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Abstract: Rationale: We recently demonstrated that patients with coronary artery disease (CAD)
and obstructive sleep apnea (OSA) carrying the tumor necrosis factor-alpha (TNF-α) A allele had
increased circulating TNF-α levels compared with the ones carrying the TNF-α G allele. In the cur-
rent study, we addressed the effect of TNF-α (-308G/A) gene polymorphism on circulating TNF-α
levels following continuous positive airway pressure (CPAP) therapy. Methods: This study was
a secondary analysis of the RICCADSA trial (NCT00519597) conducted in Sweden. CAD patients
with OSA (apnea–hypopnea index) of ≥15 events/h and an Epworth Sleepiness Scale (ESS) score of
<10 were randomized to CPAP or no-CPAP groups, and OSA patients with an ESS score of ≥10 were
offered CPAP treatment. Blood samples were obtained at baseline and 12-month follow-up visits.
TNF-α was measured by immunoassay (Luminex, R&D Systems). Genotyping of TNF-α-308G/A
(single nucleotide polymorphism Rs1800629) was performed by polymerase chain reaction–restriction
fragment length polymorphism. Results: In all, 239 participants (206 men and 33 women; mean
age 64.9 (SD 7.7) years) with polymorphism data and circulating levels of TNF-α at baseline and
1-year follow-up visits were included. The median circulating TNF-α values fell in both groups
between baseline and 12 months with no significant within- or between-group differences. In a
multivariate linear regression model, a significant change in circulating TNF-α levels from baseline
across the genotypes from GA to GA and GA to AA (standardized β-coefficient −0.129, 95% con-
fidence interval (CI) −1.82; −0.12; p = 0.025) was observed in the entire cohort. The association
was more pronounced among the individuals who were using the device for at least 4 h/night
(n = 86; standardized β-coefficient −2.979 (95% CI −6.11; −1.21); p = 0.004)), whereas no significant
association was found among the patients who were non-adherent or randomized to no-CPAP. The
participants carrying the TNF-α A allele were less responsive to CPAP treatment regarding the decline
in circulating TNF-α despite CPAP adherence (standardized β-coefficient −0.212, (95% CI −5.66;
−1.01); p = 0.005). Conclusions: Our results suggest that TNF-α (-308G/A) gene polymorphism is
associated with changes in circulating TNF-α levels in response to CPAP treatment in adults with
CAD and OSA.
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1. Introduction

Coronary artery disease (CAD) is associated with high mortality [1]. The traditionally
recognized risk factors for CAD are age, male sex, hypertension, diabetes, and hyperlipi-
demia. It has also been proposed that the interaction between genetic and environmental
factors influences the development of CAD [1–3].

Obstructive sleep apnea (OSA) is characterized by intermittent upper airway collapse
during sleep, causing sleep fragmentation and intermittent hypoxia [4]. Almost 50% of
CAD patients have OSA, and many of them do not report excessive daytime sleepiness
(ESS), which is one of the cardinal symptoms of OSA [5]. Individuals with OSA have been
reported to have an increased risk of incident CAD compared with adults without OSA [6].

Vascular inflammation plays a key role in the development of atherosclerotic plaques
and CAD [7]. It has also been suggested that circulating levels of inflammatory markers
can predict future cardiovascular events [8,9]. Elevated levels of high-sensitivity C-reactive
protein (hs-CRP), interleukin (IL)-6, and tumor necrosis factor (TNF)-α have been reported
in adults with OSA [10,11]. Treatment of OSA with continuous positive airway pressure
(CPAP) has been suggested to normalize the levels of circulating inflammatory markers,
supporting the link between systemic inflammation and OSA [12]. It has also been proposed
that inflammation can be a predisposing factor for OSA [13–15], not just a consequence
of OSA.

TNF-α is a pro-inflammatory cytokine that is important for the immune system and
plays a notable role in the development of autoimmune and infectious diseases as well as
atherosclerosis and CAD [16]. TNF-α also plays a crucial role in sleep regulation [17]. Many
OSA patients have elevated levels of circulating TNF-α [18]. Existing data also suggest that
genetic and environmental factors are involved in the development of OSA [19], and TNF-α
has received special attention in this context [17,20]. There is an SNP (Rs1800629) in the
promoter region of the TNF-α (position 308G/A); allele A at this position (TNF-α-308A)
is suggested to be associated with a higher occurrence of OSA [21] as well as with the
severity of this disorder [18,22–25]. There are also reports concerning the association of
TNF-α-308G/A (rs1800629) polymorphism with the risk of many diseases, such as allograft
rejection [26], asthma [27], chronic obstructive pulmonary disease [28], ischemic stroke [29],
rheumatoid arthritis [30], and systemic lupus erythematosus [31]. An association between
the TNF-α-308A allele and obesity has also been reported [17,21], whereas conflicting
results have been reported regarding the relationship between TNF-α-308G/A polymor-
phism and CAD. One study suggested that TNF-α-308G/A polymorphism is associated
with ST-elevation myocardial infarction and high plasma levels of biochemical ischemia
markers [32], and a meta-analysis demonstrated a significant association between TNF-
α-308G/A and the risk of acute myocardial infarction [33]. On the other hand, a recent
meta-analysis showed no significant association [34].

We recently demonstrated that patients with CAD and OSA carrying the TNF-α A
allele had increased circulating TNF-α levels compared with the ones carrying the TNF-α G
allele [35] in the “Randomized Intervention with CPAP in CAD and OSA” (RICCADSA)
cohort [36]. In the current study, we addressed the role of TNF-α (-308G/A) gene polymor-
phism on circulating TNF-α levels in response to 12 months of CPAP therapy.

2. Materials and Methods
2.1. Study Participants

The methodology of the main RICCADSA trial was described elsewhere [36]. In total,
511 CAD patients who underwent percutaneous coronary intervention (PCI) or coronary
artery bypass grafting (CABG) in Skaraborg County of West Götaland, Sweden, were
included in the RICCADSA trial between 2005 and 2010 (Figure 1). The participants with
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OSA, defined as an apnea–hypopnea index (AHI) of ≥15/h, on the home sleep apnea test
(HSAT) at screening and an Epworth Sleepiness Scale (ESS) score of <10 were randomized
to CPAP or no-CPAP groups. Patients with ESS scores of ≥10 were categorized as having
excessive daytime sleepiness (EDS) and were offered CPAP treatment. The CAD patients
with AHI < 5/h were categorized as no-OSA in the main protocol. For the genetic analysis,
blood samples were collected at the final visit in 2012/2013 from 384 eligible participants,
and 239 patients with OSA were included as the final study population for the current
TNF-α-308G/A polymorphism study to evaluate the changes in circulating TNF-α levels
from baseline to 12 months after CPAP treatment (Figure 1).
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Figure 1. Analytic sample of the study population. Abbreviations: AHI, apneahypopnea index;
CPAP, continuous positive airway pressure; ESS, Epworth Sleepiness Scale; OSA, obstructive sleep
apnea; RICCADSA, Randomized Intervention with CPAP in Coronary Artery Disease and Sleep
Apnea; TNF, tumor necrosis factor.

2.2. Study Oversight

The study protocol was approved by the Ethics Committee of the Medical Faculty
of the University of Gothenburg (approval nr 207-05, 09.13.2005; amendment T744-10,
11.26.2010; amendment T512-11, 06.16.2011; additional approval for the molecular analysis,
approval nr 814-17, 11.21.2017). Written informed consent was obtained from all partici-
pants. The main RICCADSA trial was registered with ClinicalTrials.gov (NCT 00519597).

2.3. Sleep Studies

The Embletta® Portable Digital System device (Embla, Broomfield, CO, USA) was
used for the HSATs [36]. Apnea was defined as at least a 90% cessation of airflow, and
hypopnea was defined as at least a 50% reduction in nasal pressure amplitude and/or
thoracoabdominal movement for at least 10 s, following the Chicago criteria [37]. The
total number of significant drops in SpO2 exceeding 4% from the immediately preceding
baseline was also recorded, and the oxygen desaturation index (ODI) was determined as
the number of significant desaturations per hour.

2.4. Epworth Sleepiness Scale

The ESS [38] was assessed to measure subjective daytime sleepiness. The ESS has
eight items asking about the risk of dozing off under 8 different situations, and a score of
at least 10 out of 24 was defined as EDS.



J. Clin. Med. 2023, 12, 5325 4 of 12

2.5. Comorbidities

Demographics, smoking habits, and medical history of the study cohort were obtained
from the medical records. Individuals with a body mass index (BMI) of ≥30 kg/m2 were
defined as obese, and abdominal obesity was defined as a waist-to-hip ratio (WHR) of
≥0.9 for men and a WHR of ≥0.8 for women [39].

2.6. TNF-α Circulating Concentration

All blood samples were collected in the morning (07:00–08.00 am) after overnight
fasting using EDTA (ethylenediaminetetraacetic acid) tubes, as previously described [40].
The tubes underwent centrifugation, and the resulting plasma/serum samples were di-
vided into aliquots and subsequently stored at −70 ◦C until analysis. Circulating TNF-α
levels were measured in the plasma samples (undiluted) using commercially available
MILLIPLEX MAP (based on Luminex technology) human adipokine assay kits according
to the manufacturer’s instructions (Merck Millipore, Burlington, MA, USA). The assay
sensitivities (minimum detectable levels) for TNF-α were 0.14 pg/mL, and all samples
exhibited levels within the standard curve, covering a spectrum of 0 to 10,000 pg/mL.
The intra-assay variability ranged from 1.4% to 7.9%, while the inter-assay variability was
below 21% for the assessment of TNF-α concentrations. These values were calculated from
the mean of the percentage coefficient of variability from multiple reportable results across
two different concentrations of the samples in one experiment or from two results each for
two different concentrations of samples across several different experiments.

2.7. TNF-α Promotor -308G/A (Rs1800629) SNA Genotyping

As previously described in detail [35], genomic DNA was isolated from whole blood
samples collected in EDTA-coated tubes using the PAXgene Blood DNA Kit (PreAnalytiX;
Qiagen). The quality and concentration of DNA samples were determined using a nanodrop
photometer (NanoDrop 2000; Thermo Scientific, Waltham, MA, USA), and DNA samples
were stored at −80 degrees. TNF-α promoter −308A/G (Rs1800629) genotyping analysis
was performed by polymerase chain reaction–restriction fragment length polymorphism
(PCR–RFLP), as previously described [35].

2.8. Statistical Analysis

For descriptive statistics, variables were reported as medians with interquartile ranges
(IQR) for continuous variables and as percentages for categorical variables. The Shapiro–
Wilk test was used to test the normality assumption of the current data for all variables.
Between-group differences stratified by CPAP allocation and CPAP usage in baseline
characteristics, as well as changes from baseline in circulating TNF-α levels, were tested by
the Mann–Whitney test for continuous variables and the Chi-square test for categorical data.
Within-group differences in changes from baseline in circulating TNF-α levels were tested
by the Wilcoxon signed-rank test. A univariate linear regression analysis was performed
to test the association between the change from baseline to the 12-month follow-up in
circulating TNF-α levels and age, sex, ESS, BMI, WHR, AHI, ODI, OSA, and comorbidities,
as well as TNF-α genotypes (coded as GG = 0, GA = 1, and AA = 2) and TNF-α alleles
(coded as G = 0, and A = 1), respectively. Multivariate models included the same significant
covariates as the univariate analysis as well as the variables of age, BMI, and sex in order to
align with the recent guidelines [41]. All statistical tests were two-sided, odds ratios (ORs)
with 95% confidence interval (CI) were reported, and a p-value of <0.05 was considered
significant. Statistical analyses were performed using SPSS® 28.0 for Windows® (SPSS Inc.,
Chicago, IL, USA).

3. Results

The study population consisted of 239 participants (mean age 64.9 ± 7.7 years; male,
86%). As presented in Table 1, patients allocated to the no-CPAP group were slightly older
and less sleepy, and the proportion of individuals with diabetes at baseline was lower than
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that among the patients allocated to CPAP treatment. The circulating levels of TNF-α at
baseline did not differ significantly between the groups.

Table 1. Baseline demographic and clinical characteristics of the OSA patients allocated to CPAP vs.
no-CPAP groups.

OSA on CPAP
n = 169

OSA no-CPAP
n = 70 p-Value

Age, yrs 64.1 (59.8–69.3) 67.4 (62.7–72.4) 0.019
Male sex, % 86.4 85.7 0.890
BMI, kg/m2 28.3 (25.9–31.1) (28.7 (26.2–30.0) 0.548
Obesity, % 32.0 24.3 0.238

WHR 0.96 (0.93–1.00) 0.96 (0.91–0.99) 0.153
Abdominal obesity, % 93.2 95.7 0.470
Current smoking, % 16.0 15.7 0.960

ESS score 10.0 (6.0–12.0) 6.0 (4.0–7.0) <0.001
EDS (ESS score ≥ 10), % 56.8 0.0 <0.001

AHI, events/h 27.7 (18.7–39.2) 22.9 (17.8–35.7) 0.128
ODI, events/h 15.7 (9.4–24.8) 12.6 (7.2–22.9) 0.101
Hypertension 60.9 54.3 0.341

AMI at baseline 54.4 44.3 0.153
Lung disease, % 5.3 4.3 0.738

Diabetes, % 26.0 12.9 0.026
Stroke, % 4.8 10.1 0.121

Plasma TNF-α (pg/mL) 4.87 (3.43–6.99) 5.15 (3.92–6.54) 0.856
Continuous data are presented as median and 25–75% quartiles. Categorical data are presented as percentages.
Abbreviations: AHI = Apnea–Hypopnea Index; BMI = Body Mass Index; EDS = Excessive Daytime Sleepiness (ESS
score ≥ 10); ESS = Epworth Sleepiness Scale; TNF-α = tumor necrosis factor-alpha; ODI = Oxygen Desaturation
Index; OSA = Obstructive Sleep Apnea; WHR = Waist–Hip Ratio.

As illustrated in Figure 2A, TNF-α-GG was the most prevalent genotype in both
groups, whereas TNF-α-AA in the CPAP group and TNF-α-GA in the no-CPAP group were
the least frequent ones, respectively.

The median circulating levels of TNF-α decreased from 4.87 (3.43–6.99) pg/mL to
4.62 (3.59–6.59) pg/mL in patients allocated to the CPAP group (p = 0.549) and from
5.15 (3.92–6.54) pg/mL to 4.50 (3.64–7.11) pg/mL in patients allocated to the no-CPAP
group (p = 0.665), with no significant between-group differences in the magnitude of
change from baseline.

When analyzing the study population after stratifying by CPAP usage, the baseline
characteristics did not differ significantly, except for ESS scores and the proportion of
individuals with baseline EDS, which were higher among patients who used the device for
at least 4 h/night during the first 12 months (Table 2).

As illustrated in Figure 3A, TNF-α-GG was the most prevalent genotype and TNF-α-
AA the least frequent one in both CPAP usage groups.

As illustrated in Figure 4, the median circulating levels of TNF-α decreased from
4.84 (3.48–7.53) pg/mL to 4.72 (3.63–7.20) pg/mL in patients who used the device for at
least 4 h/night (p = 0.577) and from 5.24 (3.59–6.85) pg/mL to 4.51 (3.50–6.75) pg/mL in
patients allocated to the no-CPAP group or who used the device for less than 4 h/night
(p = 0.199), with no significant between-group differences in the magnitude of change
from baseline.

In a multivariate linear regression model, a significant decline in the change from
baseline in circulating TNF-α levels across the genotypes from GG to GA and GA to
AA was observed in the entire cohort (Table 3). The association was more pronounced
among individuals who were using the device for at least 4 h/night, whereas no significant
association was found among the patients who were non-adherent or randomized to the
no-CPAP group. ESS scores at baseline tended to be inversely correlated with the change in
circulating TNF-α levels from baseline to 12 months in the entire cohort (Table 3).
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Figure 2. (A) Genotype frequency of TNF-α-308G/A promoter polymorphism and (B) allele frequency
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Table 2. Baseline demographic and clinical characteristics of the OSA patients stratified by CPAP usage.

CPAP ≥ 4 h/Night
(Adherent)

n = 86

CPAP < 4 h/Night or
no CPAP
n = 153

p-Value

Age, yrs 64.4 (60.1–70.6) 65.2 (59.9–70.6) 0.602
Male sex, % 84.9 86.9 0.660
BMI, kg/m2 28.2 (25.7–31.1) 28.7 (26.2–30.2) 0.875
Obesity, % 32.6 28.1 0.470

WHR 0.96 (0.92–1.02) 0.97 (0.93–1.01) 0.609
Abdominal obesity, % 92.8 94.6 0.586
Current smoking, % 12.8 17.6 0.324

ESS score 10.0 (6.0–11.0) 7.0 (4.0–10.0) 0.007
EDS (ESS score ≥ 10), % 53.5 32.7 0.002

AHI, events/h 28.2 (18.3–40.1) 25.3 (18.6–36.2) 0.293
ODI, events/h 17.2 (10.1–25.7) 14.2 (7.9–23.1) 0.052
Hypertension 60.5 58.2 0.729

AMI at baseline 54.7 49.7 0.460
Lung disease, % 5.3 4.3 0.738

Diabetes, % 27.9 19.0 0.110
Stroke, % 5.8 4.6 0.674

Plasma TNF-α (pg/mL) 4.87 (3.48–7.53) 5.24 (3.59–6.85) 0.631
Continuous data are presented as median and 25–75% quartiles. Categorical data are presented as percentages.
Abbreviations: AHI = Apnea–Hypopnea Index; BMI = Body Mass Index; EDS= Excessive Daytime Sleepiness (ESS
score ≥ 10); ESS = Epworth Sleepiness Scale; TNF-α = tumor necrosis factor-alpha; ODI = Oxygen Desaturation
Index; OSA = Obstructive Sleep Apnea; WHR = Waist–Hip Ratio.
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As shown in Table 4, the participants carrying the TNF-α A allele were less responsive
to CPAP treatment regarding the decline in circulating TNF-α levels despite CPAP adher-
ence. Baseline AHI was also inversely correlated with a decline in the change from baseline
in circulating TNF-α levels among patients who were adherent to CPAP. No significant
changes were observed among patients who were randomized to the no-CPAP group or
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those who were using the device for less than 4 h/night, except for baseline AHI, which
was associated with the change in circulating TNF-α levels (Table 4).

Table 3. Regression analyses of the association of the TNF-α genotypes with change in circulating
TNF-α levels from baseline, adjusted for the confounding variables in CAD patients with OSA (entire
cohort and subgroups based on the CPAP use).

Standardized 95% Confidence Interval for p-ValuesCoefficients β Lower Bound Upper Bound

Entire Cohort

Genotypes * −0.129 −1.82 −0.12 0.025
Age 0.018 −0.05 0.07 0.762

Male sex −0.035 −1.91 1.00 0.540
BMI −0.005 −0.15 0.14 0.942
AHI −0.035 −0.04 0.02 0.573
ESS −0.115 −0.28 0.00 0.056

Diabetes 0.017 −1.13 1.53 0.768

CPAP use
≥4 h/night

Genotypes * −2.979 −6.11 −1.21 0.004
Age −0.057 −0.25 0.15 0.607

Male sex 0.128 −1.61 6.21 0.246
BMI 0.029 −0.29 0.38 0.803
AHI −0.183 −0.16 0.01 0.096
ESS −0.078 −0.46 0.22 0.481

Diabetes 0.006 −3.03 3.21 0.955

CPAP use
<4 h/night or

no-CPAP

Genotypes * −0.019 −0.93 0.73 0.816
Age 0.026 −0.58 0.79 0.765

Male sex −0.079 −2.36 0.84 0.349
BMI −0.078 −0.23 0.09 0.368
AHI 0.124 −0.01 0.07 0.149
ESS −0.055 −0.19 0.10 0.507

Diabetes −0.055 −1.82 0.91 0.509
Abbreviations: AHI = Apnea–Hypopnea Index; BMI = Body Mass Index; CAD = Coronary Artery Disease;
CPAP = Continuous Positive Airway Pressure; ESS = Epworth Sleepiness Scale; OSA = Obstructive Sleep Apnea.
* GG = 0, GA = 1, AA = 2.

Table 4. Regression analyses of the association of the TNF-α A allele with change in circulating TNF-α
levels from baseline, adjusted for the confounding variables in CAD patients with concomitant OSA.

Standardized 95% Confidence Interval for p-Values
Coefficients β Lower Bound Upper Bound

Entire Cohort

TNF-α A Allele −0.098 −2.08 −0.08 0.034
Age 0.020 −0.04 0.07 0.676

Male sex 0.027 −0.88 1.60 0.568
BMI −0.009 −0.13 0.11 0.858
AHI −0.060 −0.05 0.10 0.202

CPAP h/night 0.011 −0.14 0.18 0.827
ESS −0.061 −0.19 0.41 0.208

Diabetes −0.017 −1.24 0.85 0.714

CPAP use
≥4 h/night

TNF-α A Allele −0.212 −5.66 −1.01 0.005
Age −0.038 −0.18 0.11 0.627

Male sex 0.102 −0.90 4.58 0.187
BMI 0.018 −0.21 0.26 0.823
AHI −0.189 −0.14 −0.02 0.015
ESS −0.061 −0.34 0.15 0.434

Diabetes 0.012 −2.03 2.38 0.876

CPAP use
<4 h/night or

no-CPAP

TNF-α A Allele −0.014 −0.96 0.75 0.805
Age 0.025 −0.04 0.06 0.670

Male sex −0.079 −1.87 0.35 0.180
BMI −0.078 −0.18 0.04 0.197
AHI 0.123 −0.01 0.06 0.039
ESS −0.055 −0.15 0.05 0.347

Diabetes −0.055 −1.40 0.49 0.346
Abbreviations: AHI = Apnea–Hypopnea Index; BMI = Body Mass Index; CAD = Coronary Artery Disease;
CPAP = Continuous Positive Airway Pressure; ESS = Epworth Sleepiness Scale; OSA = Obstructive Sleep Apnea.
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4. Discussion

In the current revascularized CAD cohort with OSA, TNF-α-308G/A gene polymor-
phism was significantly correlated with the change in circulating TNF-α levels from baseline
in response to 12 months of CPAP treatment, independent of age, sex, BMI, baseline AHI,
ESS, and diabetes. The participants carrying the TNF-α A allele were less responsive to
CPAP treatment in terms of the decline in circulating TNF-α levels despite adequate CPAP
adherence levels.

To the best of our knowledge, this is the first study to address the association of
TNF-α-308G/A polymorphism with change in circulating TNF-α levels in response to the
alleviation of OSA with CPAP treatment in a Swedish cardiac population. Previous studies
have suggested an association between the TNF-α -308A allele and OSA susceptibility in a
British population [24] as well as in an obese Asian Indian population [22], whereas neutral
results were reported in a Polish cohort [21] and a Turkish cohort [42]. Notwithstanding,
two meta-analyses have supported the significant association between TNF-α -308G/A
polymorphism and OSA [43,44].

In our entire cohort including adults without OSA as a control group, we found no
significant difference between CAD patients with vs. without OSA in the frequency of
TNF-α-308G/A polymorphism or TNF-α -308 alleles [35]. We found a similar -308A allele
frequency in the no-OSA group, and, as interpreted in the previous report, this might be
due to the confounding effect of other comorbidities, such as obesity, hypertension, and
diabetes mellitus, given that individuals without OSA were not healthy controls [27]. More-
over, CAD per se is an inflammatory condition mediated by the activity of pro-inflammatory
cytokines, including TNF-α [45]. The effect of TNF-α gene polymorphism on CAD patho-
genesis has also been investigated previously, and TNF-α-308G/A polymorphism has
been suggested to be involved in CAD development [45,46], whereas others reported no
evidence for such an association [47]. Additionally, a recent meta-analysis suggested no
significant relationship between TNF-α-308G/A polymorphism and the development of
CAD [34].

Circulating levels of inflammatory markers predict future cardiovascular events in the
general population [8] as well as in cardiac populations [9], and TNF-α levels are elevated
in individuals with OSA compared with controls [25,48]. It has also been argued that
inflammation can be a predisposing factor for OSA [13–15]; thus, this association could be
bidirectional. In our first study on the effect of CPAP on inflammatory markers, including
hs-CRP, IL-6, IL-8, and TNF-α, in the RICCADSA cohort, only IL-6 levels decreased after
one year, both in the CPAP and no-CPAP arms [49]. This was probably indicative of a
natural improvement in cardiac disease rather than the effect of CPAP treatment per se.
We also demonstrated that patients with CAD and OSA carrying the TNF-α A allele had
increased circulating TNF-α levels compared with the ones carrying the TNF-α G allele [35].
The TNF-α-308A allele is known to promote a two-fold increase in TNF transcription ac-
tivity [50]. TNF-α is a mediator of the sleep regulatory system, and the fragmented sleep
pattern associated with OSA is believed to increase circulatory levels of TNF-α [17]. Our
current results clearly support a recent review of OSA heterogeneity regarding cardiovas-
cular morbidities [1], suggesting that the response to CPAP treatment is modulated by
genetic mechanisms, namely, in the current report, by TNF-α (-308G/A) gene polymor-
phism regarding the change in circulating levels of TNF-α from baseline. In other words,
individuals with CAD and OSA carrying the TNF-α A allele seem to have an increased risk
of elevated levels of circulating TNF-α, and the increased inflammatory activity is less likely
to normalize despite CPAP use for at least 4 h/night. Whether or not those individuals
should use the device even longer in order to reduce the levels of circulating TNF-α levels
warrants further research. The clinical implications of our findings may also include that
TNF-α-308G/A genotyping together with the analysis of TNF-α levels can be used for the
prognostic evaluation of patients with CAD and concomitant OSA. For instance, patients
carrying the A allele and higher levels of TNF-α could be included in a tighter follow-up
scheme compared with those carrying the G allele.
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We should acknowledge certain limitations. As also stated in the previous report [35],
the power estimate for the entire RICCADSA cohort was conducted for the primary out-
come and not for the secondary outcomes assessed in this study. Moreover, our results are
limited to a Swedish CAD cohort and thus are not generalizable to adults with OSA in
the general population or sleep clinic cohorts in other regions. Additionally, the follow-up
period was relatively short in the context of the association of changes in circulating TNF-α
levels at 12 months with long-term adverse outcomes. Finally, our results are limited to
TNF-α (-308G/A) (rs1800629) polymorphism and not the TNF-α (-308G/A) (rs3611525)
polymorphism. However, TNF-α-308G/A (rs1800629) and TNF-α-238G/A (rs361525) are
located very close to each other and are hence tightly linked. In fact, in our sequencing
results, we noticed that polymorphism in one 100% mirrored the other, and for the sake
of simplicity, we chose to focus on and present only one of these SNPs. Accordingly,
we propose that the TNF-α-308G/A (rs1800629) polymorphism analysis results can be
extrapolated to TNF-α-238G/A (rs361525) SNP due to their tight linkage.

5. Conclusions

We conclude that TNF-α-308G/A gene polymorphism was significantly correlated
with the change in the circulating TNF-α levels from baseline in response to 12 months
of CPAP treatment in this revascularized Swedish CAD cohort, independent of age, sex,
BMI, baseline AHI, ESS, and diabetes. The participants carrying the TNF-α A allele were
less responsive to CPAP treatment in terms of the decline in circulating TNF-α levels
despite adequate CPAP adherence levels. Further prospective studies in larger cohorts
and different geographical locations are warranted in order to better clarify whether the
combined gentrifying and protein level analysis can be used as a prognostic biomarker for
improved clinical follow-up of patients with CAD and concomitant OSA.
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