (Evans, 2018; Thompson et al., 2019). Broad-
spectrum antibiotics having one or more antimicrobials features to cover all possible pathogens 
are preferable (Thompson et al., 2019). Speaking of sepsis, the most worrying issue is antibiotic 
resistance, which is widely prevalent throughout the world (Frieri et al., 2017). According to 
Martnez (2008) and Collignon & McEwen (2019), the definition of antibiotic resistance is the 
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capacity of a particular bacterium when it develops a way to overcome the effect of antibiotics and 
limit its effect. Antibiotic resistance, including multidrug resistance (MDR), emerges because of 
improper or inappropriate antibiotic use (Pradipta et al., 2013). MDR can limit patients' access to 
the proper antibiotics, which may have an adverse effect and increase mortality (Frieri et al., 
2017). In several prevalent infections, new antibiotic resistances are developing and leading to 
treatment failures (Frieri et al., 2017). 

Identifying the sepsis-causing microorganisms 
Blood cultures, the current gold standard for diagnosing diseases, are typically used to determine 
sepsis, a dangerous condition frequently accompanied by bloodstream infections (Opota et al., 
2015). A`Tziolos & Giamarellos-Bourboulis (2016) and Vincent et al. (2015) note that this method 
has drawbacks, such as a lengthy processing time, the potential for false results as a result of 
ongoing antibiotic treatment or sample contamination, and difficulty in identifying specific 
pathogen types. Although this method's sensitivity is not very high, it does allow for the evaluation 
of antibiotic susceptibility. Despite its limitations in simultaneously identifying multiple species, 
polymerase chain reaction (PCR) is being used more frequently to diagnose infectious diseases 
(Smith et al., 2009), including sepsis (Li & Yan, 2021; Ruiz-Villalba et al., 2017). For instance, 
during the COVID-19 pandemic, it was crucial in identifying emerging pathogens (Sule & 
Oluwayelu, 2020). Matrix-assisted laser desorption ionization-time of flight mass spectrometry 
(MALDI-TOF MS) is a different technique that is gaining popularity because it is quick and accurate 
at identifying different bacteria. According to some studies (Kawahara-Matsumizu et al., 2018; 
Poonawala et al., 2018; Singhal et al., 2015), it may mistakenly identify certain types of 
microorganisms, particularly in sepsis patients. Antimicrobial susceptibility testing (AST) is vital 
for identifying bacterial resistance before broad-spectrum antibiotics are administered (Chun et 
al., 2015; Ljungström, 2017). By identifying the minimum inhibitory concentration (MIC) of 
antibiotics required to effectively treat the infection. This AST based procedure, which includes 
tests like disk diffusion, broth dilution, and the E-test, optimizes sepsis treatment and 
management (Chun et al., 2015). All this approach highlights the need for new dynamic approach 
for Sepsis diagnosis and treatments. 

Pseudomonas aeruginosa 
Pseudomonas aeruginosa is an aerobic, chemoheterotrophic, motile, rod-shaped bacterium with a 
5.5-7 Mbp genome, a GC content of 65–67% and a variable number of plasmids that was first 
discovered by botanist Walter Migula in the late 19th century (Zen and Ussery, 2012; Klockgether 
& Tümmler, 2017; Nicas, T., & Hancock, 1983). Its genome, which is one of the biggest among 
bacteria and is divided into core and accessory parts, both contribute to the virulence of various 
strains (Kung et al., 2010; Ozer et al., 2014; Parkins et al., 2018; Özen et al., 2012). All body parts 
are susceptible to P. aeruginosa infections, which can result in acute and chronic infections, the 
latter of which is seen in diseases like cystic fibrosis (Valentini et al., 2018; Riquelme et al., 2020). 
This bacterium has become the leading multi-drug resistant bacterium, rendering most antibiotics 
ineffective (Kerr and Snelling, 2009; Kung et al., 2010; Horcajada et al., 2019; Poole, 2011; Thaden 
et al., 2017; Rahme et al., 1995; Reynolds, 2021). It belongs to the ESKAPE pathogen group, which 
is resistant to common antimicrobial treatments (Pendleton et al., 2013). According to Tacconelli 
et al. (2018), new diagnostic methods may significantly enhance the management of P. aeruginosa. 
Greipel et al. (2016) examined loci for antimicrobial susceptibility and resistance and discovered 
high-frequency variants in several genes that suggested the presence of MDRs. Additionally, the 
MultiLocus Sequence Analysis (MLSA) has been suggested for Pseudomonas detection, focusing 
on several housekeeping genes (Girard et al., 2020, 2021). High-resolution typing, like multilocus 
sequence typing (MLST) or the more advanced core genome MLST (cgMLST), is often necessary 
for these ubiquitous bacteria (Tönnies et al., 2021). P. aeruginosa employs several survival 
mechanisms against antibiotics, including intrinsic, acquired, and adaptive resistance 
(Breidenstein et al., 2011). Its biofilm-forming ability contributes significantly to its antibiotic 
resistance, as does its inherent resistance to several drugs such as carbapenem, ceftazidime, 
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ciprofloxacin, aminoglycosides, and fosfomycin (Fagerlind et al., 2012; Horcajada et al., 2019; 
Walters et al., 2019; Wong et al., 2014; Worth et al., 2015). Despite extensive research on P. 
aeruginosa, the current understanding of this bacterium is insufficient for developing novel, 
effective therapeutic approaches (Qin et al., 2022). Key questions include how invasive strains 
develop drug resistance, how many unidentified virulence factors exist, and the mechanisms 
behind the rise in antibiotic resistance (Qin et al., 2022). These areas require further exploration 
and research to successfully combat this resilient pathogen. 

Proteus mirabilis  
P. mirabilis is a gram-negative facultative anaerobe bacillus that belongs to the Morganellaceae 
family (Marcon et al., 2019; Shelenkov et al., 2020). It can self-extend and exhibit swarming 
behavior, which enables it to adhere to and move along surfaces like catheters, intravenous lines, 
and other medical equipment (Mobley & Belas, 1995; Mathur et al., 2005; Nicolle, 2005; Jacobsen 
et al., 2008). Bacteremia induced by P. mirabilis is most common after a UTI (urinary tract 
infection) or CAUTI (catheters-associated UTI), and both bacteremia and sepsis caused by P. 
mirabilis have a high fatality rate (Clarke et al., 2019; Hooton et al., 2010). The community-
acquired infection by the virulent P. mirabilis is the cause of 90% of illnesses that are induced by 
the Proteus genus (Armbruster et al., 2018; Bush, 2010; Nordmann et al., 2011). P. mirabilis can 
also cause skin and respiratory tract infections, as well as infections of several other organs 
(Mobley & Belas, 1995; Mathur et al., 2005; Nicolle, 2005; Jacobsen et al., 2008). The virulence 
factors produced by Proteus spp. include an S-form lipopolysaccharide (LPS) with a long-chain O-
polysaccharide (OPS), termed the O antigen (Yu et al., 2017). The variability of the OPS structure 
is the foundation for the serotyping of these bacteria. Currently, there are 83 O serogroups 
included in the Proteus serological classification system, which is continuously expanded and 
updated. Chemical examination of the O77-O81 antigens found both normal and unusual elements 
in their structures, such as Kdo in the O79-polysaccharide and other elements known from the 
Proteus strain (Zabotni et al., 2018; Arbatsky et al., 2013). It is coated with phosphocholine (ChoP), 
which is found in O18 serogroup strains, and which protects this bacterium from innate and 
adaptive immune system responses and also modulates interactions with host proteins involved 
in human infection, giving it a distinctive appearance to P. mirabilis (Czerwonka et al., 2021; 
Fudala et al., 2003; Zabłotni et al., 2018). The coding sequences and chromosomal locations of 
previously described virulence factors were identified by genome annotation (Yu et al., 2017). For 
the extensively researched strain HI4320 (serogroup O28) of P. mirabilis, isolated from the urine 
of a patient with a long-term indwelling urinary catheter, the first complete genome was 
characterized (Yu et al., 2017). In later studies, it was demonstrated that the Proteus serogroups 
might be genetically distinct based on the sequences of each O antigen biosynthesis cluster; 
however, data on the other serogroups was lacking (Yu et al., 2017). Numerous studies have been 
conducted on P. mirabilis' antibiotic resistance (Bush, 2010; Nordmann et al., 2011). Polymyxin 
and tetracycline resistance are innate in P. mirabilis, and the future of MDR includes beta-lactams, 
aminoglycosides, fluoroquinolones, phenicol, streptothricin, and trimethoprim-sulfamethoxazole 
(Chen et al., 2015). 

Next-generation sequencing (NGS)  
The "massively parallel sequencing" (MPS) method of DNA sequencing, also known as "next-
generation sequencing" (NGS) (Lee et al., 2022; Hu et al., 2021; Behjati & Tarpey, 2013), has 
revolutionized genomic research. With their high throughput and ability to multiplex samples, 
which is the addition of numerous bar codes to separate samples before sequencing, NGS 
technologies have greatly lowered the cost of sequencing (Hu et al., 2021; Mardis, 2017). The main 
advantage of MPS in microbiology is the replacement of more traditional methods of 
identification, like morphology, staining characteristics, and metabolic properties, with a genetic 
description. The genomes of microorganisms provide extensive information about their drug 
sensitivity, antibiotic resistance, and virulence (Besser et al., 2018; Li, B., & Yan, T., 2021). Prenatal 
diagnostics, sepsis, organ transplantation, and oncology have all significantly benefited from the 
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use of NGS (Lee et al., 2022; Schütz et al., 2017; Ulrich & Paweletz, 2018). A number of research 
studies are currently using NGS-based analysis to investigate the causal microorganisms in 
patients with respiratory, digestive, and central nervous system infections (Lee et al., 2022; Chiu 
& Miller, 2019; Joensen et al., 2017; Mizrahi et al., 2017). The main difficulty in NGS-based 
research is separating contamination from infection (Dargère et al., 2018; Lee et al., 2022). NGS-
based diagnostic testing has several advantages over traditional blood culture, including the 
speed, accuracy and ability to distinguish between bacterial, viral, and fungal pathogens and 
rationality in the combination of quantitative values and statistical significance calculation (Hu et 
al., 2021; Chiu & Miller, 2019). This ultimately leads NGS results to have a higher sensitivity and 
specificity than blood cultures (Lee et al., 2022; Chiu & Miller, 2019). 

Illumina technology for sequencing  
A prominent technology in NGS is Illumina sequencing, which uses the reversible termination 
sequencing by synthesis (SBS) technique to generate short reads (Hu, T. et al., 2021; Pereira et al., 
2020). The SBS technique involves fragmenting DNA or cDNA, attaching adapters, and adhering 
each fragment to a flow cell surface to produce dense clusters of double-stranded DNA. Laser 
excitation and imaging are then used to determine the attached fluorescent dye (Pereira et al., 
2020; Dahui, 2019) (Figure 1). Illumina sequencing boasts an accuracy of 99.7% and has 
advantages such as high throughput, a low base-level error rate, and the capability for paired-end 
sequencing, which provides more data and larger sequence reads (Goodwin et al., 2016; Pereira 
et al., 2020; Ambardar et al., 2016; Reuter et al., 2015). Moreover, the Swedish biotech company 
1928 seeks to promote infection control globally by optimizing DNA sequencing technology. Their 
cloud-based platform supports the analysis of 13 bacterial species, until this thesis is published, 
which are responsible for most hospital-acquired illnesses, offering different analysis processes 
depending on the pathogen and providing results for quality control, species identification, 
outbreak tracing, antibiotic resistance profiles, epidemiological typing, and virulence factor 
identification (1928Diagnostic, 2022; Mahmoud, 2021; Lember, 2021). 
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Figure 1 shows the Illumina SBS procedure, which begins with the extraction of genomic DNA from different 
sources like blood or urine (1). A DNA library is then created by fragmenting this DNA and attaching 
adapters with barcodes (2). By synthesizing a strand of DNA that is complementary to the template DNA on 
a flow cell, the DNA sequence of this library is determined. Bridge amplification, a type of PCR, enriches the 
DNA template and improves the detection signal for sequencing. This procedure, which is essential for 
cluster generation, guarantees that there will be enough raw material for sequencing. (3). Fluorescently 
labeled nucleotides are incorporated into the growing DNA strand, and their sequence is recorded. This 
produces a raw data that is subjected to bioinformatics analysis and alignment, enabling the discovery of 
AMR genes and other helpful insights like gene expression studies. 

Aim 
By gaining a thorough understanding of the genetic traits and resistance patterns of Pseudomonas 
and Proteus spp., two commonly occurring sepsis-causing agents, this thesis aims to improve early 
detection and treatment of sepsis. The accomplishment of a number of specific objectives is 
required to achieve this aim. Firstly, whole-genome sequencing (WGS) data from Proteus and 
Pseudomonas isolates obtained from patients with sepsis was to be analyzed using an in-house-
developed bioinformatic pipeline. In order to complete this analysis and benchmark the result, 
the data had to be uploaded into an autonomous pipeline known as the 1928 Tool. Exploring these 
bacterial WGS data such as antimicrobial resistance (AMR) genes, virulence factors, and 
epidemiological relatedness and comparing the predicted AMR genes with the phenotypic AST 
data was the area of focus. Utilizing statistical software, such as RStudio, the findings were to be 
interpreted accordingly. The study focused specifically on two types of bacteria: Pseudomonas and 
Proteus. An in-depth look to these organisms was planned, which take at account of, their 
diversity, their disease-causing potential, and their characteristics, irrespective of their drug-
resistance profiles. Through these clearly defined objectives, the ability of identifying and 
characterizing sepsis causing microorganism through genetic insights into causative bacteria in 
short may be effectively addressed and which will be an input in the way of fighting drug 
resistance occurrences in the society.  

Materials and Methods 

Isolates collection 
Pseudomonas spp. and Proteus spp. clinical isolates used in this study were collected as part of the 
prospective observational "Sepsis Study Skaraborg" conducted in Skaraborg hospital from 
September 8, 2011, to June 7, 2012, in collaboration with Unilabs and the systems biology center 
at Skövde University in the Västra Götaland region in southwest Sweden (Ljungström et al., 2017; 
Ljungström et al., 2019). All adult patients (≥18 years old) who were admitted with a diagnosis of 
confirmed or suspected community-onset sepsis or septic shock from the emergency department 
included in this study. Intravenous antibiotics administration within 48 hours of admission were 
the other criteria to be able to include in the study (Ljungström et al., 2017; Ljungström et al., 
2019). Before administering empirical antibiotics, 1800 pathogenic bacterial isolates were 
gathered from sampling sites, like blood, wound, urine, and the upper respiratory tract. Colonial 
material was transferred to MicrobankTM vials (Pro-Lab Diagnostics, Ontario, Canada) and stored 
at -80 °C, where these isolates were cooled and preserved till they further needed (cryopreserved) 
at the time of recovery (Ljungström et al., 2017). 

Species identification 

All isolates were identified as P. aeruginosa (n = 45) and P. mirabilis spp. (n = 43) by standard 
microbiological techniques, with culture and MALDI-TOF MS DB-4110 (Bruker Daltonics, 
Germany) and included in this study. Spectral scores above 2.0 were used as a cut-off for correct 
species identification. At the time of the study, the Bruker microorganism database MBT Compass 
Library DB-4110 (Bruker Daltonics, Germany), released in April 2011, was used for species 
identification (Shemirani et al., 2023). Out of the total Pseudomonas samples isolated, 15.6% were 
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obtained from blood culture, 11.1% were obtained from upper respiratory culture, 51.1% were 
obtained from urine culture, and 22.2% were obtained from wound culture. Among the 43 
samples examined for Proteus, the predominant culture type was also urine culture, accounting 
for approximately 48.83% of the total. Blood cultures (both aerobic and anaerobic) comprised 
about 27.91% of the total, while wound cultures represented 16.28%, and upper respiratory 
cultures contributed to 6.98% of the samples. 

Antibiotic susceptibility testing 
Antibiotic susceptibility testing (AST) for the Pseudomonas and Proteus spp. Isolates were checked 
in vitro in the clinical microbiology lab at Unilabs, Skövde. AST determination implement the disc 
diffusion method on Mueller-Hinton media in according to European Committee on AST (EUCAST) 
guidelines (www.eucast.org). The phenotypic AST result sample type was used to determine 
which antibiotics would be good to test for certain bacterial isolates (Shemirani et al., 2023). 

DNA extraction 
Genomic DNA extraction was performed for Pseudomonas spp. and Proteus spp. isolates. The 
extraction of DNA was done from pure cultures by the MagNA Pure 96 DNA and Viral NA Small 
Volume Kit (Roche Diagnostics, Switzerland) according to the Pathogen Universal 200 procedure 
on a MagNA Pure 96 instrument (Shemirani et al., 2023). DNA concentrations were measured 
using Qubit 3.0, purities were determined by a NanoDrop spectrophotometer (Thermo Fisher 
Scientific, USA), and the DNA samples were stored at -20 °C until sequenced (Saxenborn et al., 
2021; Mahmoud, 2021; Ljungström et al., 2017). 

NGS data generation 
The genomic DNA samples were extracted from Pseudomonas spp. and Proteus spp. Isolates were 
sequenced using the Illumina HiSeq X platform at SciLifeLab in Solna, Sweden, using the high-
throughput protocol for bacterial genomes. NexteraXT libraries and quality control were 
performed according to the manufacturer's protocol (Illumina, San Diego, CA). The resulting raw 
FastQ files were uploaded and stored as zipped files (.gz) at Skövde University for further analysis 
(Saxenborn et al., 2021; Mahmoud, 2021). The raw data have information about sequencer 
identifiers, reads, and quality scores. All the P. aeruginosa (n = 45) and P. mirabilis spp. (n = 43) 
Isolates that were identified using phenotypic methods underwent WGS analysis. In total, 88 
isolates were included in this study. 

In-house developed pipeline 
WGS data bioinformatics analysis was done using, an in-house-developed pipeline (Figure 2) 
(Shemirani et al., 2023; Saxenborn et al., 2021). Which involved all standard procedures for 
analyzing the NGS data. This pipeline was designed to perform quality control (both before and 
after trimming and assembly), trimming, assembly, and functional annotation of reads (Shemirani 
et al., 2023; Saxenborn et al., 2021; Mahmoud, 2021). The analysis tools used in the pipeline were 
selected based on the 1928 tools to enable comparison of the results. Figure 2 presents a 
schematic representation of the pipeline. 
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Figure 2: This figure illustrates a step-by-step method developed for analyzing of Pseudomonas and Proteus 
bacteria isolates WGS data. Starting with the initial untrimmed FastQ files (1), their quality is first checked 
using a program called FastQC (2). Next, any unnecessary parts are removed, and the quality is enhanced 
using Trimmomatic software (3). These refined data pieces are then assembled into larger units (called 
contigs) with a tool named Unicycler (4). The quality of these contigs is assessed with QUAST (5). For 
identifying the specific species of the bacteria, the JSpeciesWS online service (6) is employed. Afterward, 

specific features and functional annotation of reads unique to these two bacteria, Pseudomonas and 
Proteus spp. isolates are searched using the tools from the Center for Genomic Epidemiology (CGE) (7). 
Finally, chewBBACA tools, a multi-function tool (8) used for identifying the total number of loci. 

 

This in-house developed pipeline (Figure 2), which included the steps and software’s used for 
analyzing the sequenced data, such as quality control, trimming, assembly, and functional 
annotation of reads. The FastQ files were subjected to primary quality control using FastQC v. 
0.11.5 (Babraham Bioinformatics, 2023). Trimmomatic v. 0.36 (Bolger et al., 2014) using these 
codes for trimming (Appendix I, Figures 1–2) was done for adapter removal and quality trimming, 
with a sliding window of size 4 and a minimum quality of 20. Furthermore, the HEADCROP 
parameter cut the first 12 bases, and reads shorter than 30 bp were eliminated. Next, the FastQ 
files were built into contigs using the Unicycler assembly program for Linux v. 0.4.8 (Ubuntu 5.8.0-
45 generic; Wick et al., 2017; Mahmoud, 2021). The Quality Assessment Tool for Genome 
Assemblies, QUAST v. 4.6.0 (Gurevich et al., 2013; Wick et al., 2017), was used to evaluate the 
assembled contigs' quality. Quality was evaluated in QUAST using the default settings and with 
their respective reference sequences, the genomes of P. aeruginosa PAO1 (NCBI accession number 
NC_002516.2) and P. mirabilis HI4320 (NCBI accession number NC_01055.4), received from the 
NCBI. Species identification was done on the Fasta files using the free web service JSpeciesWS 
(http://jspecies.ribohost.com/jspeciesws/), which measured the probability of a group of 
genomes belonging to the same species (in comparison to a reference genome) using the Blast+ 
average nucleotide identity (ANI) method, with genomes exhibiting a similarity of ≥ 95% ANI 

http://jspecies.ribohost.com/jspeciesws/
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classified as the same species and those with < 95% as different species (Richter et al., 2015). 
Based on this genome assembly, six samples from different species were excluded from 
downstream analysis. The CGE tools (https://www.genomicepidemiology.org/), together with 
ABRicate (Tseemann, 2023), which is a database with a mass screening of contigs for 
antimicrobial resistance or virulence genes that gives a control for running the data to avoid 
sharing it with other databases, were utilized to identify the genetic traits of the P. aeruginosa and 
P. mirabilis isolates using the Fasta files. CGE tools: MLST 2.0, VirulenceFinder 2.0, PlasmidFinder 
2.1, CSIPhylogeny 1.4, and ResFinder 4.1 were used. Antibiotic resistance genes (AMR) that have 
been acquired or developed due to mutations in chromosomal genes that can cause antibiotic 
resistance were located using a threshold of 90% and a minimum length of 60% by ResFinder 4.1 
(Zankari et al., 2012). The presence or absence of a resistance gene classified the sample as 
resistant or susceptible, respectively. VirulenceFinder 2.0 (Panayidou et al., 2020) and VFDB 
(http://www.mgc.ac.cn/VFs/main.htm) were used with a threshold of 90% and a minimum 
length of 60% to predict the virulence genes. MLST 2.0 (Larsen et al., 2012) and CSIPhylogeny 1.4 
tools were used to detect relatedness between the bacterial strains. CSIPhylogeny 1.4 analysis was 
performed using the respective reference genome and default settings. MLST, which is the gold 
standard for typing, was used to determine and describe how the P. aeruginosa isolates and the P. 
mirabilis isolates were closely related genetically based on the WGS data (Larsen et al., 2012). The 
seven housekeeping genes according to the MLST database of P. aeruginosa (acsA, aroE, guaA, 
mutL, nuoD, ppsA, and trpE) (Jolley et al., 2018) served as its foundation. In order to identify the 
total number of loci found in the genome, a core genome cgMLST scheme was created using 
chewBBACA (A Comprehensive and Highly Efficient Workflow for BSR-Based Allele Calling 
Algorithm) (Silva et al., 2018).  The P. aeruginosa PAO1 and P. mirabilis HI4320 reference genomes 
were utilized just to predict the cgMLST loci and were excluded from further investigation. Each 
genome's coding sequences (CDSs) were annotated, and using an all-against-all BLASTP search 
and blast score ratio (BSR) computations, distinct loci were found. Candidate loci were chosen 
based on their inclusion in all full genomes. Pseudomonas aeruginosa serotyper (PAst 1.0), a tool 
from the Technical University of Denmark that is available in CGE, was employed in this study for 
in silico serotyping of P. aeruginosa isolates using next-generation sequencing data (Thrane et al., 
2016). The raw pair end FastQ files, without any processing were uploaded and analyzed by the 
cloud-based tool, 1928 (1928 Diagnostic platform, Sweden). P. aeruginosa and P. mirabilis paired-
end reads in order to benchmark the performance of 1928 with the "in-house developed pipeline". 
The platform made up of a specifically designed pipeline to analyze paired-end reads from P. 
aeruginosa and P. mirabilis, providing species identification, read quality evaluations, 
phylogenetic group determination, and antibiotic resistance gene identification. In addition, it 
offered P. aeruginosa MLST typing using a particular pipeline (Shemirani et al., 2023; Saxenborn 
et al., 2021; Mahmoud, 2021). The platform automatically consolidated most results into an Excel 
sheet available for download. Additionally, P. aeruginosa and P. mirabilis' respective reference 
genomes, P. aeruginosa Pa01 and P. mirabilis HI3120, were used to conduct single nucleotide 
polymorphism (SNP) analyses for both bacteria. 

Statistical analysis 

Using Rstudio (version 3 2022.07.2+576; R studio for Statistical analysis), statistical analysis for 
Pseudomonas and Proteus species was carried out. The genotypic results from the internal pipeline 
and the 1928 pipeline were compared with the clinical laboratory phenotypic results using a 
descriptive statistical analysis. Mean counts with 95% confidence intervals (CI) were used to show 
the presence of virulence genes and antibiotic resistance. The counts of resistance genes 
discovered by 1928 and CGE were compared using the Wilcoxon signed-rank test or the paired t-
test (Akeyede et al., 2014). Additionally, the Kruskal-Wallis test or one-way ANOVA (Ostertagová 
et al., 2014), was used to determine whether there was a statistically significant in the distribution 
of the virulence genes among the four common STs, ST 111, ST 3285, ST 564, and ST 17. Levene 
and Shapiro-Wilk tests were used to assess the presence of normality and equal variance, 
respectively (Schober & Vetter, 2019). ANOVA with Simpson's Diversity Index (Hunter & Gaston, 

https://www.genomicepidemiology.org/
http://www.mgc.ac.cn/VFs/main.htm
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1988), was used to evaluate the diversity of serotypes in various samples, and McNemar's test 
was used to ascertain whether any resistant phenotypic traits existed. The precision of predicted 
antibiotic resistance genes (AMR) in relation to the phenotypic AST results was calculated using 
major errors (MEs) and very major errors (VMEs). While VMEs happen when the predicted result 
is susceptible but the phenotypic outcome is resistant, MEs happen when the predicted result is 
resistant but the phenotypic outcome is susceptible. Previously published research (Gordon et al., 
2014; Banerjee et al., 2021; Shemirani et al., 2023) was used to assess these errors. P values of 
less than 0.05 were considered statistically significant (Wasserstein & Lazar, 2016; Ross, 2014). 
 

Results 

Quality control, trimming, and assembly  
The quality assessment of raw reads was conducted with FastQC v. 0.11.5 (Babraham 
Bioinformatics, 2023). Pre- and post-trimming results are shown in Appendix II (Figures 1–3). 
Using Unicycler (Appendix I, Figure 3), trimmed files were assembled, and Fasta files were 
generated. After trimming, from Pseudomonas samples in most of the samples retained more than 
70% of the reads (Table 1, Appendix II).  In order to assess the assembly's quality, Quast was used 
to consider the assembly's overall length, the number of contigs, the genome fraction (%), and the 
percentage of GC content. Tables 1 and 2 show the QUAST result mean values of these parameters 
along with their 95% confidence intervals for the respective organisms. 
 
Table 1. P. aeruginosa isolates with their mean and 95% CI of the reads, the GC content, and 

genome fraction with the respective reference genome. 

Parameter  Mean (95% CI)  

Total length (bp*)  6435738 bp (6275857 bp-6595620 bp)  

GC content (%)    

65.7% (64.5% - 66.9%)  

Genome fraction (%)    

97.8% (96.0 % - 99.7%)  
*bp = base pair  

 
Table 2. P. mirabilis isolates with their mean and 95% CI of reads, the GC content, and genome 
fraction with the respective reference genome. 

Parameter  Mean (95% CI)  

Total length (bp*)  4960803 bp (4932575 bp-4989030 bp)  

GC content (%)    
50.7% (50.5% - 50.8%)  

Genome fraction (%)    

84.7% (83.7% - 85.8%)  
*bp = base pair  

Species identification 

In this study, 88 isolates that had been identified as P. aeruginosa and P. mirabilis by MALDI-TOF 
MS (DB-4110) were genotyped for species identification using Average Nucleotide Identity (ANIb) 
through JSpeciesWS web services (Appendix II, Table 1). P. aeruginosa was identified in 43 out of 
45 Pseudomonas samples, with an average reference genome similarity of 97.8% CI (96.0–99.7). 
However, it was discovered that Acinetobacter pittii and Pseudomonas putida (Appendix II, Table 
2), were present in two isolates (PS947 and PS1217). The results of the Maldi-Tof 2021, 1928, and 
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JSpeciesWS analyses are consistent for the rest 43 samples that were identified as P. aeruginosa 
(Appendix II, Table 1). For Proteus spp.  group, 39 out of 43 samples were classified as P. mirabilis, 
with an average similarity to the reference genome of 84.7% CI (83.7–85.8). Four samples initially 
attributed to Pr. hauseri and Pr. vulgaris in Maldi-Tof 2021, were subsequently identified as 
Proteus genomosp. 4 and Proteus columbae, respectively (Appendix II, Table 2). Consistent results 
were observed from Maldi-Tof 2021, 1928, and JSpeciesWS in all the rest 39 samples. In the 
analysis, Fasta files that did not meet the internal quality control levels of the 1928 platform which 
were also identified as other organisms were excluded from downstream analysis. A total of 6000 
loci for Pseudomonas and 3600 loci for Proteus were identified from the tools, chewBBACA, 
respectively (Appendix V, Figures 4 and 5). The study focused on antibiotic resistance gene 
identification, virulence gene characterization, and sequence typing, considering the remaining 
43 P. aeruginosa and 39 P. mirabilis isolates. 

Antimicrobial Resistance Profile 

Clinical isolates of the bacteria Pseudomonas and Proteus were successfully genotyped using the 
1928 feature of, the Pseudomonas pipeline and the Others bacteria pipeline in the platform, 
together with ResFinder/CARD from CGE. In predicting the quantity of resistant isolates, both 
approaches showed a high degree of agreement. Specifically, 1928 predicted that approximately 
98% of the isolates were resistant to at least one class of the investigated antibiotics, while CGE 
predicted 97% resistance to at least one antibiotic class (Appendix III, Tables 1, 2 and 3). In 
addition to specific antibiotic resistance genes, the 1928 approach found that all isolates (n = 82) 
encoded multidrug efflux pumps (Appendix III, Table 2). These efflux pump genes were unique to 
each method. Overall, the comparison between CGE and 1928 across different antibiotic classes 
showed small variability (Appendix III, Tables 5 and 6), with some classes having more resistance 
genes identified by CGE and others by 1928. In a study analyzing the antibiotic resistance of 
Pseudomonas aeruginosa, out of 43 samples, approximately 97.6% exhibited Beta-lactamase 
resistance, and 95.2% showed resistance to Chloramphenicol. Every sample (100%) 
demonstrated resistance to both Fosfomycin and the Multidrug efflux pump mechanism. 
Quinolone resistance was detected in 19% of the samples. Other notable genetic resistance 
markers include the crpP gene, present in 35.7% of samples, and specific gyrA mutations in about 
9.5%. These findings indicate a significant resistance profile across most antibiotics tested, 
highlighting the challenges in treating infections caused by this bacterium. A paired t-test 
comparing gene resistance detection by CGE and 1928 across eight antibiotic classes found no 
statistically significant difference (p-value = 0.76) (Appendix III, Table 6). Both methods showed 
comparable effectiveness, with CGE detecting 228 instances of resistance genes and 1928 
identifying 213 instances across all classes. Despite variations in individual classes, the overall 
performance of both methods appears equivalent in detecting antibiotic resistance genes in 
clinical P. aeruginosa isolates. In the analysis of clinical isolates of Proteus bacteria (total samples: 
39), tetracycline exhibited the highest resistance prevalence, which was unanimous across all 
samples at 100% (39 out of 39) carrying the tet(J) gene (Appendix III Table 1). Chloramphenicol 
resistance was found in 87.2% of the samples, with the detected gene being cat_1. Only one sample 
demonstrated resistance to Quinolone via the qnrD1 gene. Additionally, approximately 20.5% of 
the samples had the dfrA1 gene, conferring resistance to Trimethoprim. No samples showed 
resistance to Aminoglycosides, Beta-lactamases (excluding catA), MLS, or Sulfonamide. The 
comparison of resistance gene identification between CGE and 1928 across different antibiotic 
classes showed variable results (Appendix III, Table 7). For some classes of antibiotics, CGE 
identified more resistance genes, whereas for others, 1928 identified more. When performing a 
paired t-test to compare the overall performance of the two methods across all antibiotic classes 
(Appendix III, Table 8), it shows no significant difference (p = 0.23).  
 
Comparing the phenotypic AST with genotypic predictions from 1928 and CGE across various 
classes of antibiotics in the Pseudomonas and Proteus study was done next (Appendix III, Table 4). 
About 88% of the isolates had at least one antibiotic resistance, of which 68% shows multi-drug 
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resistance from their phenotype findings. For Pseudomonas, there was a noticeable level of 
discordance characterized by major errors (ME) and very major errors (VME) in this case. The 
aminoglycoside class recorded the highest level of VME at 100% for both prediction methods, with 
no ME observed. Beta-lactam and Cephalosporin classes also showed total discordance (100%) 
between phenotypic and genotypic methods but varied in the distribution of VME and ME. Beta-
lactam had a VME rate of 39.5% and a ME rate of 60.5%, whereas Cephalosporin had a VME rate 
of 26.8% and a ME rate of 73.2%. The fluoroquinolone class had the lowest discordance (61%), 
with a VME rate of 46.3% and an ME rate of 14.6%. Across the bioinformatic workflows for Proteus 
isolates in CGE and 1928, there were a total of 37 and 41 ME and 37 and 41 VME, respectively 
(AppendixIII, Table 4). The aminoglycosides class showed the greatest discordance, with 10 VMEs 
for CGE and 13 VMEs for 1928. Chloramphenicol was the next most discordant, with 11 VMEs for 
CGE and 10 VMEs for 1928. These discrepancies were also reflected in the ME counts, where 
aminoglycosides showed the highest number of MEs with 10 for CGE and 13 for 1928, closely 
followed by chloramphenicol with 11 MEs for CGE and 10 MEs for 1928. It was easy to examine 
all discrepancies from the bioinformatic workflows and reveals that the outputs, like identified 
resistance genes, from the CGE or 1928 workflows show certain detection future. 

Virulence Factors and MLST results 

The CGE Virulence Finder analysis conducted on the WGS data of Pseudomonas yielded a total of 
9840 virulence genes across all 43 isolates. Out of these, there were 240 different virulence genes 
found among the isolates, with an average of 228, in all the isolates (n = 43), with a 95% CI of 214–
238, per isolate. Different virulence genes per isolate were detected, and PhzB1, a metabolic 
factor, was the most prevalent virulence gene, found in 73.2% of all samples. Among the next most 
prevalent virulence factor genes are fliQ, alg44, alg8, algA, algB, algC, algD, algE, algF, algL, algQ, 
algR, algU, algW, algX, and algZ, each accounting for roughly 0.45% of the total virulence factor 
genes. Table 3 presents the proportion of the most frequent virulence factors and their genes. No 
virulence factor was included in the 1928 Pseudomonas results. For Proteus, there is no tool 
available to obtain the VF gene in CGE, VFDB, or 1928 until performing this thesis. 

 
Table 3 Most common virulence factors and their genes (in percentage) of P. aeruginosa 
clinical isolates (n = 43)  

Virulence genes (n=9840)  Counts of genes (%)  

Adherence 
(air, xcp, iroN)  

1497 (15.2%)  

Effector delivery system 

(lip, tse1, exs and S fimbriae)  

215 (2%)  

Motility 

(fliQ, flg, fle, mot)  

1834 (18.6%)  

Exotoxin 

 (toxA, plcH)  

84 (5%)  

Biofilm 

 (algA, algB algR, mucA, rhl)  

1419 (14.4%)  

Nutritional/Metabolic factor 

(pch, PhzB1, pvd)  

1334 (13.4%)  

 

The MLST analysis of the 43 Pseudomonas isolates using MLST 2.0, CGE tools, and 1928 resulted 
in 26 matching sequence types. The MLST analysis results are shown (Appendix IV, Table 1) 
together with the serotype and other futures. From the analysis of P. aeruginosa samples, four 
most common Sequence type (ST) were identified. Four samples (9.30%) of ST 3285, four samples 
(9.30%) of ST 111, three samples (6.98%) of ST 17, and three samples (6.98%) of ST 564 were 
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analyzed. The number of virulence factor genes was found to be significantly correlated with the 
MLSTs (p = 0.00001), showing that the STs are a significant predictor of the number of virulence 
factor genes. The number of virulence genes differed significantly between ST 3285 and ST 111, 
according to post hoc comparisons using Tukey's HSD test (CI [1.40, 11.10], p = 0.005). On average, 
ST 3285 possesses 6.25 more virulence genes than ST 111. Additionally, there were significant 
differences in the mean number of virulence genes between these STs, between ST 111 and ST 17 
(mean difference = 5.67, p = 0.03), as well as between ST 3285 and ST 564 (mean difference = 
7.25, p = 0.002). 

The CGE and 1928 epidemiological studies show similarities in ST distribution (Figure 3). Two 
isolates (PS1521 and PS1528) could not have their (ST) determined using both the 1928 approach 
and MLST 2.0. Despite this, both workflows identified the same allelic profile for these isolates. 
Phylogenetic trees for Pseudomonas and Proteus spp. were constructed using SNP-based analysis 
and MLST features using CGE and 1928 epidemiological studies (Appendix V, Figures 1, 2, and 3). 
The phylogenetic trees constructed using SNP-based analysis showed similar groupings of the 
sequence types (Appendix V, Figures 1, 2). While the trees do not appear identical, they both show 
similarities in grouping the same STs together and distinguishing them from other STs. 
 

 
Figure 3. Principal Component Analysis of MLST Genes from CGE and 1928 Pseudomonas Samples, this 
figure presents a PCA plot of the MLST genes identified by CGE and 1928, including acsA, aroE, guaA, mutL, 
nuoD, ppsA, and trpE. Each gene is represented by two data points: a blue point indicating the PC score and 
a purple point indicating the loading. The position of the points is determined by the multilocus sequence 
typing (MLST) and sequence type (ST) as determined by CGE or 1928. Similarities between STs are 
indicated by proximity in the PCA plot. High degrees of similarity between the STs identified by CGE and 
1928 for each gene are indicated by close proximity between the corresponding PC score and loading points. 
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The distribution of the isolates, in relation for each ST is shown in Table 4 below. Simpson's 
Diversity Index (Table 4) was used for Pseudomonas samples to assess the diversity of 
Pseudomonas isolates across various clinical specimens. Accordingly, the urine culture extended 
and urine culture routine specimens exhibited the highest diversity, while the wound culture 
extended specimen showed no variation in the identified STs. Furthermore, the most frequent ST 
was identified for each specimen type to determine the prevailing Pseudomonas type. For Proteus, 
because the MLST result was not available, this statistical analysis could not be performed. 
 
Table 4. Diversity and Prevalence of Pseudomonas spp. in Clinical Specimens 

Specimen Type N Simpson's Diversity 
Index 

Most frequent ST 

  Blood culture 7 0.952 270 

  Upper respiratory        5 0.90 111 

Urine culture 
extended  

2 1 17 

Urine culture 
routine  

20 0.98 564 

Wound culture  9 0.97 3285 

Wound culture 
extended  

1 NaN 1068 

  Total    43 0.997 564 

Serotype  

For Pseudomonas samples, the serotype group was identified from CGE only using Pseudomonas 
aeruginosa serotyper (PAst 1.0) tools (Figures 4 and Appendix IV, Figure 1). A total of nine 
different serotypes were identified. Serotype O6, was the commonest, with urine culture being the 
specimen with the most variety of serotypes. In this study of Pseudomonas serotype data, a total 
of nine serotypes, O1, O2, O3, O4, O5, O6, O7, O9, and O11 were discovered (Figure 4). Serotypes 
O6, O1, and O9, were the commonest serotypes to be identified (Appendix IV, Figure 1), which 
were detected in about 54.8 % of the isolates (Appendix IV, Table 1). The serotype significantly 
influenced coverage, as evidenced by a statistically significant result (p = 0.001). The influence of 
both serotype and specimen type on coverage was statistically significant for the serotypes (p = 
0.001), but the specimen type alone did not yield any significant effect in the serotype (p = 0.601). 
A comprehensive breakdown of the data revealed the count and percentage of each serotype 
within the specimen types, and another future (Appendix IV, Table 1), which provides a detailed 
perspective of the distribution. There were no tools available to identify the possible serotypes in 
the case of P. mirabilis in the CGE or 1928 pipeline for both organisms, until this research was 
published. 
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Figure 4: The distribution and variety of serotypes in different samples of Pseudomonas aeruginosa 

Plasmids 

For a comprehensive understanding of the plasmids and their functions, the next step involved 
utilizing ResFinder 2.0 in CGE to successfully identify plasmids in both Proteus spp. and 
Pseudomonas spp. Isolates (Appendix IV, Table 2). Out of the 39 analyzed samples of Proteus spp., 
plasmids were detected in nine samples (20.93%). Among these samples, the most commonly 
identified plasmid was Col3M_1, found in five samples (11.63%) obtained from various sources, 
including wound cultures, blood cultures, and urine cultures. The ColE10_1 plasmid was detected 
in two samples (4.65%), specifically from urine cultures. Additionally, the IncN_1 and ColRNAI_1 
plasmids were each identified in one sample (2.33%). Notably, the majority of the Proteus spp. 
samples, 30 out of 39 (79.07%), did not exhibit an identifiable plasmid. Similarly, in the case of 
Pseudomonas spp. plasmids were found in four out of the 43 analyzed samples (9.30%). Among 
these, the IncQ2_1 plasmid was the most prevalent, being present in three samples (6.98%) 
obtained from wound cultures, blood cultures, and urine cultures. Furthermore, the IncFII 
(pRSB107) plasmid was identified in one sample (2.33%), specifically from wound cultures. The 
majority of the Pseudomonas spp. samples, 39 out of 43 (90.70%), did not exhibit an identifiable 
plasmid. No plasmid finder was included in the 1928 tools for both bacteria. 
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Discussion 
WGS methods have emerged as effective tools for identifying pathogens quickly, detecting 
resistance genes precisely, and tracking outbreaks (Váradi et al., 2017). In contrast to traditional 
techniques that depend on the ongoing development of species-specific probes and primers, WGS 
offers a thorough and quick approach and provides extensive data without the need for target-
specific reagents (Váradi et al., 2017). Recently, there has been an increase in the use of WGS 
analysis in clinical settings, especially for the diagnosis and treatment of sepsis and related 
infections, such as those brought on by Pseudomonas and Proteus spp. (Lee et al., 2022; Schütz et 
al., 2017). WGS analysis has been shown in studies to be effective at identifying antibiotic-resistant 
strains of P. aeruginosa and P. mirabilis, and directing appropriate antibiotic therapy (Horcajada 
et al., 2019; Walters et al., 2019). Furthermore, Roach et al. (2018) showed how effective WGS is 
at determining the origin and spread of hospital-acquired infections, particularly in sepsis cases. 
This thesis examines the genotypic identification of Pseudomonas and Proteus spp. and benchmark 
the performance of the 1928 tool against an in-house-developed pipeline using data from P. 
aeruginosa and Proteus spp. obtained from suspected sepsis patients. Various freely available 
bioinformatic tools, including JSpeciesWS, chewBBACA, and the CGE service, which have all been 
validated in numerous studies (Saxenborn et al., 2021; Zankari et al., 2013; Joensen et al., 2014; 
Silva et al., 2018), are integrated into this in-house-developed pipeline. This evaluation aims to 
provide a rough estimate of the precision and efficiency of the relatively recent 1928 tool for 
automated WGS analysis. To increase the accuracy and dependability of sequencing analysis, WGS 
data must be preprocessed. In this process, trimming raw reads is crucial and forefront, because 
it must preserve as many bases as possible while maximizing read quality. According to Del 
Fabbro et al. (2013), trimming thresholds of 20–30 are ideal for keeping a lot of high-quality reads. 
The in-house-developed pipeline in this study employed a quality threshold of 20 for trimming 
reads, consistent with these recommendations (Andrews, S. et al., 2010; Shemirani et al., 2023). 
Low-quality regions, very short reads, and adapter sequences was removed. Trimming was also 
performed to improve de novo assembly of the reads (Bolger et al., 2014). Most of the 
Pseudomonas and Proteus samples kept more than half of the reads (Table 1 and 2), after 
trimming, proving the efficiency of the trimming technique (Klockgether & Tümmler, 2017). 
These results support the importance of careful selection and application of quality control and 
trimming procedures for high-quality sequencing data, consistent with Del Fabbro et al.'s (2013) 
and Bolger et al. (2014) recommendations. These findings also suggest the trimming approach 
effectively retained a high percentage of good-quality reads within the expected range (Del Fabbro 
et al., 2013; Bolger et al., 2014), which assures that careful pre-processing and quality control 
procedures are critical for WGS data analysis. The results of this study, along with previous 
research, highlight the importance of careful selection and application of quality control and 
trimming procedures for high-quality sequencing data suitable for downstream analysis. 
 
The use of a reference genome in analyzing WGS data for Pseudomonas and Proteus spp. varies 
based on research questions and availability. Several high-quality reference genomes have been 
utilized in Pseudomonas, while there are fewer for Proteus, resulting in a significant challenge for 
performing an assembly (Bacci et al., 2017; Markussen et al., 2014). The choice of reference 
genome can improve analysis accuracy and efficiency, particularly for AMR gene detection, 
comparative genomics, and phylogenetic analysis (Bacci et al., 2017; Markussen et al., 2014; Yang 
et al., 2019). In this study, the well-known complete reference genomes of Pseudomonas PAO1 
(Juhas, 2015) and Proteus HI4320 (Yu et al., 2017) were used, respectively. According to Luo et al. 
(2012), using a reference genome in QUAST analysis is critical for accurately evaluating the quality 
of genome assemblies in WGS. Key evaluation metrics might not be available prior to the launch 
of QUAST without a reference genome, which would limit the evaluation's accuracy (Gurevich et 
al., 2013). JSpeciesWS calculates the ANI-based approach for specious identification using the 
reference genomes of the two organisms. The results were comparable; the JSpeciesWS-based 
method and 1928 tools matched almost 99% of the time (Appendix II, Table 1). Numerous studies 
(Shemirani et al., 2023; Bonnelly et al., 2023) have supported this. Two of the total samples were 
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determined to be P. vulgaris, a common habitant of the human gastrointestinal tract (Hamilton et 
al., 2018), and two of the samples were determined to be P. columbae in Proteus samples, the most 
prevalent microorganisms that can be diagnosed alongside P. mirabilis (Hamilton et al., 2018). 
Similar to the findings from 1928, two Pseudomonas strains were found to be Acinetobacter pittii 
and Pseudomonas stutzeri, respectively. All the results agreed with the 2021 updated clinical 
microbiology result from Unilabs, Skövde, using MBT Compass Library DB-7854 (Bruker 
Daltonics, Germany). 
 
Studies have shown that P. aeruginosa and P. mirabilis can develop antibiotic resistance through 
a number of mechanisms, including efflux pumps, target modification, toxic production, and 
enzymatic inactivation (Girlich et al., 2020; Chambers et al., 2017; Martinez et al., 2015; Sabnis et 
al., 2021; Maldonado et al., 2016). P. aeruginosa and the host interact in complex ways that involve 
a number of different host components and signaling pathways. These involve triggering immune 
reactions, triggering inflammation, and modifying host cell death and survival pathways 
(Chambers et al., 2017). Studies utilizing WGS to identify resistance genes demonstrated 
substantial agreement between genotypic and phenotypic resistance profiles (Jeukens et al., 2020; 
Shemirani et al., 2023), though some discrepancies have been noted. The dataset used for this 
study shows a mixed pattern of agreement and disagreement between the phenotypic and 
genotypic resistance profiles. Despite some differences in specific classes, the genotypic 
approaches of CGE and 1928 both showed comparable efficiency in identifying antibiotic 
resistance genes in clinical P. aeruginosa isolates. For beta-lactam and fluoroquinolone resistance, 
the majority of the samples demonstrate agreement between the phenotypic and genotypic 
results (Appendix III, Tables 1, 2, 3, and 5). This result agrees with previous similar studies (Dégi 
et al., 2021; Dötsch et al., 2009; Saxenborn et al., 2021). These findings provide valuable insights 
into the prevalence and distribution of antibiotic resistance genes in clinical Proteus isolates, 
which can inform better antibiotic treatment strategies for this bacterial species. However, there 
are also a number of samples where the phenotypic and genotypic outcomes were different. Both 
the in-house and 1928 pipelines encountered challenges in accurately predicting AST results that 
agreed with the phenotypic AST for aminoglycoside and cephalosporin antibiotics. This issue was 
observed in both the P. aeruginosa study and, specifically for aminoglycoside, in the P. mirabilis 
study (Appendix III, Table 3 and 4). These discrepancies can be observed across various specimen 
types and resistance categories, emphasizing the importance of considering both phenotypic and 
genotypic data when assessing antibiotic resistance in these organisms (Jia et al., 2017; Boero & 
Bernardi, 2014). Numerous factors may contribute to the differences between phenotypic AST 
results and genotypic predictions of AMR (Boero & Bernardi, 2014). One factor that makes 
predictions difficult is that some AMR genes are linked to particular antibiotics, while others have 
complex mechanisms linked to different antibiotic classes (Mahfouz et al., 2020; Jia et al., 2017). 
Another consideration is that the existence of an AMR gene does not ensure that it will be 
expressed or that it will be resistant to certain antibiotics (Zankari et al., 2013). Furthermore, it is 
important to compare predicted AMR gene results from WGS analysis with phenotypic AST results 
using a variety of WGS datasets (Mahfouz et al., 2020). Unidentified resistance mechanisms, 
unexplored resistance genes, gene expression regulation, epigenetics, bacterial growth 
conditions, antibiotics used for grouping in both sides, and limitations in prediction algorithms, 
databases, or experimental techniques are additional potential causes for these discrepancies 
(Larsen et al., 2012; Jia et al., 2017; Pachori et al., 2019). In addition to highlighting the ongoing 
problem of antibiotic resistance in P. aeruginosa and P. mirabilis, the results from the samples 
support previous researches (Lupo et al., 2019; Chen et al., 2015). Additionally, the discovery of 
the mexA, mexE, and mexX genes in the samples is consistent with the study's analysis of the 
significance of efflux pumps in developing resistance to fluoroquinolones, tetracyclines, and other 
antibiotics (Lupo et al., 2019). 
 
The analysis of 39 isolated clinical samples of Proteus spp. revealed the presence of antibiotic 
resistance genes such as aph(3')-IIb (aminoglycosides), catB7 (chloramphenicol), fosA 
(fosfomycin), blaPDC-374 (beta-lactams), and mexA, mexE, and mexX (efflux pump-related 
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resistance in fluoroquinolones, tetracyclines, and other antibiotics), showing the possibility of 
MDR in Proteus spp. (Girlich et al., 2020). Isolations, similar to the finding in this research (Chen 
et al., 2015; Pachori et al., 2019). The analysis of antibiotic resistance gene prevalence in clinical 
Proteus isolates revealed significant resistance to tetracycline, with the tetJ gene being highly 
prevalent. This finding underscores the importance of vigilant monitoring and judicious use of 
tetracycline antibiotics to mitigate further resistance development (Girlich et al., 2020). 
Chloramphenicol resistance was also significant, indicating the potential challenges in treating 
infections caused by Proteus with this class of antibiotics (Bush, 2010). This data underlines the 
prevailing resistance challenges in Proteus mirabilis against specific antibiotics, especially 
Tetracycline and Chloramphenicol. The detection of aminoglycoside, broad-spectrum beta-
lactam, sulfonamide, and trimethoprim resistance genes warrants attention as well, as these are 
important antibiotics commonly used in clinical settings (Girlich et al., 2020; Bush, 2010). The 
absence of quinolone resistance is a positive outcome, but continued surveillance remains crucial 
to prevent its emergence (Girlich et al., 2020). Overall, this study shows the resistance ability of 
Proteus isolates and emphasizes the need for ongoing efforts in antimicrobial management to 
combat antibiotic resistance effectively. The crpP gene, present in the samples, is associated with 
resistance to ciprofloxacin, which aligns with previous research on P. mirabilis resistance patterns, 
where mirabilis' antibiotic resistance is widely available (Girlich et al., 2020; Bush, 2010; 
Nordmann et al., 2011). The resistance patterns observed from the two genotypic analysis 
methods, CGE and 1928, revealed similarities and differences in both antibiotic resistance genes 
and their associated antibiotics. Both methods detected the presence of antibiotic resistance 
genes, such as aph(3')-IIb (aminoglycosides), catB7 (chloramphenicol), fosA (fosfomycin), and 
blaOXA variants (beta-lactams). However, CGE identified additional genes, including qnrVC1 
(quinolones) and tet(42) (tetracyclines), whereas 1928 detected the presence of mexA, mexE, 
mexX (efflux pumps related to multiple antibiotics), and crpP (cyclic peptide antibiotics). The 
similarities in antibiotic resistance genes identified by both methods are related to resistance 
against aminoglycosides, chloramphenicol, fosfomycin, and beta-lactams. In contrast, the 
differences in the detected genes highlight the potential variability in resistance patterns 
depending on the chosen analysis method, with CGE detecting quinolone and tetracycline 
resistance genes and 1928 identifying genes related to efflux pumps and cyclic peptide antibiotic 
resistance. 
 
Comparing phenotypic and genotypic antibiotic susceptibility testing (AST) reveals the subtle 
complexities and differences (Appendix 3, Tables 3 and 4). While some antibiotics show notable 
consistency across methodologies, others show startling differences, particularly in terms of Very 
Major Errors (VMEs) and Major Errors (MEs). Tetracycline emerges as having an unsettling 100% 
discordance across all bioinformatic workflows, starting with Proteus species (Appendix3, Table 
3). This significant inconsistency results in 36 VMEs for both the 1928 and CGE platforms, 
suggesting that there may be gaps in the workflows or bioinformatic databases used (Shemirani 
et al., 2023; Saxenborn et al., 2021; Mahmoud, 2021). Tetracycline's multifactorial resistance 
mechanism may imply to genetic determinants that have not yet been identified and included in 
prediction systems. Additionally, nearly half of the tested samples showed discrepancies for both 
Aminoglycosides and Chloramphenicol, highlighting the dangers of solely relying on genotypic 
predictions without concurrent phenotypic validations (Krause et al., 2016).  By focusing on 
Pseudomonas samples (Appendix 3, Table 4), a similar pattern of discrepancy is visible, 
particularly for aminoglycoside and beta-lactam. The 100% discordance for Aminoglycoside, with 
38 VMEs across both platforms, echoes a conceivable gap for understanding or representation of 
this antibiotic's resistance in Pseudomonas species (Krause et al., 2016). Beta-lactam, on the other 
hand, offers a blend of errors. The predominant MEs suggest a potential over-prediction of 
resistance, pointing to the need for refining the genotypic prediction tools. It's crucial to 
acknowledge that for both bacterial species, antibiotics like MLS, Quinolone, and Sulfonamide 
consistently demonstrated congruence between phenotypic and genotypic methods. This 
synchrony could reflect well-characterized genetic markers adeptly recognized by both the 1928 
and CGE algorithms used (Saxenborn et al., 2021; Mahmoud, 2021). Further complicating the 
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perspective, as described in this sepsis study, is the considerable level of discrepancies for 
Pseudomonas samples, casting doubts over the efficacy of genotypic methods as standalone 
predictive tools (Collignon & McEwen, 2019). Distinct error patterns emerge across the antibiotic 
classes. For instance, the aminoglycoside class, despite phenotypic sensitivities, consistently 
showed genotypic resistance, highlighting the probable shortcomings in current genotypic 
databases or algorithms (Collignon & McEwen, 2019; Krause et al., 2016). Drawing upon these 
multifaceted observations, it becomes evident that a balanced integration of both phenotypic and 
genotypic testing is essential for reliable and effective antibiotic resistance determination 
(Shemirani et al., 2023; Mahmoud, 2021). The insights presented align with previous research, 
emphasizing the urgency of enhancing genotypic prediction platforms, ensuring they are 
routinely validated and updated in conjunction with phenotypic tests, and striving for a more 
holistic approach to resistance detection (Collignon, P., & McEwen, S. 2019). 
 
To effectively address infections caused by different organisms, it is also crucial to have a 
comprehensive understanding of the wide variety of virulence genes and their relationship with 
antibiotic resistance (Sónia et al., 2015). This knowledge is also vital in developing effective 
strategies for the diagnosis, prevention, and treatment of P. aeruginosa and P. mirabilis infections 
(Chambers et al., 2017; Sabnis et al., 2021; Sónia et al., 2015; Ozer et al., 2021; Maldonado et al., 
2016). Healthcare professionals can learn crucial information that will help in the development of 
targeted therapies and enhance patient outcomes by looking at the complex relationship between 
virulence factors and antibiotic resistance (Girija et al., 2019).  A total of 9840 virulence genes 
were found in 43 P. aeruginosa isolates using the CGE Virulence Finder analysis of WGS data. The 
top virulence genes found in more than 40% of the isolates (Table 3) were phzB1, fliQ, and algA, 
with various functions, such as pyocyanin production, flagellar motility, and alginate biosynthesis 
being the commonest (Winsor et al., 2015; Dasgupta et al., 2002). These were the same as previous 
research findings (Ertuğrul et al., 2017; Beasley et al., 2020). Overall, these findings provide 
valuable insights into the distribution of virulence genes among Pseudomonas isolates, which can 
be useful in understanding their pathogenicity and designing targeted treatments. Their relation 
with ST values and their variation from specimen to specimen were able to be identified (Beasley 
et al., 2020; Pachori et al., 2019). All identified virulence genes in this study were validated against 
the Virulence Factor of Pathogenic Bacteria database (VFDB, 2023), confirming their presence and 
reliability.  There was no VF in 1928 for Pseudomonas or Proteus spp., and which limit to perform 
any benchmarking between the pipelines when it came to VF. Phylogenetic analysis, utilizing  
 
WGS data is also a crucial tool for determining epidemiological relationships between bacterial 
samples and detecting outbreaks (Sawa et al., 2020; Safarirad et al., 2021; Besser et al., 2018). This 
approach is widely adopted in clinical microbiology and infection control laboratories (Quick et 
al., 2014; Ellington et al., 2017). The high concordance observed between the 1928 pipeline and 
the CGE CSI Phylogeny analysis indicates the reliability of these methods. Notably, samples 
clustered according to their ST (Appendix VI). Complementing WGS-based phylogenetic analysis, 
Multi-Locus Sequence Typing (MLST) assigns bacteria to distinct STs based on allelic variations 
in seven housekeeping genes (Safarirad et al., 2021; Fischer et al., 2020; Feng et al., 2021). The 
diversity of isolates for each ST is shown in Table 4. Using Simpson's Diversity Index revealed 
varying frequent STs for different specimen types, some with multiple frequent STs. These 
findings highlight the diverse patterns of Pseudomonas diversity and prevalence across clinical 
specimens, with the findings agreeing with previous research (Gužvinec et al.,2014). Which 
potentially influence the diagnosis and treatment of Pseudomonas infections. Combining these 
techniques provides a comprehensive view of bacterial relationships and aids in detecting 
outbreaks.  When it comes to serotyping, it was only able to generate a serotype for Pseudomonas 
samples. Interestingly, the serotype distribution (Appendix IV, Figure 1) mirrored findings from 
earlier studies (Nasrin et al., 2022; Pirnay et al., 2009). In particular, Serotype O6, commonly 
found in the urinary tract and in the upper airway (Nasrin et al., 2022), was mostly detected 
(Appendix IV, Table 1). This understanding of serotype distributions holds implications for future 
vaccine development and disease prevention, among others bacterial futures (Nasrin et al., 2022; 
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Pirnay et al., 2009). In the study, plasmids were detected within both Proteus spp. and 
Pseudomonas spp. Isolates. COL3M-1 plasmid, was the most frequent in Proteus spp. samples 
(Appendix IV, Table 2), and has been previously associated with fluoroquinolone resistance 
through the qnrD1 gene (Bitar et al., 2020). Conversely, for Pseudomonas spp., the most identified 
plasmid (Appendix IV, Table 2), IncQ2, is known to harbor multiple resistance genes 
(Rozwandowicz et al., 2018). Notably, the 1928 toolset lacked a plasmid finder for these bacteria. 
 
In conclusion, WGS proves itself as a critical tool for swiftly identifying pathogens and detecting 
antibiotic resistance, providing essential insights into managing infectious diseases. Careful pre-
processing and selection of a suitable reference genome are key to accurate analysis. While the 
phenotype-genotype relationship isn't always straightforward, it's crucial for understanding 
antibiotic resistance. Method selection can impact results, as observed in the different resistance 
patterns detected by CGE and 1928. Ultimately, effective use of WGS could revolutionize the 
approach to diagnosing and managing diseases, making it an invaluable tool in Sepsis prevention 
mechanisms. 

Ethical aspects and its impacts on Society 
The foundational principles of ethics and ethical behavior are the tenets of a civilized society, and 
it has been argued that ethics motivates students to learn more and keeps research up-to-date 
(Hudek, 2009; Sivasubramaniam et al., 2021). Ethics can be referred to as any philosophical 
theory of what is ethically right or wrong, as well as any group of moral norms, mandates, or 
objectives (Hudek, 2009, Understanding Ethics and Types, 2022). Obtaining informed consent is 
the main ethical concern while performing research on humans or animals, according to studies 
by Sivasubramaniam et al. (2021). According to Mantzorou (2011), informed consent is 
permission given to researchers voluntarily, knowingly, and openly by completing a form with 
comprehensive information about the research (Manti and Licari, 2018). Ethical committees are 
necessary to regulate every part of research work, including informed consent. The Skaraborg 
Sepsis Study (Ljungström et al., 2017), which was approved by the Gothenburg Regional Ethical 
Review Board (376-11), was the impetus for the research that led to this project. In this project, 
clinical isolates of P. aeruginosa and P. mirabilis were able to have their genomes sequenced 
without the need to provide informed consent. Moreover, each patient who participated in the 
"Skaraborg sepsis study" provided signed informed consent (Ljungström et al., 2017). Personal 
data such as names or social security numbers will not be published in this research. While 
collecting isolates, no patient's gender was purposefully neglected or overrepresented; the 
samples were taken from both male and female patients. In the long run, sepsis, a critical health 
emergency often associated with multidrug resistance, must be addressed. This project aims to 
benefit the community by pioneering methods for early sepsis identification and countering 
antibiotic resistance. This thesis will present potential strategies for infection detection and 
mitigation. Collaborating with various stakeholders, which aspire to broaden the research's 
horizons and contribute meaningfully to the society in developing an outstanding mechanism to 
prevent infection specially, in the health care systems, to which where it will be implemented. 
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Future perspectives 
NGS has indeed revolutionized biomedical research over time-consuming and expensive wet lab-
based procedures (Hu, T et al., 2021). Many clinical laboratories have already adopted NGS 
technology to identify causal variants for the diagnosis of constitutional disorders, genomic 
profiling for precision oncology, and pathogen detection for infectious diseases (Cohen et al., 
2015). NGS also has widespread clinical application in precision medicine, such as understanding 
sepsis-causing organisms like Pseudomonas and Proteus spp., which are responsible for millions 
of infections worldwide (Zhong et al., 2021). This thesis's findings highlight Pseudomonas and 
Proteus spp., shedding light on their roles in a serious disease, known as sepsis. However, in 
clinical settings, the transition from traditional clinical microbiological methods to NGS faces 
significant challenges. Despite the existence of free bioinformatics tools, the cost of NGS 
methodology to the lack of skilled professionals, make it unpracticable in many places. Tools, such 
as CGE and 1928, can manage raw data within an hour with the identification of resistance genes, 
virulence genes, sequence types (STs), and many other futures without the need for a lot of 
intervention, potentially accelerating the process. These tools could improve the applicability and 
relevance of NGS data for research. P. mirabilis and P. aeruginosa are the commonest pathogens 
from the Proteus and Pseudomonas spp., respectively, in causing sepsis, especially in healthcare 
setups in their groups. WGS study on Proteus spp., are not too many, especially because there was 
a big challenge in identifying the virulence future and the MLST because of the lack of organized 
sources, and due to the small number of genes in the MLST used for classification, the resolution 
could be limited (Chen et al., 2023; Silva et al., 2018). Although Proteus and Pseudomonas have 
been identified as susceptible organisms in this study, little is known about the pathogens that 
they use to cause a wide range of serious illnesses. Future similar research that incorporates the 
core genome MLST result will greatly benefit from the genetic analysis of these bacterial strains 
and other bacterial species. ChewBBACA is a highly customizable platform for the cgMLST scheme. 
Scalability and flexibility in handling genomic data offer a standardized and reproducible 
workflow, facilitating data sharing and large-scale multi-center studies (Silva et al., 2018; Chen et 
al., 2023). Nowadays, most research uses the cgMLST approach to study and characterize 
organisms (Chen et al., 2023; De Been et al., 2015). The chewBBACA algorithm, which is open 
source and circumvents those restrictions from MLST, offers a straightforward bioinformatics 
pipeline for creating target strains' cgMLST schemes. It is possible to type P. aeruginosa and P. 
mirabilis globally, keep track of the clonal groups (CGs) of P. aeruginosa and P. mirabilis, and verify 
the cgMLST scheme of them (Chenn et al., 2023). It is necessary to consider ethical standards, data 
privacy, and socioeconomic barriers as researchers move towards this new frontier in medicine 
(Sivasubramaniam et al., 2021). The ultimate objective must be the incorporation of NGS into 
routine clinical practice, either in place of or in addition to current practices. Collaboration across 
disciplines, method standardization, and ongoing innovation will be necessary for this. In 
conclusion, NGS holds promise for the future of sepsis research and treatment, but there are still 
obstacles to overcome (Cohen et al., 2015; Hu, T. et al., 2021; Li, B., & Yan, T., 2021). It is important 
to carefully strike a balance between efficiency, accuracy, cost, and clinical applicability (Li, B., & 
Yan, T., 2021). 
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Appendix 

Appendix I: Coding Guide Used for In-House-Developed Pipeline 

 
Figure 1: Trimmomatic Execution Code This figure displays the code utilized to run Trimmomatic as per the 
bash script in Python. 
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Figure 2: Unicycler, QUAST, and Abricate Execution Codes This figure shows the code used to run Unicycler 
and QUAST in the loop and in code form using Abricate. 
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Figure 3: The figure depicts the code workflow for cgMLST determination using chewBBACA software. It 
involves training file preparation based on the reference genome, followed by code execution to generate 
the schema and cgMLST data. This enables comprehensive genetic analysis and comparison of organisms 
using allelic profiles. It also explains the code that will be used for Unicycler. 
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Appendix II: MultiQC Quality Assessment of FastQ Files with Species Analysis 
The analysis carried out by the MultiQC tool on ten random Proteus samples is shown in the figures 
below. The isolate's forward file, both before (Figure 1) and after (Figures 2-3) trimming, is the 
subject of this analysis. A summary of the pre-trimming analysis is provided in Figure 1. Per-base 
sequence content, adapter content, and levels of sequence duplication were the three warnings 
that this initial analysis raised. The quality of the forward file significantly improved after 
trimming Figure 3, with the exception of sequence duplication levels, which have faint warning 
signs. Figure 2 shows a summary of the quality assessment after trimming. 
 

 
Figure 1: FastQC Status Checks Summary from MultiQC Output: A visual representation of the quality 
assessment for each FastQC section of ten randomly selected pre-trim files, categorized by normal (green), 
slightly abnormal (orange), or highly unusual (red) results 

 



38 
 

 
Figure 2. FastQC Status Checks Summary from MultiQC Output: Output: A visual representation of the 
quality assessment for each FastQC section of ten randomly selected post-trim files, categorized by normal 
(green), slightly abnormal (orange), or highly unusual (red) results. 

 

 
 
Figure 3: FastQC Per-Sequence Quality Scores Summary from MultiQC Output: A visual representation of 
the quality assessment for each FastQC section of ten randomly selected post-trim files, categorized by 
normal (green), slightly abnormal (orange), or highly unusual (red) results, and all grouped in the normal 
high-quality group (green). 
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Table 1: Pairwise Genome Sequence Alignment for Pseudomonas spp. Using the JSpeciesWS Online Service 
The table presents the results obtained from the JSpeciesWS online service for pairwise genome sequence 
alignment of Pseudomonas spp. The following parameters are included: file size, GC percent, number of 
contigs, average nucleotide identity (ANI) calculated using BLAST, percentage of aligned nucleotides, and 
length of aligned nucleotides. 

Sample 
ID 

reads 
before 
trim 

 reads 
after 
trim 

#Contig
s 

L50 N50 Similiarity ref 
genome 

PS   66 3769850 2420381 97 8 343902 96% 
PS  105 5575250 3674425 91 9 265449 95.18% 
PS  131 6905305 3569806 74 7 350291 95.84% 
PS  239 5261338 3396056 79 8 268438 94.87% 
PS  292 5577039 3576690 52 7 385409 95.78% 
PS  325 6148210 3749963 52 5 450546 94.665 % 
PS  350 3949642 2707485 58 5 428305 96.818 % 
PS  581 4056012 2389816 74 8 304162 94.937 % 
PS  644 7310637 4323656 54 7 359245 95.761 % 
PS  857 6041739 3437264 73 7 362584 94.445 % 
PS  864 5034074 2879197 55 6 398526 95.94% 
PS  876 6185860 3655746 54 6 459032 95.94% 
PS  886 4414184 2670256 93 9 241464 95.26% 
PS  887 5433131 3410727 61 8 257358 95.408 % 
PS  900 4628265 3085236 93 9 265448 95.24 % 
PS  920 5258792 2889911 55 8 325211 95.761 % 
PS  947 4245870 2646366 94 13 92376 0.004 % 
PS  977 5057912 2993902 83 11 197613 94.801 % 
PS 1024 2804553 1795382 61 6 367803 95.991 % 
PS 1033 5116255 3038458 92 5 454882 94.83% 
PS 1120 5014457 3219869 83 7 281612 96.35 % 
PS 1194 1470504

4 
8373984 53 6 386484 95.45% 

PS 1198 1029869
7 

6781025 54 5 428305 96.83% 

PS 1217 5183389 2825174 15 3 720765 0.04% 
PS 1314 1109850

2 
6524474 127 6 371829 95.33% 

PS 1344 9793159 5414976 37 5 426252 93.56% 
PS 1358 9509651 6427801 84 9 226087 94.90% 
PS 1405 1115181

5 
6928504 83 7 391909 96.97% 

PS 1512 4243998 2437923 55 5 360567 96.817 
PS 1521 5354679 3300572 61 6 381604 96.31% 
PS 1528 8478123 4632436 64 6 440574 96.061 % 
PS 1538 7046813 4541664 59 6 349686 93.21% 
PS 1620 7016177 4463788 65 7 321590 93.20% 
PS 1654 5835176 3581731 109 9 286630 96.89% 
PS 1670 1021330

5 
6794473 73 7 363240 94.53% 

PS 1744 2228499
3 

4472437 102 10 223519 95.22% 

PS 1781 4859633 2951885 53 6 409753 94.81% 
PS 1782 6376214 4257861 57 6 430606 95.222 
PS 1901 4909458 3087021 52 7 426255 94.397 
PS 1912 7288910 4783023 83 7 314975 95.697 
PS 1934 7801422 4864239 60 6 409879 95.411 
PS 1943 6157516 3853402 64 7 349391 95.401 
PS 1972 2782855 1951941 57 6 374982 95.31 
PS 1984 7642434 5021138 48 6 425830 95.344 
PS 2017 7702238 4626670 84 8 278770 96.174 
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Table 2: Samples exhibiting variations in species detection in different pipelines 

Sample  JSpeciesWS 1928 

PS947 Acinetobacter pittii, 96.76% Acinetobacter pittii, 80.7 % 

PS1217 Pseudomonas stutzeri, 98.1% Pseudomonas stutzeri, 98.2 % 

PR549 Proteus genomosp. 4  Proteus vulgaris, 91.02%  

PR978 Proteus cloumbae, 99.79%  Proteus cloumbae, 50.6%  

PR1486 Proteus cloumbae, 93.5%  Proteus cloumbae, 93.5%  

PR1950 Proteus vulgaris, 91.02%  Proteus vulgaris, 94.9%  
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Appendix III: AMR result 
 

Table 1. The frequency of detected antibiotic resistance genes in all isolates (n = 82) by Rasfinder of CGE 
and 1928 Pseudomonas pipeline for P. aeruginosa, and other pipelines for P. mirabilis samples. 

Antibiotic_Class Prevalence Count Total_Sample Detected_Gene 

Tetracycline 79.07 34 43 tet(J) 

Chloramphenicol 32.56 14 43 cat_1 

Aminoglycosides 18.60 8 43 ant(3'')-Ia, 
aph(3'')-Ib, 
aph(3')-Ia, 

Beta-lactams  6.98 3 43 blaTEM-1B, 
blaCARB-2, 
blaCTX... 

Sulfonamide 4.65 2 43 sul1 

Trimethoprim 9.30 4 43 dfrA1 

Quinolone 0 0 43 None 

 
Table 2. The frequently detected antibiotic resistance genes with their description in all isolates (n = 82) 
from CGE and 1928 Pseudomonas pipeline for P. aeruginosa, and other pipelines for Proteus and CGE. 

Description  1928  
(Isolates genes)  

CGE  
(Isolates genes)  

Multi-drug efflux pumps   
Major facilitator superfamily  
  
  
  

  
 mexA 
 mexE 
 mexX   

  
None 
  
  

  
Aminoglycoside  
3'‐phosphotransferase (APHs)  
 
 
 

  
APH(3’)-la   
APH(3’’)-llb   
APH(6)-ld   
 
sat2 

  
APH(3’’)-llb 

Broad-spectrum beta lactams  
oxacillin-hydrolysing-Beta lactamase family  

  
OXA-905, 395, 50, 906,  
853, 494, 847 
BRO-1 
ACT-74 
 

  
BlaOXA-905, 906, 50, 494, 
395 
 

Chloramphenicol 
chloramphenicol acetyltransferase (CAT) 

catB7 catB7 
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FLUOROQUINOLONE  
DNA mutations  
  

  
gyrA (T83I) 
crpP 
parC (S87L) 
gyrA (D87N) 

  
gyrA(S83L)  parC(A56T) 
parE(I529L)  

Fosfomycin fosA fosA 

MLS 
erythromycin ribosome methylase (erm) 

ermC  

Sulfonamides  
Sulfonamides resistant sul  

  
Sul1   
Sul2   
Sul3   

  
Sul1   
Sul2   
Sul3  

Tetracycline  
Major facilitator super family  
  

  
Tet(A)   
Tet(B)   

  
Tet(A)   
Tet(B)  

Trimethoprim  
Trimethoprim  resistant 
 dihydrofolate reductase dfr 

  
dfrG   

  
dfrA1  dfrA5   

 

 
Table 3. Comparative Analysis of Phenotypic and Genotypic Antibiotic Susceptibility Testing in Proteus 
Species 

Antibiotic 
Class 

Phenotypic 
AST (n) 

Predicted 
genotypic 
AST from 
1928 (n) 

Predicted 
genotypic 
AST from 
CGE (n) 

Discordant 
across 
methods 
(n [%]) 

Very 
major 
errors (n 
[%]) 

Major 
error
s (n 
[%]) 

Aminoglycoside
s 

27 27 27 13 (48.1%) 10 (37%) 3 
(11.1) 

Beta-lactams 32 32 32 4 (12.5%) 2 (6.3%) 2 
(6.3%) 

Chloramphenic
ol 

29 29 29 14 (48.3%) 10 (34.5%) 4 
(13.8) 

Trimethoprim 32 32 32 10 (31.3%) 8 (25%) 2 
(6.3%) 

MLS 36 36 36 0 (0%) 0 (0%) 0 (0%) 

Quinolone 27 27 27 0 (0%) 0 (0%) 0 (0%) 

Sulfanamide 18 18 18 0 (0%) 0 (0%) 0 (0%) 

Tetracycline 36 36 36 36 (100%) 36 (100%) 0 (0%) 

This table presents a comparative analysis of phenotypic and genotypic antibiotic susceptibility testing 
(AST) in Proteus species across eight antibiotic classes. It outlines the number of phenotypic ASTs 
conducted, the corresponding genotypic ASTs predicted by the 1928 and CGE algorithms, and the extent of 
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discordance across these methods, expressed as a percentage. The table further highlights the number and 
percentage of Very Major Errors (VMEs) and Major Errors (MEs), providing an assessment of the accuracy 
of genotypic AST predictions in comparison to phenotypic tests. 

 
Table 4. Comparative Analysis of Phenotypic and Genotypic Antibiotic Susceptibility Testing in 
Pseudomonas Species 

Antibiotic Phenotypi
c AST (n) 

Predicted 
genotypic 
AST from 
1928 (n) 

Predicted 
genotypic 
AST from 
CGE (n) 

Discordan
t across 
methods 
(n [%]) 

Very 
major 
errors 
(n [%]) 

Major 
errors 
(n [%]) 

Aminoglycoside 38 38 38 38 (100%) 38 
(100%) 

0 (0%) 

Beta-lactam 38 38 38 38 (100%) 15 
(39.5%) 

23 
(60.5%) 

CEPHALOSPORIN 41 40 40 41 (100%) 11 
(26.8%) 

30 
(73.2%) 

FLUOROQUINOLON
E 

41 41 41 25 (61%) 19 
(46.3%) 

6 
(14.6%) 

This table offers a comparative analysis of phenotypic and genotypic antibiotic susceptibility testing (AST) 
in Pseudomonas species across four antibiotic classes. Similar to Table 1, it provides a detailed breakdown 
of the conducted phenotypic ASTs and the predicted genotypic ASTs from the 1928 and CGE algorithms. 
The level of discordance between these methods is indicated as a percentage. The occurrences and 
percentages of Very Major Errors (VMEs) and Major Errors (MEs) are also listed, shedding light on the 
challenges and limitations of genotypic AST predictions in reflecting true antibiotic resistance as 
determined by phenotypic tests. 
 

Table 5. A comparison between the predicted genotypic antibiotic resistance results from 1928 and CGE for 

the P. aeruginosa isolates (n = 43) 

Antibiotic Class  RR  SS  RS  SR  Discordant 
methods   

Aminoglycosides  41   1  0  1  1  

Broad Beta-lactams  42   1  0  0  0  

FOSFOMYCIN  42   1  0  0  0  

Chloramphenicol  42   1  0  0  0  

CEPHALOSPORIN  42  1  0  0  0  

FLUOROQUINOLONE  25  18  0  0  0  

MLS  0  43  0  0  0  

Table 5 presents an analysis of antibiotic resistance among bacterial isolates. The "Antibiotic Class" column 
represents the specific antibiotic class being evaluated. The "RR" and "SS" columns denote the count of 
isolates identified as resistant and susceptible, respectively, by both CGE and 1928. "RS" indicates the count 
of isolates deemed resistant by 1928 but susceptible by CGE, while "SR" represents those deemed 
susceptible by 1928 but resistant by CGE. Finally, the "Discordant Methods" column shows the total count 
of isolates where CGE and 1928' predictions disagreed. 
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Table 6. The counts of resistance genes detected by 1928 and CGE CGE for each antibiotic class from the 
clinical P. aeruginosa isolates (n = 43) 

Antibiotics class  CGE 1928  P-value*  

Aminoglycosides  43  46 -  

Broad Beta-lactams  43  45  -  

Chloramphenicol  32  45  - 

MLS  0  1  -  

Cephalosporin  42 0  - 

Fosfomycin  43  43  - 

Fluoroquinolone  25  32  -  

Trimethoprim  0  1  -  

 Total    228  213  0.76 

*The p-values are derived from paired t-tests; the choice of the test was based on the result of the normality 
test. The comparison was performed for all antibiotic classes. 
 
 
Table 7. A comparison between the predicted genotypic antibiotic resistance results from 
1928 and ResFinder for the P. mirabilis isolates (n = 39) 

Antibiotic Class  RR  SS  RS  SR  Discordant 
across 
methods   

Aminoglycosides  0   24  12  3  15  

Broad Beta-lactams  0   26 3  10  13  

Trimethoprim  0   28  6  5  11  

Chloramphenicol  39   0  0  0  0  

Sulfonamide  3  36  0  0  0  

Quinolone  4  35  0  0  0  

MLS  0  34  0  5 5 

Tetracycline 29 0 10 0 10 

Table 7 presents an analysis of antibiotic resistance among bacterial isolates. The "Antibiotic Class" column 
represents the specific antibiotic class being evaluated. The "RR" and "SS" columns denote the count of 
isolates identified as resistant and susceptible, respectively, by both CGE and 1928. "RS" indicates the count 
of isolates deemed resistant by 1928 but susceptible by CGE, while "SR" represents those deemed 
susceptible by 1928 but resistant by CGE. Finally, the "Discordant Methods" column shows the total count 
of isolates where CGE and 1928' predictions disagreed. 

 
Table 8. The counts of resistance genes detected by 1928 and CGE for each antibiotic class 
from the clinical P. mirabilis isolates (n = 39) 

Antibiotics class  CGE 1928  P-value*  

Aminoglycosides  10  13 -  

Broad Beta-lactams  6  3  -  

Chloramphenicol  32  35  - 

MLS  NA  1  -  

Quinolones  1  1  - 

Sulfonamides  3  3  - 

Tetracyclines  36  38  -  

Trimethoprim  7  10  -  

Total    95  104  0.2308 

*The p-values are derived from paired t-tests; the choice of the test was based on the result of 
the normality test. The comparison was performed for all antibiotic classes. 
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Appendix IV: MLST and serotype  
Table 1. Comparative Analysis of Pseudomonas Strains Based on MLST, Serotype, Plasmids, Virulence Factor 
(VF) Genes, and Resistance Genes 

SampleID 
PS… 

Specimen_typ
e 

MLS
T 

Serotyp
e 

No. Plasmids No. 
VF 
gene 

No. of 
resistan
ce gene 

22_PS102
4 

Urine culture 
routine 

968 O1 NA 227 6 

22_PS103
3 

Wound culture 17 O1 NA 225 6 

22_PS105 Upper 
respiratory 
culture 

111 O4 NA 230 6 

22_PS112
0 

Urine culture 
routine 

245 O5 NA 231 6 

22_PS119
4 

Wound culture 
extended 

1068 O3 NA 223 5 

22_PS119
8 

Wound culture 3285 O5 NA 238 5 

22_PS131 Urine culture 
routine 

1244 O9 NA 225 6 

22_PS131
4 

Urine culture 
routine 

3449 O6 NA 28 5 

22_PS134
4 

Urine culture 
routine 

671 O9 NA 214 5 

22_PS135
8 

Blood culture 
aerob 

270 O7 NA 231 5 

22_PS140
5 

Blood culture 
aerob 

3285 O2 NA 231 5 

22_PS151
2 

Urine culture 
routine 

3285 O5 NA 238 5 

22_PS152
1 

Wound culture 0 O7 NA 230 6 

22_PS152
8 

Urine culture 
routine 

0 O9 NA 228 6 

22_PS153
8 

Upper 
respiratory 
culture 

1207 O6 NA 226 6 

22_PS162
0 

Wound culture 1207 O6 NA 226 5 

22_PS165
4 

Blood culture 
aerob 

270 O2 NA 230 6 

22_PS167
0 

Upper 
respiratory 
culture 

560 O7 NA 230 6 

22_PS174
4 

Urine culture 
routine 

111 O4 NA 230 6 

22_PS178
1 

Blood culture 
aerob 

17 O1 NA 225 5 

22_PS178
2 

Urine culture 
routine 

27 O1 1 228 5 

22_PS190
1 

Blood culture 
aerob 

1062 O6 NA 226 6 

22_PS191
2 

Wound culture 27 O1 1 229 6 

22_PS193
4 

Wound culture 274 O3 NA 223 6 
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22_PS194
3 

Urine culture 
routine 

274 O3 NA 223 6 

22_PS197
2 

Urine culture 
routine 

1090 O6 NA 225 6 

22_PS198
4 

Blood culture 
aerob 

1090 O6 NA 226 5 

22_PS201
7 

Urine culture 
routine 

1197  1 224 8 

22_PS239 Urine culture 
extended 

532 O11 NA 216 5 

22_PS292 Urine culture 
routine 

564 O9 NA 229 6 

22_PS325 Urine culture 
extended 

17 O1 NA 223 5 

22_PS350 Wound culture 3285 O5 NA 238 5 
22_PS581 Urine culture 

routine 
1480 O1 NA 224 5 

22_PS644 Urine culture 
routine 

564 O9 NA 229 6 

22_PS66 Wound culture 395 O6 4 229 6 
22_PS857 Upper 

respiratory 
culture 

244 O5 NA 235 5 

22_PS864 Blood culture 
aerob 

1485 O6 NA 226 5 

22_PS876 Wound culture 1485 O6 NA 226 6 
22_PS886 Urine culture 

routine 
111 O4 NA 230 6 

22_PS887 Urine culture 
routine 

562 O3 NA 223 6 

22_PS900 Upper 
respiratory 
culture 

111 O4 NA 230 5 

22_PS920 Urine culture 
routine 

564 O9 NA 229 6 

22_PS977 Urine culture 
routine 

377 O7 NA 222  
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Table 2. Analysis of Plasmid Types and Their Occurrences in Proteus Samples, Including Sample 
Types and Roles 

Plasmid Type No. of 
Occurrences 

Sample 
Types 

Role 

Col3M_1 5 Wound 
culture, Urine 
culture 
routine, Blood 
culture 
anaerob 

This plasmid is part of the ColE1-like plasmid 
family, often involved in resistance to 
antibiotics like tetracyclines, aminoglycosides, 
and beta-lactams. 

ColE10_1 2 Urine culture 
routine 

ColE10_1 is a plasmid from the ColE1-like 
plasmid family. It's frequently associated with 
the production of Colicin E10, a bactericidal 
protein, and antibiotic resistance. 

IncN_1 1 Wound 
culture 

IncN plasmids, including IncN_1, are known to 
carry multiple antibiotic resistance genes and 
are responsible for the spread of resistance to 
several classes of antibiotics. They are often 
associated with resistance to aminoglycosides, 
beta-lactams, and quinolones. 

No identifiable 
plasmid 

35(Proteus), 
38(Pseudomonas) 

Various 
specimens 

The absence of identifiable plasmids in these 
samples suggests that they may either carry 
non-typical or novel plasmids not included in 
the database, or that the bacteria may not be 
relying on plasmid-mediated resistance 
mechanisms. 
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Figure 1: The Heatmap of serotypes in different samples of P. aeruginosa. 
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Appendix V: Phylogenic analysis 
 

 
 

Figure 1. SNP-based phylogeny tree from the CGE CSIPhylogeny analysis. 
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Figure 2: SNP Analysis on the 1928 Resulted in a Clustering Tree. The tree, generated using the reference 
genome Proteus mirabilis HI1230, effectively grouped isolates collected from the same patient at different 
sample locations into a single cluster 
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Figure 3: SNP Analysis on the 1928 Resulted in a Clustering Tree. The tree, generated using the reference 
genome P. aeruginosa PA01, effectively grouped isolates collected from the same patient at different sample 
locations into a single cluster 
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Figure 4: Comparison of cgMLST Loci Counts in Pseudomonas Genomes. This figure presents a line graph 
comparing the number of loci identified in 43 Pseudomonas genome samples using three different core 
genome multilocus sequence typing (cgMLST) thresholds: cgMLST 95 (95% sequence identity), cgMLST 99 
(99% sequence identity), and cgMLST 100 (100% sequence identity). Each threshold is represented by a 
different colored line, with the height at each point indicating the number of loci identified in a sample's 
genome. The dark-colored points on each line represent loci present in the genome. This comparative 
visualization highlights the genetic diversity and complexity within these Proteus genomes as revealed by 
cgMLST at varying sequence identity thresholds.  
 
 

Figure 5: Comparison of cgMLST Loci Counts in Proteus Genomes. This figure presents a line graph 
comparing the number of loci identified in 39 Proteus genome samples using three different core genome 
multilocus sequence typing (cgMLST) thresholds: cgMLST 95 (95% sequence identity), cgMLST 99 (99% 
sequence identity), and cgMLST 100 (100% sequence identity). Each threshold is represented by a different 
colored line, with the height at each point indicating the number of loci identified in a sample's genome. The 
dark-colored points on each line represent loci present in the genome. This comparative visualization 
highlights the genetic diversity and complexity within these Proteus genomes as revealed by cgMLST at 
varying sequence identity thresholds. 


