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ABSTRACT 

In today’s global and aggressive market system, for manufacturing companies to re-
main competitive, they must manufacture high-quality products that can be produced 
at a low cost; they also must respond efficiently to customers’ predictable and unpre-
dictable needs and demand variations. Increasingly shortened product lifecycles, as 
well as product customization degrees, lead to swift changes in the market that need 
to be supported by capable and flexible resources able to produce faster and deliver to 
the market in shorter periods while maintaining a high degree of cost-efficiency. To 
cope with all these challenges, the setup of production systems needs to shift toward 
Reconfigurable Manufacturing Systems (RMSs), making production capable of rapidly 
and economically changing its functionality and capacity to face uncertainties, such as 
unforeseen market variations and product changes. Despite the advantages of RMSs, 
designing and managing these systems to achieve a high-efficiency level is a complex 
and challenging task that requires optimization techniques.  

Simulation-based optimization (SBO) methods have been proven to improve complex 
manufacturing systems that are affected by predictable and unpredictable events. 
However, the use of SBO methods to tackle challenging RMS design and management 
processes is underdeveloped and rarely involves Multi-Objective Optimization 
(MOO). Only a few attempts have applied Simulation-Based Multi-Objective Optimi-
zation (SMO) to simultaneously deal with multiple conflictive objectives. 

Furthermore, due to the intrinsic complexity of RMSs, manufacturing organizations 
that embrace this type of system struggle with areas such as system configuration, 
number of resources, and task assignment. Therefore, this dissertation contributes to 
such areas by employing SMO to investigate the design and management of RMSs. 
The benefits for decision-makers have been demonstrated when SMO is employed to-
ward RMS-related challenges. These benefits have been enhanced by combining SMO 
with knowledge discovery and Knowledge-Driven Optimization (KDO). This combina-
tion has contributed to current research practices proving to be an effective and sup-
portive decision support tool for manufacturing organizations when dealing with RMS 
challenges. 
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SAMMANFATTNING 

I dagens globala och högst föränderliga marknad för att vara konkurrenskraftig måste 
tillverkandebolag producera högkvalitativa produkter som produceras till låga kostna-
der och möter kunders behov samt är anpassningsbara till marknadens variationer i 
efterfrågan. De allt kortare produktlivscyklerna och graden av produktanpassning le-
der till snabba förändringar på marknaden som behöver stödjas av mer kapabla och 
flexibla produktionsresurser som ökar produktionstakten och leverera till marknaden 
på kortare tid med bibehållen hög kostnadseffektivitet. För att hantera en sådan ut-
maning måste produktionssystemens uppbyggnad skifta mot omkonfigurerbara till-
verkningssystem (RMS), vilket möjliggör för produktionen att på ett snabbt och kost-
nadseffektivt sätt ändra sin funktion och kapacitet för att möta oförutsedda marknads-
variationer och produktförändringar. Trots de fördelar som RMS för med sig så är de-
sign och nyttjande av dessa system för med en hög effektivitetsgrad en komplex och 
utmanande uppgift som kräver användning av optimeringstekniker.  Metoder för si-
muleringsbaserad optimering (SBO) har visat sig förbättra komplexa tillverkningssy-
stem som utsätts för planerade och oplanerade händelser. Användningen av SBO-me-
toder för att ta itu med utmaningen rörande design och effektiv nyttjande av RMS är 
dock underutvecklad och där nyttjande av flermålsoptimering (MOO) är begränsad. 
Det har endast skett ett fåtal försök att tillämpa simulering baserad flermålsoptime-
ring (SMO) för att hantera flera konflikterande mål.  På grund av den komplexet i RMS 
kämpar tillverkningsorganisationer som om-famnar den här typen av system med om-
råden som systemkonfiguration, antal resurser och uppgiftstilldelning. Följaktligen 
bidrar denna avhandling till de nämnda områdena genom att använda SMO för att 
undersöka designen och hanteringen av RMS. Fördelarna för beslutsfattare har visat 
sig när SMO används mot RMS-utmaningarna. Dessa fördelar har förbättrats genom 
att kombinera SMO med kunskapsupptäckt och kunskapsdrivet optimering (KDO). 
Denna kombination har bidragit till nuvarande forskningspraktiker och visat sig vara 
ett effektivt och stödjande beslutsstödsverktyg för tillverkningsorganisationer när de 
hanterar RMS-utmaningar. På grund av RMS inneboende komplexitet, de tillverkan-
deorganisationer som arbetar med denna typ av system möter oftast utmaningar rö-
rande systemkonfiguration, antal resurser och uppgiftsfördelning. Följaktligen bidrar 
denna avhandling till de nämnda områdena genom att använda SMO för att undersöka 
design och effektive nyttande av RMS system. Fördelarna med att nyttja SMO för RMS 
utmaning har demonstrerats för beslutsfattare. Fördelarna har en mer utvecklats ge-
nom att kombinera SMO med kunskaps extrahering och KDO. Kombinationen av 
dessa tekniker har bidragit till den forskning som presenteras här som visat sig vara 
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ett effektivt och stödjande beslutsstödsverktyg för tillverkningsorganisationer när de 
hanterar RMS-utmaningar. 
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INTRODUCTION 

1.1  DISSERTATION ORGANIZATION 

Chapter 1 introduces the background and motivation of the dissertation. The back-
ground describes the evolution of manufacturing paradigms, and the motivation states 
the industrial needs of this research. 

Chapter 2: (Frame of Reference) presents and explains the main areas of this disser-
tation: RMSs together with their attributes and principles, the design process and the 
challenges involved, Discrete-Event Simulation (DES), SBO, SMO, including genetic 
algorithms and the Nondominated Sorting Genetic Algorithm II (NSGA-II), 
knowledge discovery, and KDO.  

Chapter 3: (Research Design) presents the aims, objectives, and research questions, 
proposed approach, philosophical paradigm and research methodology, and the ethi-
cal issues of this dissertation.  

Chapter 4 summarizes the current results of this dissertation and explains how the 
included publications relate to its objectives.  

Chapter 5 summarizes this dissertation’s conclusions and major contributions and 
suggests future work. 

The References section includes all references used in this dissertation.  

1.2  BACKGROUND 

The manufacturing industry began around 1850 and has been evolving ever since. 
With the creation of the first assembly line by Henry Ford in 1913, the manufacturing 
industry adopted a mass-production philosophy. At that point, machines and produc-
tion lines were focused on producing a specific product at high volumes, introducing 
the concept of Dedicated Manufacturing Systems (DMSs) (Koren, 2010). Later, the 
manufacturing paradigm transitioned to the mass customization philosophy, increas-
ing product variability. This transition was facilitated and supported by the formula-
tion of the lean principles and the creation of Computer Numerical Control (CNC) ma-
chines, enabling manufacturing companies to produce several types of products in so-
called Flexible Manufacturing Systems (FMSs) (Koren, 2010; Koren, Gu and Guo, 
2018b).  
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Afterward, the manufacturing paradigm began to evolve into the mass customization 
philosophy, increasing the types of product variability. From the mid-90s onwards, 
globalization began to play an important role. Increased global competition combined 
with new aspects, such as regionalization (where different markets require product 
variations) and personalized production (where clients want different types of prod-
ucts that fit their needs) began to cause market variations and demand fluctuations. 
Therefore, since then, developing a new type of manufacturing system that can deal 
cost-effectively with these changes has been a priority for manufacturing companies 
(Koren et al., 1999; Koren, 2010). Consequently, the Reconfigurable Manufacturing 
System (RMS) concept was introduced to rapidly and economically cope with uncer-
tainties such as unforeseen market and product changes (Bi et al., 2008; Koren, 2010; 
Koren, Gu and Guo, 2018b). See Figure 1. 

 

Figure 1: Evolution of manufacturing paradigms. (Koren, 2010). 

Advances in the manufacturing industry play an essential role in the economic devel-
opment of a society. The manufacturing industry promotes the economy and is crucial 
to the European Union’s trade and competitiveness (Veugelers, 2017). Consequently, 
many initiatives for the expansion and innovation of the manufacturing sector have 
been adopted in the USA and in several European countries, such as Germany and 
Sweden, to enhance and strengthen welfare and economic growth. In their pursuit to 
remain competitive, manufacturing companies face numerous challenges: aggressive 
global competition, an increasing number of market segments, emerging regional/lo-
cal requirements, new materials and technologies, changing regulations, fluctuating 
customer demands, and ever-increasing demands of new product features. In partic-
ular, some of the main challenges the manufacturing industry faces are product qual-
ity, cost, responsiveness, and sustainability (Bi et al., 2008; Battaïa et al., 2020; Koren, 
2010; Veugelers, 2017; Koren, Gu and Guo, 2018b, 2018a). These are pillars to be pur-
sued to support the manufacturing industry. Companies must manufacture high-qual-
ity products that can be produced at a low cost. They also must respond efficiently to 
the unpredictable needs of customers and demand variations, which can lead to 
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market and product changes. Therefore, as the manufacturing industry progresses, 
swift changes in the market need to be supported by more capable and flexible re-
sources that can produce faster and deliver to the market in shorter periods without 
affecting the product quality (Koren, 2010; Koren and Shpitalni, 2010). 

As mentioned above, responsiveness has become an essential consideration for man-
ufacturing systems, especially when designing a new one (e.g., during a greenfield pro-
ject). One of the most important system design characteristics to consider is how fast 
and cost-effective a system can adjust its capacity and functionality according to de-
mand and product changes (Koren, 2013; Koren, Wang and Gu, 2017). As a result of 
this need, several researchers have focused on the reconfigurability of manufacturing 
systems. In the context of this dissertation, reconfigurability can be defined as the en-
gineering capability of a manufacturing system to contemplate the need for future, 
rapid, and cost-effective reconfigurations. 

Regardless of the benefits of RMSs in adjusting their capacity and functionalities to 
accommodate demand and product changes when compared to traditional manufac-
turing systems, the management and design of these systems need to consider com-
plicated and combinatorial NP-hard problems that can be aided by the use of simula-
tion and optimization techniques (Michalos, Makris and Mourtzis, 2012; Renzi et al., 
2014; Delorme, Malyutin and Dolgui, 2016; Bortolini, Galizia and Mora, 2018). How-
ever, despite the successful applications shown by both techniques, studies have iden-
tified shortcomings when used separately. Simulation-Based Optimization (SBO) 
emerged to overcome these shortcomings and provide the advantage of combining the 
benefits of simulation and optimization. Although SBO has been employed to improve 
RMSs, its use when conflictive optimization objectives are pursued to deal with RMS 
challenges is sporadic. Consequently, researchers acknowledge opportunities to use 
SBO to solve RMS problems (Bensmaine, Dahane, and Benyoucef, 2013; Bortolini, 
Galizia and Mora, 2018).  

Despite the acknowledged opportunities in employing SBO to address the RMS chal-
lenges, this process can be enhanced by Knowledge discovery, a recent research area 
wherein data-mining techniques are used on datasets to expose underlying knowledge 
regarding what constitutes good solutions according to the resulting Pareto-optimal 
front. Despite RMSs constituting critical enablers in the future of the manufacturing 
industry, knowledge capturing and decision-making is a complicated process due to 
RMSs’ need to accomplish frequent reconfigurations combined with their stochastic 
nature and intrinsic complexity. Accordingly, the SMO of RMSs generates complex 
datasets requiring the evaluation of several scenarios involving many decision varia-
bles; applying knowledge discovery methods to RMSs becomes crucial to support de-
cision-makers (Koren, Gu and Guo, 2018b; ElMaraghy et al., 2021). Additionally, 
Knowledge-Dirven Optimization (KDO) is the idea of utilizing knowledge discovery 
methods to illustrate decision-makers’ preferences and to use this knowledge to drive 
future optimization scenarios to faster convergence and optimal solutions (Bandaru, 
Ng and Deb, 2017a). Considering that these types of systems undergo several changes 
during their lifecycles, requiring new time-consuming and computationally expensive 
optimization scenarios, knowledge discovery and KDO indicate a crucial research gap 
to support decision-makers (Koren, Gu and Guo, 2018b; ElMaraghy et al., 2021). 

1.3  MOTIVATION 

Globalization has led to an interconnected world. Rapid information and financial 
flows have allowed products manufactured in one part of the world to be seamlessly 
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available to customers worldwide as local products. Nonetheless, this effect of global-
ization has also contributed to a more volatile and occasional unknown landscape for 
the manufacturing industry. Nowadays, manufacturing companies face fierce global 
competition, an increased shortened product lifecycle, and increased product person-
alization and customization while being pressured to maintain high efficiency (Koren, 
2010).  

Historically, product development had a stable lifecycle characterized by a smooth 
ramp-up with steady volume growth, which was generally followed by a maturate 
phase with steady demands and later a smooth ramp-down. In the current global and 
volatile market, product lifecycles have not only become shorter and shorter but also 
show some peculiarities (see Figure 2). Product volumes grow more rapidly to a first 
peak, followed by a demand decrease after a period of time, which is mitigated by pro-
motions campaigns, minor updates, or product facelifts, driving demand to a second 
peak before a rapid demand decrease as a result of the introduction of a new product. 
These lifecycle behaviors primarily result from customers’ needs for customization 
and personalization, driving the manufacturing industry into a new paradigm shift 
from mass customization to mass personalization (Koren, Gu and Guo, 2018b). As a 
result of ever-shorter product lifecycles and the degree of customization, companies 
are required to manufacture an increasing number of product variants and models 
(Wiendahl et al., 2007). It has been estimated that product lifecycles have decreased 
by 25%, making product variety double in the last two decades (Roland Berger Focus, 
2019). 

 

Figure 2: Shortened lifecycles. Inspired by (Wiendahl et al., 2007). 

Considering the above-explained trend, manufacturing companies in the future will 
likely be required to introduce new products and variants into the existing production 
setups, leading to more frequent volume variation scenarios when transitioning from 
an outgoing product to a new one. Figure 2 represents the intersections of the product 
lifecycles of A1, A2, and A3, in which overlapping ramp-up and ramp-down periods exist 
between the products. Some industries are facing an even more interesting scenario in 
which a manufacturing company is required to introduce products A2 and A3 over the 
same period while still ramping down A1. To cope with such a high degree of new prod-
uct variants and variable volumes, production system setups need to shift toward 
RMSs, which can provide a higher degree of reconfigurability, making production sys-
tems capable of changing their capabilities, including capacity and function, according 
to product and customer demand (Grznár et al., 2020). 
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RMSs support the manufacturing industry in a quick and cost-efficient manner, with 
the ability to adapt to uncertainties (e.g., market and product changes) in which effi-
ciency with the high production rate of DMSs is combined with the flexibility of FMSs 
to cope with new market variations in terms of product and volume (Koren, 2010). 
However, the question of how to optimally configure and reconfigure a system through 
new scenarios and transition phases (i.e., ramp-up and ramp-down, from one product 
family to the next) is still a challenge where production managers and decision-makers 
need high decision support (Papakostas et al., 2012; ElMaraghy et al., 2021). Conse-
quently, this dissertation aims to support the manufacturing industry facing the 
above-explained problem by investigating the use of SMO and knowledge discovery 
toward the optimization of RMSs. This optimization will simultaneously address sev-
eral challenging areas, such as system configuration, system components, and process 
planning.  

Figure 3 outlines the planned research topics and their interactions. The research top-
ics are intended to support the use of SMO in RMSs. The topics are simulation model-
ing, SMO formulation, algorithm customization, knowledge discovery, and KDO. First, 
this dissertation will focus on how RMSs can be modeled in a simulation environment. 
Subsequently, depending on the simulation modeling, this dissertation investigates 
different RMS problem formulations to implement them in an SMO approach. Then, 
based on a previous SMO approach, the development of an RMS-specific and custom-
ized algorithm will be evaluated. The last topic will investigate how RMSs can benefit 
from applying knowledge discovery to historical SMO datasets and their subsequent 
KDO. KDO will be used to assess the SMO approach formulation and a customized 
algorithm SMO approach perspective. 

 

Figure 3: Research topics and their interactions. 
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FRAME OF REFERENCE 

This section introduces the state of the art of the main areas upon which this disserta-
tion touches. These areas include RMSs (i.e., their principles, attributes, challenges), 
SBO, knowledge discovery, and KDO. How different disciplines or techniques can sup-
port research gaps and future research on RMSs is proposed. 

2.1  RECONFIGURABLE MANUFACTURING SYSTEMS 

A manufacturing system can be defined as a set of machines or stations interconnected 
to execute a sequence of operations and tasks on processed or unprocessed material 
to obtain or assemble a product (Koren, 2010; Koren, Gu and Guo, 2018b). In today’s 
industry, there are different types of manufacturing systems; however, they are mainly 
dominated by traditional dedicated and flexible systems, which cannot meet demand 
fluctuations quickly enough at a reasonable investment cost. Because traditional sys-
tems are designed for specific products and capacity limits, they often fail when the 
demand increases above the system's designed capacity, a common situation when a 
product exceeds the initial expectations. On the other hand, because flexible systems 
are often compounded by general and expensive machines that were not designed 
around a specific product or part family, their functionality is often underutilized, con-
stituting an investment waste. (Koren, 2006). 

A traditional DMS is designed to manufacture specific products at high volumes. This 
type of system is often a set of serial machines or stations where raw material moves 

from one machine/station to the next. These systems are exceptionally cost-effective 

and are mainly utilized for mass production. A DMS has a rigid structure and is formed 

by several fixed machines that work simultaneously to maintain high throughput while 

the demand is steady. However, this type of system is not designed for handling ca-

pacity increases or product variations. Thus, demand or product changes create un-

wanted situations.  

Another type of manufacturing system is an FMS, which can produce several products 

in the same system but requires more expensive machines and equipment than a tra-

ditional DMS. Accordingly, a DMS can produce a much higher throughput than an 

FMS if the same investment cost is considered. The main advantages of an FMS are its 

flexibility and its ability to accommodate different product variants in the same 
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system. However, its main drawbacks are a low production rate and high investment 

costs compared to DMSs. 

Consequently, to cope with the evolution of the manufacturing paradigms explained 
in the Introduction section of this dissertation, the RMS concept appeared to accom-
plish demand fluctuations and scalable capacities more efficiently (Koren and 
Shpitalni, 2010). 

RMSs possess the best features of DMSs and FMSs. RMSs introduced the concept of a 
system with the ability to add, remove, or modify the locations of resources, such as 
machines and material-handling units, within a manufacturing system (ElMaraghy, 
2005; da Cunha et al., 2021). Typically, an RMS is composed of multiple stages, with 
each stage housing several parallel machines that are identical to one another (Koren, 
Gu and Guo, 2018b). One distinguishing feature of RMSs is the presence of cross-over 
connections between stages within the production process. These cross-over connec-
tions enable products to be transferred from one machine to any subsequent machine 
within the system. An important characteristic of an RMS is that each stage in the pro-
duction process may not necessarily have an equal number of machines (Haddou 
Benderbal, Dahane and Benyoucef, 2017). This variability in machine distribution 
within stages allows for a greater number of possible RMS configurations compared 
to serial production lines, where machines are arranged in a linear sequence with the 
same number of machines per stage. In summary, an RMS is typically structured with 
multiple stages, each containing parallel and identical machines. Cross-over connec-
tions facilitate the movement of products between machines. Unlike serial production 
lines, an RMS offers flexibility in terms of the number of machines within each stage, 
leading to a larger number of possible system configurations. Therefore, RMS is a cost-
effective and responsive manufacturing system that can adjust its production capacity 
to fluctuations in market demand and adapt its functionality to new products (Koren, 
2010).  

RMSs can be explained as the capability of a production system to change and reallo-
cate its components effectively and efficiently to fulfill several new predictable or un-
predictable restrictions/conditions of a system as many times as required. The reali-
zation of such an RMS requires the specific and focused development of manufactur-
ing processes, equipment, material-handling solutions, and logistics (Goyal, Jain and 
Jain, 2012). Furthermore, as mentioned in the Introduction, many authors have sup-
ported the idea that to enable a global enterprise to cope with changing markets and 
customer needs, the enterprise should be equipped with RMSs that can be rapidly 
changed and reconfigured to respond to volatile demand (Koren and Shpitalni, 2010; 
Rösiö and Säfsten, 2013). 

One of the major advantages of an RMS over a DMS and an FMS is that its capabilities 
can be efficiently and cost-effectively reconfigured. Considering the same investment 
cost, an RMS would have a lower production rate than a DMS but higher than an FMS. 
RMS is usually designed for the production of several generations or part families of a 
product, so it is more flexible and changeable than a DMS (Koren and Shpitalni, 2010). 
A general comparison between a DMS, RMS, and an FMS is outlined in Table 1, in-
spired by Koren (2010). Note that the important human aspect is no considered in this 
table.  
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Table 1: Comparison of manufacturing systems.  

 

One aspect of Table 1 that needs to be explained is production scalability. Figure 4 
below shows the relationship between scalability and system costs for DMSs, FMSs, 
and RMSs. Production scalability is the capacity or throughput increment performed 
in a system to meet demand changes (Koren, 2010). Focusing on DMSs, Figure 4 
shows that, to increase capacity, a system cost must be doubled, and the minimum 
increment of capacity is the previous maximum capacity. The reason for this is that to 
increase the capacity of a DMS, a new manufacturing system needs to be implemented; 
therefore, it cannot be considered scalable (Koren, 2010).  

On the contrary, an RMS and an FMS can increment their capacity to meet certain 
variations. According to Koren (2010), a pure parallel FMS can achieve constant ca-
pacity increments (see Figure 4) by adding machines in parallel. However, most of the 
investment costs of FMSs are initially considered. Such a high initial investment cost 
is a disadvantage compared to RMSs, which can use stepwise investments (Lee and 
Stecke, 1996). Furthermore, the maximum production rate/capacity achieved in an 
FMS is limited and lower than in an RMS (Lee and Stecke, 1996; Koren, 2010). Hence, 
this is a major advantage for ramping up new product generations or scaling up a sys-
tem’s capacity when new products need to be introduced or capacity increments are 
required. Consequently, RMS can perform several reconfigurations to achieve capacity 
increments at a lower cost than other types of manufacturing systems (ElMaraghy, 
2005; Koren and Shpitalni, 2010; Koren, Wang and Gu, 2017). 

 

Figure 4: System cost versus capacity (Koren and Shpitalni, 2010). 

Figure 4 presents the relationship between capacity and system costs. Nonetheless, 
another important relationship to note is between capacity and functionality of the 
sysem (see Figure 5, inspired by Koren and Shpitalni, 2010). Contrary to the 
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traditional way of designing a manufacturing system for a specific product or products, 
RMSs are designed to incorporate a variety of products or generations throughout 
their lifecycles. Thus, a production system has considered reconfigurations from the 
design stage according to several products or capacity increments (Koren and 
Shpitalni, 2010; Rösiö, 2012).  

 

Figure 5: Capacity versus functionality. 

2.1.1  RECONFIGURABLE ASSEMBLY SYSTEMS 
Typically, complex products are fabricated into parts or components that need to be 
assembled to form the final product. Reconfigurable assembly systems are an essential 
type of RMS. Reconfigurable assembly systems can adapt their capacity and function-
ality to changing market demands (Koren and Shpitalni, 2010). Therefore, they must 
be designed to accommodate an entire product family and change from assembling 
one product family to another, and must also be able to scale up/down their capacity 
to meet demand requirements (Koren and Shpitalni, 2010).  

Koren and Shpitalni described three different types of assembly systems: The first type 
is manual assembly systems in which operators are in charge of carrying out a task; 
the second type is a combination of operators and robots or automated machinery; 
and the third type is automated assembly systems usually found in mass production 
or unsafe work environments. Manual assembly systems are the most reconfigurable 
because operators can perform different tasks to meet new requirements. This assem-
bly system is the most commonly used to assemble complex products in the automo-
tive and furniture industries. Reducing or incrementing the number of operators and 
the number of tasks they perform in a system can be easily scaled up or down (Koren 
and Shpitalni, 2010). However, in systems with high product variety or that require 
drastic increases/decreases in capacity, an assembly process becomes very complex, 
making possible human errors that may impact the system’s performance (Hu et al., 
2008). 

System configuration is a critical feature that impacts the reconfigurability aspect. 
Many layout configurations must be considered when designing a reconfigurable as-
sembly system. Configurations can have a different number of stations or can place 
stations differently in a layout. Consequently, assigning assembly tasks to stations is a 
crucial design issue that needs to be addressed (Koren and Shpitalni, 2010). 
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2.1.2  ATTRIBUTES AND PRINCIPLES OF RMS 
An RMS possesses six main attributes, as defined by Koren, Gu and Guo (2018b). 
These attributes are scalability, convertibility, diagnosability, customization, modular-
ity, and integrability. 

Scalability is the capability to change production capacity or volume during a man-
ufacturing system’s lifecycle. This is accomplished through reconfigurations by add-
ing, reallocating, or removing system components. This attribute impacts a system’s 
flexibility and capacity to deal with demand fluctuations (Koren et al., 1999; Deif and 
ElMaraghy, 2007; Rösiö, 2012). 

Convertibility is the capability to modify the functionality of a manufacturing system 
to accommodate new production and product conditions. This feature can affect the 
whole system or part of it (e.g., workstations, machines, layouts, etc.) to change its 
functionality to fulfill requirements (Rösiö, 2012; Koren, Gu and Guo, 2018b). Manu-
facturing systems convertibility evaluation method was developed by Maler-
Speredelozzi, Koren and Hu (2003), who stated that system convertibility can be 
ranked depending on a selected configuration and convertibility of machines used in 
the system. Therefore, this quantitative convertibility assessment indicates which al-
ternatives are more responsive among several configuration designs when a new re-
configuration is required. 

An example of this feature can be seen in Figure 6, where two ways of arranging four 
machines are exposed: a serial configuration in (1) and a typical RMS configuration in 
(2). If a new product needs to be introduced in configuration (1), the entire production 
process must be stopped to make or arrange the required changes. In contrast, in con-
figuration (2), where there are two stages consisting of two parallel machines, only half 
of the system needs to be stopped to achieve a reconfiguration. The consideration of 
this attribute could considerably impact the ramp-up time of new products (Maler-
Speredelozzi, Koren and Hu, 2003). 

 

Figure 6: System convertibility. 

Diagnosability is a system’s ability to automatically and real-time detect the cause 
and effect of quality-related problems. Considering that an RMS can often be recon-
figured, this becomes an essential feature for quickly detecting quality problems that 
might occur when setting up a new configuration (Koren et al., 1999; Rösiö, 2012; 
Koren, Gu and Guo, 2018b). 

Customization is the system’s flexibility around a part family, and this attribute 
states the required customized flexibility degree within a part family. Considering that 
an RMS needs to be designed around a part family at the outset, deciding on the nec-
essary degree of customization is a critical system design decision. (Koren, Gu and 
Guo, 2018b) 
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Modularity is the capability of manipulating a system’s components as individual 
units or modules that can be arranged in different ways depending on production re-
quirements. This attribute enables and facilitates fast reconfigurations (Koren et al., 
1999). Essentially, the principle of modularity stands on the plug-and-play automation 
systems achieved through modular machines/tools interfaces (Mehrabi et al., 2002; 
Lesi, Jakovljevic and Pajic, 2016). 

Integrability is an attribute related to modularity. For the modules or units of a pro-
duction system to use plug-and-play technology, interfaces (hardware and software) 
need to be designed. Then, a modular production or manufacturing system requires a 
high degree of integrability in favor of easier and faster module integration. This im-
plies that the components of a system are designed with interfaces ready to be used for 
integration with each other and the introduction of future technologies (Koren et al., 
1999; Mehrabi, Ulsoy and Koren, 2000; Koren and Shpitalni, 2010). 

Several researchers have a different view of the attributes to enable reconfigurability, 
and, some do not include customization and include automatability, and mobility in-
stead (Rösiö, 2012).  

Automatability is the capability of a system to change the degree of automation. An 
example is changing from a manual station to a robotic one that can handle larger 
volumes (ElMaraghy and Wiendahl, 2009).  

Mobility, which is understood differently depending on the researcher (ElMaraghy, 
2005). Mobility is understood as the capability of the components and equipment of a 
manufacturing system to be moved and reallocated. This can be accomplished by in-
corporating a movable base into the equipment or a lifting system that allows the 
equipment to be easily lifted, moved, and reallocated (Stillström and Jackson, 2007; 
ElMaraghy and Wiendahl, 2009). Mobility is also explained as a system’s capability to 
switch production to another product, which can also be achieved by moving and re-
allocating the system’s equipment and components (Nyhuis, Kolakowski and Heger, 
2006; Stillström and Jackson, 2007; Oke, Abou-El-Hossein and Theron, 2011). 

Some researchers divide the previous RMS attributes into different categories accord-
ing to their nature and importance for conditioning other attributes. Hence, some of 
these attributes are more critical than others. According to Maler-Speredelozzi, Koren 
and Hu (2003), Wiendahl et al. (2007), and Koren and Shpitalni (2010), the critical 
reconfiguration attributes are scalability and convertibility, while the supporting re-
configuration attributes are integrability, diagnosability, and modularity. Researchers 
have stated that scalability is the most important characteristic of an RMS; conse-
quently, it must be considered during the design stage (Koren, Wang and Gu, 2017). 

The previously introduced attributes serve as the basis for the following RMS princi-
ples (Koren, Gu and Guo, 2018b): 

1. Scalability: Manufacturing systems must be designed for possible cost-effective ca-
pacity increments.  

2. Convertibility: Manufacturing systems must be designed for possible modifications 
according to the introduction of new products. 

3. Diagnosability: Manufacturing systems must be designed with the ability to detect 
product quality issues optimally. 

4. Customization: Manufacturing systems must be designed considering the next 
product generations and product families. 

5. Improvements in manufacturing system productivity must focus on task allocation 
and operational configuration.  
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6. The maintenance of manufacturing systems must focus on system productivity and 
reliability. 

These RMS principles are intended to enable cost-effective manufacturing system de-
sign and improve responsiveness, productivity, and reliability (Spicer et al., 2002; 
Koren, Gu and Guo, 2018b). 

2.2  DESIGN PROCESS AND CHALLENGES 

Due to the acknowledged lack of design methodologies, the RMSs design process is a 
crucial challenge in today’s reconfigurability research community (Rösiö and Säfsten, 
2013; Andersen et al., 2018). This is an underdeveloped aspect affected by the com-
plexity of determining the optimal manufacturing system design. There is scant re-
search on design methods and frameworks (Andersen et al., 2018). Nonetheless, de-
termining the optimal manufacturing system design is an essential task that differs 
from designing a conventional manufacturing system. Therefore, an RMS design 
method that covers different design challenges is still needed in the manufacturing 
industry (Andersen et al., 2017; Koren, Gu and Guo, 2018b). RMS attributes and prin-
ciples need to be considered at the outset of the RMS design stage but also during the 
lifecycle of the system (Farid and Suh, 2016; Andersen et al., 2018). 

As stated in Koren, Gu and Guo (2018), the design of an RMS has to address three 
main areas: system configuration, system components, and process planning. 

System configuration refers to how machines and components are arranged in a 
system (Koren, Gu and Guo, 2018b). System configuration is closely related to several 
performance indicators and attributes. How the machines and elements of a system 
are arranged impacts the system’s functionality, productivity, and scalability (Koren, 
Hu and Weber, 1998). The system configuration should consider investment costs, 
productivity, product quality, and responsiveness. However, this is a complex activity 
compared to conventional manufacturing systems, which are typically arranged in ei-
ther a pure serial or a pure parallel configuration. Also, an RMS makes it possible to 
consider many configurations, exponentially increasing the complexity of this task 
(Maler-Speredelozzi, Koren and Hu, 2003; Koren, 2013). For example, a manufactur-
ing system consisting of nine machines can be configured in up to 256 different ways. 
This number of configurations exponentially increases as more machines are added to 
the system. Nevertheless, one of the main challenges in the design of an RMS is finding 
an optimal configuration to meet possible changing requirements. This challenge ap-
plies not only to machines but also to all system components, including material han-
dling and logistics. This challenge is closely related to the convertibility principle, in 
which an RMS needs to be convertible to allow several changes to incorporate estab-
lished products or introduce new product generations. 

The components of a system refer to the type and number of machines and com-
ponents, including material handling and quality inspection equipment, which have 
to be planned according to the desired production capacity (Koren, Gu and Guo, 
2018b). This is a crucial consideration for capacity planning and, therefore, for the 
scalability principle. The number and type of machines and equipment must be syn-
chronized with production capacity. Capacity planning refers to the number of prod-
ucts that a system can produce. Designing the capacity of an RMS is a challenge, con-
sidering future unpredictable market fluctuations. This is a critical challenge because 
it needs to consider incremental capacity steps to match future demand forecasts. If 
the capacity planned does not reach market demand, a company will sacrifice sales 
and, therefore, it profits. If the planned capacity is larger than the market demand, 
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part of the system will be idle, indicating an overinvesting issue. Consequently, it is 
critical to focus on this while designing for capacity planning, which must consider 
future market demands to adapt its capacity cost-effectively (ElMaraghy, 2005; Koren, 
Gu and Guo, 2018b). 

Process planning refers to how operations and tasks are allocated to machines and 
balanced throughout a manufacturing system’s stages. When designing an RMS, sev-
eral product families and generations need to be considered. Additionally, every time 
a system needs to introduce a new product or scale up production, a new process plan 
is required, including how tasks and operations are distributed and rebalanced in the 
system. This activity will directly impact the reconfiguration effort and the system’s 
efficiency in changing its capacity (Azab et al., 2007; ElMaraghy, 2007). This is a cru-
cial activity related to Principle 5, which focuses on improving system productivity by 
reconfiguring operations and redistributing tasks among machines. The more equally 
distributed the tasks among machines or stages of the system, the more balanced it 
will be; consequently, better performance can be achieved in terms of productivity.  
This activity is known as line balancing and is one of the most crucial issues to solve 
when operating a manufacturing system, as well as a widely studied problem in the 
literature. Regarding RMSs, several researchers have approached the line-balancing 
problem and have proposed different methods to deal with it. One of the most common 
ways to address the line-balancing problem is through optimization methods (Koren, 
Gu and Guo, 2018b). In some studies (see, e.g., Borisovsky, Delorme and Dolgui, 2013; 
Makssoud, Battaïa and Dolgui, 2013; Koren, Wang and Gu, 2017), genetic algorithms 
(GAs) have been used to find the best load balance according to one objective under 
different scenarios, maximize system productivity, minimize setup times, minimize 
reconfiguration cost, etc.   

2.2.1  COMPLEXITY 
The combinations of the challenges mentioned above can be treated as optimization 
problems. Optimization problems can vary in complexity. The ability of an optimiza-
tion algorithm to find an optimal or near-optimal solution depends on the complexity 
of a problem, among other factors. Also, complexity will impact the time required for 
an algorithm to arrive at a solution. Therefore, optimization problems can be classified 
as P, NP, and NP-hard problems. P-problems refer to the polynomial type of problem 
that can be used to find the maximum or minimum of a polynomial function. These 
types of problems are solved relatively quickly in polynomial time. In contrast, NP-
problems refer to the nonpolynomial type of problem, and the time to arrive at a solu-
tion is considered longer than P problems. When the time to verify a solution to an 
NP-problem is also long, the problems are known as NP-hard problems. One of the 
most known and researched types of NP-hard problems is the traveling salesman 
problem, which consists of finding the shortest route among all the cities a salesman 
needs to visit (Garey and Johnson, 1979; Shi and Ólafsson, 2007).   

Many of the challenges found in RMSs are complex combinatorial problems related to 
resource allocation and layout. Thus, due to the number of parameters and combina-
tions that need to be considered in RMSs, many of these problems have been classified 
as NP-hard problems that involve numerous constraints to be considered and satisfied 
(Youssef and ElMaraghy, 2006; Renzi et al., 2014). 

2.3  DISCRETE-EVENT SIMULATION  

For decades, production systems have successfully been modeled using different sim-
ulation disciplines or techniques, such as DES, continuous/process simulation, etc. 
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(Mourtzis, Doukas and Bernidaki, 2014). Simulation techniques have been success-
fully established and used as powerful tools for the design and analysis of manufactur-
ing systems (Osak-Sidoruk, Gola and Świć, 2014; Pehrsson et al., 2015; Arkadiusz and 
Antoni, 2016; Barrera-Diaz et al., 2018). Manufacturing systems’ complex and dy-
namic scenarios need to be analyzed, assessed, and modeled using simulation technol-
ogy. When a simulation model is built, engineers and decision-makers can better un-
derstand real-life systems (Mourtzis, 2020). This is achieved by replicating and testing 
different scenarios or experiments to see how a system behaves. This improved under-
standing helps to analyze and manage a wide variety of possible parameter configura-
tions that can occur in a model (Holst, 2004; Tako and Robinson, 2018). 

Due to advances in simulation technologies, simulation techniques have become one 
of the most extensively applied and established tools in manufacturing systems re-
search and analysis. These advances are derived from increased computing power at a 
reduced cost per computing operation (Banks et al., 2010), among other factors. Cur-
rently, various approaches to different simulation techniques can be applied to achieve 
manufacturing systems or process improvement, design assessments, or feasibility 
studies. These approaches and simulation techniques include DES, Monte-Carlo sim-
ulation, system dynamics (SD), value stream mapping (VSM), and linear program-
ming, among others. However, studies have proven that simulation techniques are the 
most relevant approaches to handling the complexity and variability found in large 
manufacturing systems (Ng et al., 2008).  

In particular, DES is characterized by three main properties (Leemis and Park, 2006): 

Stochastic: Some of the stages and variables of a system vary randomly (e.g., machine 
failure). 

Dynamic: The variables of a system evolve. 

Discrete event: A system’s state is a function of time, so variables change their values 
according to events that happen at discrete moments.  

Therefore, considering complex RMS dynamic and stochastic behaviors, DES is a 
highly suitable tool for modeling and representing this type of manufacturing system. 

2.4  SIMULATION-BASED OPTIMIZATION 

Manufacturing systems have been successfully modeled, designed, and improved with 
the help of different simulation techniques. Simulation techniques are used to under-
stand the behavior of a system for a set of input variables by running a simulation 
model for a certain amount of time. When different combinations of input variables 
need to be tested to find which set of variables performs better, a set of models can be 
built and evaluated. However, as these systems become larger and more complex, the 
number of input variables increases exponentially, and this process becomes compu-
tationally impractical or unattainable (Carson and Maria, 1997). Therefore, the pro-
cess of finding an optimal set of values for certain input variables emerged by combin-
ing simulation and optimization and is known as SBO (Karlsson, 2018; Lidberg et al., 
2020). SBO allows a decision-maker to systematically search a large decision space for 
an optimal or near-optimal system design without being restricted to a few prespeci-
fied alternatives (Xu et al., 2016; Niño-Pérez et al., 2018). In the manufacturing sys-
tems context, SBO is commonly used to optimize production measures, such as 
Throughput (THP), Work in Process (WIP), Lead Time (LT), and storage capacities, 
taken from a simulation engine (Łapczyńska, Kochańska and Burduk, 2020). 
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2.4.1  SIMULATION-BASED MULTI -OBJECTIVE OPTIMIZATION 
(SMO) 

When several conflicting criteria or objectives are pursued, this is known as Multi-
Objective Optimization (MOO) (Deb, 2014; Karlsson, 2018). MOO methods provide a 
set of trade-off solutions, also known as Pareto-optimal or nondominated solutions 
because the optimization of one of the objectives or criteria cannot be achieved without 
the degradation of another (Deb, 2014; Pareto, 1971). The Pareto front is the response 
surface formed by nondominated solutions, and it can be represented in as many di-
mensions as the number of objectives set in the optimization (Sayin, 2008). Therefore, 
decision-makers need a tool that simplifies the selection of the best choice among all 
available alternatives. The factors that drive their decisions need to be established to 
select one alternative over another. 

As an example of how the Pareto front can be used for decision-makers so that domi-
nated solutions are avoided, a problem in which an apartment needs to be bought in 
Stockholm, Sweden is considered. When buying an apartment, many factors could be 
considered, such as the size of the apartment, year of construction, interior design, etc. 
However, for this example, it is assumed that the apartments considered are about the 
same size, and the evaluation factors are cost and distance to downtown. For a capital 
like Stockholm, it is expected that the closer apartments are to downtown areas, the 
more costly they are. Therefore, we have two conflicting objectives: cost and distance. 
As displayed in Figure 7, A, B, C, D, and E are the sets of optimal trade-offs or Pareto 
solutions. This means that buyers cannot find an apartment that is cheaper and closer 
to downtown than those included in the Pareto front. When referring only to solutions 
in the Pareto front, each one is better than the rest in at least one of the objectives. 
Finally, dominated solutions such as S and T should not be chosen since someone can 
find better solutions. In this case, B and D are equally good in one of the objectives and 
better in the other. The same reasoning can be applied to manufacturing system-re-
lated problems considering objectives such as THP, WIP, cost, floor space, etc. 

 

Figure 7: The houses on the Pareto Front. 
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The combination of simulation techniques and MOO is known as SMO. Consequently, 
SMO can optimize multiple conflicting objectives and the benefits include the genera-
tion of a comprehensive set of Pareto-optimal solutions in a single optimization run 
(Dudas et al., 2014; Zhang et al., 2017) and better insight into and understanding of a 
system’s performance based on decision variables obtained from models’ outputs (Xu 
et al., 2015).   

The general representation of an SMO problem consists of the maximization/minimi-
zation of several objectives defined by objective functions, possibly subjected to several 
equality and inequality constraints, as presented in Equation (1). 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒/𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓𝑖(𝑥) = [𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑛(𝑥), ]  

(1) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 {𝑔𝑖(𝑥) ≥ 0 𝑖 = 1,2, … , 𝑚 ℎ𝑖(𝑥) = 0 𝑖 = 1,2, … , ℎ  

 

In the above equation, the decision variable vector x represents a feasible solution that 
satisfies m inequality constraints and n equality constraints, where 𝑓𝑖 is an objective 
function and n denotes the number of objective functions. 

2.5  GENETIC ALGORITHMS AND NSGA-I I  

Population-based metaheuristic algorithms, such as genetic algorithms GAs, are well-
known and commonly employed in a MOO context. GAs belong to a list of evolutionary 
algorithms based on natural evolution theory. GAs have been widely used to optimize 
production and manufacturing systems (Lidberg et al., 2020). When focusing on a 
MOO context and RMS challenges, this population-based metaheuristic method has 
been recognized as one of the most effective optimization methods (Renzi et al., 2014). 
The fast elitism Nondominated Sorting Genetic Algorithm II (NSGA-II) is one of the 
most frequently employed multi-objective evolutionary algorithms (MOEA) (Diaz et 
al., 2020). The designed combination of fast nondominated sorting and crowding dis-
tance calculation to sort and rank solutions stated by their fitness value endows the 
well-balanced convergence and spread required by any efficient MOEA (Deb et al., 
2002). NSGA-II uses the elitist mechanism to combine the best parents with the best 
offspring obtained from genetic operators. 

NSGA-II starts with the generation of an initial population of solutions. These solu-
tions are created according to a genetic representation that is used to map optimiza-
tion variables to string code via the encoding procedure and the string code to the ob-
ject variable via the decoding procedure. In other words, the encoding and decoding 
procedures aim to generate a feasible solution for each solution string in the popula-
tion. Consequently, choosing an appropriate genetic representation is a crucial task 
that depends on the optimized problem type (Talbi, 2009).  

Fast nondominated sorting 

Three main techniques are responsible for the impressive performance of NSGA-II 
(Deb et al., 2002): (1) a fast nondominated sorting approach that is more efficient 
computationally than other GA-based MOEA; (2) the above-explained elitism selec-
tion process; and (3) the use of crowding distance to measure, compare, and select 
solutions after nondominated sorting for preserving diversity in the population. Fast 
nondominated sorting is an efficient process in which solutions are sorted into multi-
ple fronts based on how their dominance relationship is ranked. The dominance 
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relationship is established by comparing defined objectives. This iterative comparison 
process is repeated until all solutions are organized on particular fronts, depending on 
their rank.  

Crowding distance 

When selecting which solution to preserve for the next generation, is important to pre-
serve a good spread of solutions. A crowding-distance calculation helps rank solutions 
within the same front after a fast nondominated sorting is complete. This process is 
based on the average side distance of the cuboid formed by the closest solutions in the 
same front. Consequently, the most dispersed solutions within the same front are cal-
culated and likely preserved in the next generation, ensuring a more diverse popula-
tion.  

Crossover and mutation operators 

NSGA-II uses crossover and mutation operators to generate a new population. The 
crossover operator intersects and then combines the genes of the chromosomes of the 
two solutions to create two new solutions. Like biological mutation, the mutation op-
erator takes place randomly in each generation to maintain diversity in future gener-
ations. The operator changes one or several genes in the chromosomes of the solutions 
according to the mutation probability. The higher the mutation probability, the more 
modifications occur in chromosomes.  

In a nutshell, the main steps followed by the NSGA-II algorithm are shown in Figure 
8. 

 

Figure 8: NSGA-II implementation. Inspired by Deb et al. (2002). 
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2.6  KNOW LEDGE DISCOVERY AND KDO 

The SMO of different RMS scenarios generates challenging datasets for decision-mak-
ers to analyze. The simultaneous optimization of several conflicting objectives creates 
a set of Pareto-optimal front-of-solutions from which decision-makers must select a 
final trade-off solution to be implemented. This selection process is based on a deci-
sion-maker’s preferences (Miettinen, Hakanen and Podkopaev, 2016). When the pref-
erences of a decision-maker are known ahead of an optimization, a priori methods are 
used to focus the optimization on specific preferred regions. However, when the pref-
erences are unknown ahead of the optimization, a posteriori methods are employed 
to represent the Pareto front before analyzing the decision maker’s preferred region. 

One current data analytics challenge is exploiting extensively generated manufactur-
ing digital datasets to improve decision-making (Ladj et al., 2021). In the case of 
RMSs, decision-makers’ selection process is a complex task due to RMSs’ intrinsically 
complex and stochastic nature, where a system evolves according to changing scenar-
ios (ElMaraghy et al., 2021). Multi-criteria decision-making methods support deci-
sion-makers in analyzing many trade-off solutions. Most of these methods concentrate 
on the objective space, excluding the decision space, which contains valuable infor-
mation about an optimized problem. However, knowledge regarding the relationship 
between the decision space and the objective space, extracted through data-mining 
methods, can lead to more informed decision-making (Bandaru, Ng and Deb, 2017a).  

In the context of this dissertation, knowledge discovery refers to knowledge generated 
by the employment of data mining methods in SMO datasets. Flexible Pattern Minning 
(FPM) (Bandaru, Ng and Deb, 2017a) is the data-mining method used to generate 
knowledge in this research. FPM generates knowledge through decision rules that de-
scribe a decision maker’s preferences. A selected and unselected set of solutions de-
fines the decision-maker’s preferences. Typically, the selected set represents the pre-
ferred nondominated solutions, while the unselected set represents the rest of the so-
lutions in the decision space, which could also include solutions from the Pareto front. 
The FPM procedure extracts rules that differentiate the selected set from the unse-
lected set. The rules are in the form of 𝑣𝑎𝑟 >  𝑐𝑜𝑛1, 𝑣𝑎𝑟 <  𝑐𝑜𝑛2, 𝑎𝑛𝑑 𝑣𝑎𝑟 =  𝑐𝑜𝑛3  for 
a decision variable var and constant values and con1, con2, and con3. The rules have 
associated significance and insignificance. The significance expresses the fraction of 
solutions from the selected set representing the rule. In contrast, insignificance ex-
presses the fraction of solutions in the unselected set representing the rule. Conse-
quently, a relevant and descriptive rule has a high associated significance and a low 
associated insignificance. The combination of independent rules also displays rule in-
teractions, their significance, and insignificance. An example of a three-level rule in-
teraction would look like this: {𝑣𝑎𝑟1 >  2 ∧  𝑣𝑎𝑟2 <  0.5 ∧  𝑣𝑎𝑟3 =  3} with 90% sig-
nificance and a 7% unsignificance, indicating that 90% of the preferred solutions and 
only 7% of the remaining solutions (unpreferred) verify these three rules. 

This dissertation proposes to manage the discovered knowledge in two different man-
ners: (i) as decision support for decision-makers to facilitate analysis and understand-
ing of a system in terms of what constitutes a good solution and (ii) as knowledge that 
can be used for future optimization runs to improve the quality of generated solutions 
and guide an algorithm to the best solutions that achieve a faster convergence rate. 
This process is known as KDO.  

The SMO of the design of RMSs is an NP-hard problem in which the simultaneous 
evaluation of several conflicting objectives is computationally expensive. Therefore, 
utilizing KDO and elicited knowledge to save time and support future optimization 
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processes constitutes a crucial opportunity for manufacturing companies that require 
optimizing changing scenarios. KDO exploits specific common structures of the pre-
ferred solutions in the decision space to achieve better convergence toward the Pareto-
optimal front, ensuring a greater density of preferred solutions (Bandaru, Ng and Deb, 
2017b; Min et al., 2019). The approach followed in this dissertation reduces the di-
mension of the decision space by creating a subproblem of the original problem, ex-
cluding the noninterested areas of the decision space.  
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RESEARCH DESIGN 

This chapter presents the aim, objectives, and related research questions of this dis-
sertation and the methodology that was employed throughout its completion.    

3.1  AIMS, OBJECTIVES, AND RESEARCH QUESTIONS 

As introduced in the previous chapter, the challenges in RMSs have been previously 
approached through various optimization techniques. To a certain degree, these chal-
lenges can be suitable for addressing through SMO. Therefore, motivated by the lack 
of research regarding using SMO to support the manufacturing industry in adopting 
RMSs, this dissertation investigates the use of SMO toward the challenges found in the 
design and management of RMSs, namely, system configuration, deciding on the com-
ponents of the system, and process planning. 

To accomplish the overall aim of this dissertation, four research objectives have been 
devised as four sequential steps to be followed:  

1. Investigate and propose different simulation modeling techniques that allow 
the use of optimization for RMSs. 

Considering that the SMO of RMSs needs to evaluate multiple configurations which 
involve many changes in a simulation model, the objective is to propose suitable mod-
eling techniques for the use of SMO. 

2. Research and evaluate different SBO approaches for the optimization of 
RMSs, which can cover multiple challenges and provide potential improve-
ments when compared to current practices. 

Such an objective is to consider several of the RMS challenges by combining SMO tech-
nologies in several innovative ways to determine the best procedure. 

3. Design, develop, and evaluate the performance of a customized multi-objec-
tive genetic algorithm approach to RMS challenges. 

Because GA approaches have been the most flexible and popular metaheuristic algo-
rithms when applying optimization techniques toward RMS principles. Therefore, 
based on previous studies, the objective is to evaluate the use and responsiveness of 
NSGA-II with a customized genetic representation when applied to RMS problems in 
a MOO context. 



CHAPTER 3 :  RESEARCH DESIGN  

 

26 

4. Explore and evaluate the use of knowledge discovery and KDO for RMS ap-
plications.  

 

Because of the stochastic and complex nature of RMSs, knowledge capturing and de-
cision-making have become challenging for manufacturing companies. Additionally, 
considering the complexity and number of decision variables involved in RMSs, set-
ting up and running new optimization scenarios can be very time-consuming and com-
putationally expensive. Therefore, the last objective is to investigate how knowledge 
discovery can support decision-makers in understanding the system under different 
circumstances (e.g., production volumes or the number of resources) and explore if 
KDO can enhance future optimization.  

By fulfilling these objectives, this dissertation aims to answer the following four re-
search questions, matching the four objectives accordingly: 

1. How can RMSs be efficiently modeled in a simulation environment for MOO? 

2. How can an SMO approach support the manufacturing industry in becoming 
more competitive when shifting toward RMSs? 

3. How can the performance of an SMO approach be enhanced when optimizing 
RMSs? 

4. Can knowledge discovery and KDO support the decision-making process for 
RMSs and enhance the performance of the SMO approach? 

3.2  PROPOSED APPROACH 

The RMS attributes and principles need to be considered at the outset of the design 
stage but also during the lifecycle of a manufacturing system. Therefore, such a con-
sideration has been identified as one of the critical challenges of reconfigurability. 
Moreover, since MOO has scarcely been applied simultaneously to several principles 
and design areas of RMSs, and the use of simulation techniques is sporadic, this dis-
sertation proposes to investigate how SMO with several conflicting objectives can sup-
port the design and management of optimal RMSs that meet changing requirements. 
Also, considering that designing and managing RMSs are required to analyze many 
different scenarios, the SMO generates large, complex datasets that are difficult to in-
terpret. Therefore, this dissertation also proposes using KDO to support decision-
making, facilitate understanding of the system under different circumstances, and 
speed up the optimization of future scenarios. The proposed approach focuses on 
RMSs’ critical and essential attributes, i.e., scalability, convertibility, and associated 
principles 1, 2, and 5 (see Section 2.1.2), which are closely related to the design areas 
mentioned. 

The proposed approach must consider multiple factors simultaneously, exponentially 
increasing the complexity of a problem. Such a complex optimization is a highly con-
strained problem that needs to address the mentioned challenges effectively. The con-
ceptual SMO-KDO method, including its two main elements, the SMO and the KDO 
environments, is presented in Figure 9. 
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Figure 9: Graphical representation of the proposed SMO-KDO for RMSs. 

The blue dotted area of Figure 9 represents the SMO approach, showing some of the 
optimization parameters and how the SMO approach can use them. The process starts 
by generating a feasible solution to be implemented in the simulation model. Based on 
the input parameters, the simulation enables the evaluation of the combination of de-
cision variables fulfilling the system constraints according to the optimization objec-
tives, such as THP, storage capacity, and the number of machines employed, to find 
optimal output solutions. The decision variables consider the number of workstations, 
the assignment of machines to workstations, the task allocation, and additional system 
components, such as buffers and material handling units. This is an iterative process 
in which the optimization engine processes the outputs of the simulation as the values 
of the objective functions to assign a new combination of input parameters to converge 
to a set of near-optimal values for the decision variables over time. The yellow dotted 
area of the figure represents the KDO, which, through data-mining techniques, sup-
ports decision-making and enhances the SMO approach. The overall SMO-KDO 
method for RMSs supports decision-making by systematically analyzing multiple op-
timal solutions (configuration/process plan/buffer capacity/etc.) generated via MOO 
on the simulation models. The output of this analysis facilitates decision-makers’ un-
derstanding of the decision variables and their interaction to create optimal solutions 
according to their preferences and possible situations. Furthermore, the generated 
knowledge and preferences can be used to support and guide future-related optimiza-
tion scenarios to the preferred decision space region.   

With the combination of the principles of reconfigurability, proven techniques for simula-

tion, and MOO combined with KDO, this dissertation introduces a novel method for the 
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design and management of flexible, scalable, robust, and productive RMSs, securing long-

term competitiveness when applied in industry. 

Figure 10 depicts the sequential execution steps and activities for manufacturing organiza-

tions to make use of the proposed SMO-KDO approach.  The diagram provides a systematic 

outline of the conceptual approach's execution activities. To start, a decision-making query 

is employed as the foundation for problem formulation. Following this, once the system is 

appropriately modeled and optimized, a knowledge discovery analysis is conducted based 

on the predetermined preferences of the decision-maker. This analysis can be reiterated in 

cases where the decision-maker's preferences have undergone changes, or a decision can 

be made based on the presented results. Moreover, suppose there is a necessity to evaluate 

scenarios that were not initially considered. In that case, such scenarios can be formulated 

and utilized by leveraging previously extracted knowledge as rules, thereby facilitating the 

optimization process and expediting its pace. Notably, the unique contribution proposed in 

this research lies in extracting knowledge for decision support. Rather than relying solely 
on capturing knowledge from experiences or experiments, the proposed approach achieves 

knowledge extraction by systematically exploring and analyzing multiple optimal solutions 

(designs/configurations/settings) generated via MOO on simulation models, utilizing tech-

niques such as data mining. 

 

Figure 10: Approach execution. 
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3.3  PHILOSOPHICAL PARADIGM AND RESEARCH     
METHODOLOGY 

This section defines the philosophical bases and methodology selected for the research 
plan. The result of any research is to contribute knowledge to the research area stud-
ied. The outcome of this research is a novel artifact compiled in a Ph.D. dissertation, 
conference papers, and journal articles. This current research systematically per-
formed and evaluated several activities that helped the researcher throughout the re-
search process. These activities are defined by the research methodology (Oates, 
2006). 

3.3.1  PHILOSOPHICAL PARADIGM 
Before describing the research methodology, the research will be evaluated according 
to its philosophical paradigm. This dissertation hypothesizes that manufacturing or-
ganizations can benefit from using an SMO method when designing and managing 
RMSs. The SMO method can be used to gain knowledge through observed and meas-
ured experiments. The quantitative experiments were measured in a digital environ-
ment (the simulation software) and then compared and optimized using an optimiza-
tion algorithm (e.g., NSGA-II) to improve several factors, such as productivity, scala-
bility, etc.  

In Oates (2006), three paradigms are defined: positivism, interpretivism, and critical 
research. Positivism is understood as knowledge backed up by facts that can be gained 
through observed and measured experiments. This paradigm bases its study objec-
tively because its outcome is generally quantifiable and observable (Mackenzie and 
Knipe, 2006). Interpretivism research establishes its study on understanding the so-
cial context of an Information System (IS) and how people involved in its development 
and construction are influenced. Critical research focuses on establishing the differ-
ences, contradictions, and relations of the IS to help people eliminate its previously 
created knowledge (Oates, 2006).  

This research creates an IT artifact (novel SMO method) based on experiments and 
case studies that aim at answering the stated research questions. The outcome of this 
IT artifact is objectively measured and quantifiable through optimization experiments. 
Therefore, it can be compared with different existing methods through experiments to 
evaluate it in real-world cases. The aimed artifact can either work and propose close-
optimal solutions for the RMS challenges by considering several attributes and prin-
ciples simultaneously or not because it is not a valid method for this problem. When it 
comes to knowledge discovery is investigated on how to be combined with SMO for 
RMS post-optimal analysis. Still, the results are meant to support decision-makers 
based on their preferences, not on the researcher's preferences. Consequently, there is 
no room for subjectivity since we can evaluate and quantify the results. The proposed 
SMO-KDO approach has been constructed from a positivism paradigm perspective 
since the effects can be objectively modeled, tested, and measured to assess the pro-
posed artifact. 

Reductionism, repeatability, and refutation are three methods associated with positiv-
ism (Oates, 2006).  In this dissertation, reductionism is applied by reducing the com-
plexity of the optimization problems when the optimization engine struggles to con-
verge to find optimal or near-optimal solutions. In this manner, the optimization prob-
lem can be broken down into smaller and simpler optimization problems, thereby en-
suring more optimal results. Repeatability was considered in the experiments by a rep-
lication analysis. Considering that manufacturing systems are not deterministic, 
meaning that a result from a single simulation run can differ from the next one, the 
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experiments replicate the simulation several times to ensure reasonable statistical 
confidence and, consequently, the results. Finally, refutation is considered by analyz-
ing the resilience of the SMO method when extreme situations in optimization prob-
lems are encountered. 

3.3.2  RESEARCH METHODOLOGY  
I view this research problem to be suitable for the Design Science (DS) methodology 
(Von Alan et al., 2004) and the proposed SMO method as a DS artifact. This paradigm 
is based on implementing an IT artifact to solve specific problems (Tsichritzis, 1998). 
The attained artifact is the foundation for the generated knowledge and understanding 
that can be classified as constructs, models, methods, theories, frameworks, and in-
stantiations (Von Alan et al., 2004). For IS researchers, the research outcome com-
monly aims to improve human efficiency (Oates, 2006). In this research, the problem 
is the need for methods to optimize the design and management of RMSs using SMO. 

DS contributions can be viewed to be of distinct characteristics. For example, Gregor 
and Hevner (2013), see Figure 11, categorize contributions into four categories. In this 
context, I consider this work to belong to the exaptation category. The exaptation cat-
egory extends solutions to new problems with low application domain, in this case, a 
lack of design and management methods for RMSs covering several aspects not con-
sidered together. Due to RMSs are not widely implemented in the industry yet, their 
lack of design and management methods is a newly acknowledged problem that con-
stitutes a low application domain maturity. On the other hand, SBO is a widely applied 
technique that has successfully been applied to other domains; therefore, the needs to 
be investigated and developed to efficiently model, optimize, and simultaneously solve 
the challenges found in RMSs constitute a high solution maturity that needs to be ex-
tended to a new domain. Combining two factors (low application domain maturity and 
high solution maturity), there is a potential research opportunity and knowledge con-
tribution developed in this dissertation. Based on the DS research knowledge contri-
bution framework presented by (Gregor and Hevner, 2013), this research aims to im-
prove and create more capable and practical solutions to advance RMS designs and 
management approaches. The current lack of an SMO method for RMSs combined 
with the available technologies/techniques has opened up a research opportunity that 
this dissertation aims to address.   
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Figure 11: Design science research knowledge contribution framework (Gregor and Hevner, 2013). 

This dissertation uses the conceptual IS research framework defined by Von Alan et 
al. (2004), in which the guidelines for understanding, executing, and assessing DS in 
IS are stated (see Figure 12). Design science uses novel artifacts to broaden or increase 
human/organizational efficiency. 

 

 

Figure 12: IS research framework (Von Alan et al., 2004). 

In this framework, the environment comprises people, organizations, and technolo-
gies that define the encountered problem, creating a business need. In this case, the 
business needs to motivate the problem’s relevance. Stakeholders and organizations 
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need optimization methods to design and manage RMSs to ensure more responsive, 
reconfigurable, and efficient manufacturing systems that ensure a relevant research 
opportunity when combined with the available technologies and capabilities. The 
knowledge base is the groundwork for the IS to advance and execute research, and this 
is a compound of the available foundations and methodologies that support the appli-
cable knowledge. In this research, foundations and methodologies are previous re-
search in RMSs, associated challenges, and suitable supporting techniques. The com-
bined contribution of the knowledge base and the environment is the basis for artifact 
development and evaluation. Two main activities are carried out and evaluated in this 
framework and every DS approach. These activities are part of an iterative process that 
keeps learning by adding expertise and information to the environment and 
knowledge base until IS research is supported and ready to create and evaluate the 
final refined artifact (Von Alan et al., 2004; Oates, 2006). 

This research is communicated to the scientific community and the stakeholders of 
manufacturing companies. The results of this research have been published in a doc-
toral dissertation and scientific literature through articles, and the artifact can be ap-
plied to real industrial problems.  

DATA COLLECTION 

The data in this research were collected and generated in two ways: observations and 
documents.  

Documents 

The primary data collection method is based on documents focused on existing re-
search and procedures. In Oates (2006), two types of documents are defined as being 
a data generation method: found documents and researcher-generated documents. 
Found documents refer to existing documents that can collect the required data and 
information. During the literature review, found documents were used to justify the 
need for this research and to evaluate state-of-the-art, applicable foundations/tech-
nologies in optimizing RMSs. Researcher-generated documents refer to documents 
that do not already exist. The researcher developed these documents to obtain infor-
mation. Therefore, this dissertation generates documents in the form of models, ex-
periments, and case studies to support the optimization of RMSs. 

Observations 

Observations are being used in experiments and case studies to investigate the pro-
posed artifact in depth within controlled scenarios and the real-world business envi-
ronment. Therefore, the artifact’s usability is determined through the dissertation’s 
lifecycle by observing the RMS optimizations’ performance. 

ANALYSIS TECHNIQUES 

The analysis techniques used are mainly quantitative. All of the numerical results gen-
erated were analyzed quantitatively. Quantitative analysis helps validate the proposed 
method by comparing it against other specific tools that focus solely on the objectives 
of an artifact. In this way, the accuracy of the artifact in all its aspects can be measured. 
One of the objectives when designing an RMS is to maximize productivity. The produc-
tivity of a manufacturing system is based on several Key Performance Indicators 
(KPIs), which tend to involve variability and, therefore, need to be statistically ana-
lyzed. Additional type data, such as manufacturing system configuration, which is 
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derived from experiments and case study observations, are used to determine the us-
ability of the artifact. 

A set of methods defined by Von Alan et al. (2004) was used to evaluate the artifact 
through its development. Observational methods and more specific case studies are 
implemented to assess artifacts in industrial environments. Optimization within ana-
lytical methods is used to find some properties and boundaries for the artifact. Exper-
imental methods, such as controlled/scientific experiments and simulations, help with 
artifact usability testing in controlled environments. The last type of evaluation 
method used is a descriptive scenario method in which specific scenarios are con-
structed to test the utility aspect of the artifact. 

INTERNAL AND EXTERNAL VALIDITY 

To have high internal validity in the experiments carried out in this research, it is cru-
cial to understand the relationship between the simulation and the results of the ex-
periments. In the case of this research, the simulation technique used was DES. In this 
type of computer simulation, the user has total control over the variables involved in 
the system, so every observed change is derived from the manipulation of one of the 
variables of the system. The variables were adequately manipulated and isolated to 
understand their individual impacts on RMSs. Also, as previously mentioned, this type 
of experiment includes many replications to ensure the experiments’ statistical confi-
dence and internal validity.  

The external validity of this research depends on the type of experiment and the sce-
narios studied. This research was generalizable to different scenarios to ensure high 
external validity. Therefore, this research investigates the use of SMO in different types 
of manufacturing systems and under different scenarios or circumstances that impact 
their performance. Since this research focuses on optimizing RMSs involving a diverse 
range of problem cases, it is easy to conclude the applicability of the SMO approach.  

3.4  ETHICAL ISSUES 

3.4.1  ENVIRONMENTAL ISSUES 
One of the main ethical issues this research aims to address is sustainability, which is 
the relationship between RMSs and the consideration of being environmentally sus-
tainable. As we know, a manufacturing process needs energy for its production, and at 
the same time, it produces waste. New regulations that restrict emissions and control 
how to process the waste produced are regularly established to reduce environmental 
impact. One of the ethical issues within the manufacturing industry is how the envi-
ronmental degradation caused by the manufacturing process can be reduced. Accord-
ingly, ethical and legal aspects must be considered in manufacturing research projects 
that address sustainable issues.  

As previously stated in Chapter 1, the manufacturing industry faces a paradigm shift 
from mass customization to mass personalization due to globalization and the cus-
tomer’s need for customization and personalization. This impacts product lifecycles, 
which have decreased by 25%, doubling product variety in the last two decades. Pro-
duction system setups need to shift toward RMSs to cope with such a high degree of 
product variants. In Chapter 2, the RMS attributes are presented. These attributes are 
modularity, integrability, convertibility, diagnosability, customizability, and scalabil-
ity. One of the objectives of these attributes is to enable manufacturing systems to be 
reused and reconfigured, increasing the system’s lifecycle. For example, by designing 
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modular manufacturing systems that can be easily integrated, we could reuse some 
modules in future systems instead of building a new one from scratch. Therefore, re-
search done in this area will indirectly support aspects of sustainability. Consequently, 
RMSs improve the environmental impact due to manufacturing systems, or some of 
them can be reused, reconfigured, or reallocated to produce different types or genera-
tions of products, which reduces the implementation impact of new manufacturing 
systems. Since the longevity of manufacturing systems can be increased, residual ma-
terial and waste coming from machinery will be considerably reduced. Therefore, re-
garding sustainability within the manufacturing industry, an ideal RMS should imple-
ment cleaner processes using less raw material. 

3.4.2  DATA SECURITY ISSUES 
Another ethical issue taken into account is data protection. Data protection can be 
perceived as personal and company data privacy protection. The researcher must al-
ways be aware of whether the data involved in the research are secret or not, and in 
the case that it needs to be confidential, a more detailed explanation of which data 
must be kept in privacy and why it needs to be included in the research (Veten-
skapsrådet, 2017). This research has collaborations with manufacturing companies. 
The scope of this research is not focused on personal data; therefore, no biological, 
physical, psychological, or medical studies are involved. Neither sensitive personal 
data are included nor collected within this research; therefore, no approval is needed 
for human research (Vetenskapsrådet, 2017). Another critical aspect that may not be 
regulated (but is considered in the case of this research) is manufacturing data privacy. 
Today’s manufacturing industry is experiencing superfast technological develop-
ments. For example, automotive manufacturing companies must keep data secret re-
garding future releases and technologies to increase competitiveness for other car 
manufacturers. These complex data and information are crucial to maintaining a good 
research development strategy and high-quality products, especially in an industry 
where innovation plays a significant role. Considering that, in the last decades, the 
manufacturing industry has reduced waste in its processes, supporting more sustain-
able production according to new regulations, many competitors would be interested 
in discovering how others have achieved specific improvements or plans. Therefore, 
keeping manufacturing and research data related to production processes or techno-
logical advances secret is necessary for such a competitive industry. Nevertheless, this 
research project placed particular emphasis on data privacy. These measures are 
aimed at reducing the risk of data leaks. 

3.4.3  HUMAN AGAINST COMPUTER GENERATED CONFIGURA-
TIONS ISSUES 

Generating configurations in RMSs involves making decisions that impact production 
processes, resource allocation, and potential trade-offs. These decisions often involve 
considerations beyond purely technical or economic factors, such as environmental 
sustainability, social impact, and ethical implications. Human-generated configura-
tions may consider these broader ethical considerations, but computer-generated con-
figurations may not inherently possess the capability to incorporate such nuanced de-
cision-making. Ensuring that ethical considerations and human values are adequately 
incorporated into the design and operation of computer-generated configuration sys-
tems becomes crucial. Addressing these ethical issues involves responsible develop-
ment, implementation, and governance of computer-generated configuration systems. 
This includes ensuring ethical considerations are embedded into the design process, 
promoting transparency and accountability between industry, policymakers, and 
other stakeholders. 
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In the context of computer-generated configurations for RMSs, it is important to rec-
ognize that the results of this research are intended to support, rather than substitute, 
human decision-makers. These computer-generated configurations serve as valuable 
tools that provide insights, options, and recommendations. However, the ultimate re-
sponsibility and authority for evaluating and making decisions based on these results 
lie with human decision-makers. 

The role of human decision-makers remains essential in assessing the implications, 
considering contextual factors, and incorporating ethical considerations that go be-
yond the capabilities of computer-generated configurations. Human judgment, exper-
tise, and ethical reasoning are critical for addressing complex issues such as workforce 
dynamics, social impact, and broader ethical implications. Computer-generated con-
figurations should be seen as decision support systems that provide valuable assis-
tance in optimizing production processes, resource allocation, and trade-off analysis. 
They can streamline operations, enhance efficiency, and offer insights that may not be 
readily apparent to human decision-makers alone. However, their results should al-
ways be subject to careful evaluation, scrutiny, and validation by human decision-
makers to ensure the outcomes align with organizational values, stakeholder interests, 
and broader societal objectives. 

By recognizing the complementary nature of computer-generated results and human 
decision-making, organizations can leverage the strengths of both to make informed 
and ethical decisions. This collaborative approach empowers decision-makers to draw 
on the capabilities of automation while still exercising critical judgment, considering 
diverse perspectives, and upholding ethical principles. 
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RESULTS 

This chapter discusses this dissertation’s results, summarizes the written articles’ con-
tribution to the research objectives, and explains the relationships between the papers. 
These seven articles have been included in this dissertation to address the research 
objectives defined in section 3.1. The relationships between the papers and the objec-
tives are shown in Table 2.  

 

Table 2: Research objectives related to the papers. 

 

 Obj. 1 Obj. 2 Obj. 3 Obj. 4 

Paper I X X   

Paper II X X   

Paper III X X   

Paper IV X X   

Paper V  X  X 

Paper VI  X X X 

Paper VII  X  X 

 

4.1  OUTLINE OF THE PAPERS IN RELATION TO RESEARCH 
OBJECTIVES  

Figure 13 presents an overview of the relationships between the papers the research-
objective topics. In the figure, the colors represent the main topics covered by the ob-
jectives, and the Roman numbers are the appended publications. 
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Figure 13: Relationships between the papers and the research-objective topics. 

This research work began with Paper I and an investigation of different modeling tech-
niques that can support the SMO of RMSs. More specifically, Paper I proposed two 
SMO modeling techniques to address one of the main challenges of RMSs: the system’s 
configuration. This paper extends prior research focusing on the configuration analy-
sis of RMSs and explores how using SMO can support this challenging area.  

Paper II investigated a new SMO approach to address not just the system’s configura-
tions but also the components of the system and the process planning areas. Therefore, 
Paper II employed another SMO modeling technique that allowed us to simultane-
ously approach the three main challenges of the design of an RMS. 

Paper III extended the prior work of Paper I and incorporated the material-handling 
aspect into the simulation modeling for an SMO approach. The presented novel ap-
proach combines cyber-physical systems and SMO to address the system’s configura-
tion challenge, including material-handling behavior in RMSs.  

Considering that previous papers have focused on Single-Part Flow Line (SPFL) RMSs, 
Paper IV expanded the work of Paper II and included multiple products in the model-
ing of the SMO approach. It presents a new multi-part flow line (MPFL) RMS approach 
that addresses fluctuating production volumes while considering the three main 
RMSs’ challenging areas. 

Paper V was the first approach to investigate how the application of knowledge discov-
ery to SMO datasets supports RMS post-optimal analyses. The presented approach led 
to a better understanding of how one of the RMSs’ main areas, process planning, spe-
cifically the tasks assigned to workstations, contributes to better performance regard-
ing the optimization objectives. 

Paper VI investigated RMS-specific algorithm customization, which enhances an SMO 
approach while addressing the RMSs’ main areas. This enhancement led to better 
SMO performance, allowing us to tackle more extensive and complex RMSs. This ap-
proach employed knowledge discovery to improve the understanding of what consti-
tutes a good solution, not only in terms of task allocation but also in system configu-
ration and buffer size. Finally, knowledge discovery exhibited the optimization 
method’s importance for the quality of extracted knowledge. 

Paper VII was our first approach to exploring how KDO could support future RMS 
optimization. The proposed KDO approach for RMSs uses extracted knowledge from 
SMO datasets as constraints in future RMS scenarios to improve the convergence rate.  
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4.2  SUMMARY OF THE INCLUDED PAPERS AND THEIR 
CONTRIBUTIONS 

This section summarizes the appended publications in this dissertation and describes 
their contributions. 

4.2.1  PAPER I :  SIMULATION-BASED MULTI-OBJECTIVE OPTIMI-
ZATION FOR RECONFIGURABLE MANUFACTURING SYS-
TEM CONFIGURATION ANALYSIS 

This paper was the initial study to analyze the use of SMO for Reconfigurable Manu-
facturing System Configuration Analysis (RMS-CA). This study addressed the need for 
efficiently performing RMS-CA concerning the limited time for decision-making in the 
industry and investigated one of the salient problems of RMS-CA: determining the 
minimum number of machines necessary to satisfy the demand. The decision variables 
considered in this paper evaluated different variable number of workstations, the 
number of machines per workstation, and the task allocation in the system. This study 
adopted an NSGA-II optimization algorithm and presented two contributions to the 
existing literature. The study proposed a series of steps for using SMO for RMS-CA 
and showed how to simultaneously maximize production throughput, minimize LT, 
and buffer size. Second, the study presents a qualitative comparison with prior work 
on RMS-CA and the proposed use of SMO. It discussed the advantages and challenges 
of using SMO and provided critical insight for production engineers and managers re-
sponsible for production system configuration. 

We extended previous research done by Koren and Shpitalni (2010) and proposed four 
additional steps for adopting SMO in RMS-CA. The first step involves modeling RMS 
configurations in a simulation environment. Two modeling techniques were proposed: 
routing or a selection interface modeling technique. The second step includes specify-
ing the optimization objectives of interest to a decision-maker, the constraints of the 
production system, and the simulation parameters. The third step involves calculating 
the outputs of each RMS configuration and determining the best solution for the stated 
demand scenario but also providing what other configurations can achieve in terms of 
production capacity, LT, and total buffer capacity (TBC). The fourth step consists of 
understanding the underlying trade-offs of a particular RMS configuration. 

The paper adopted the proposed SMO approach on an industrial application, in which 
the design of a new RMS for a machining process requires the assessment of multiple 
configurations. The simultaneous analysis of multiple configurations presents a per-
sistent challenge, not exclusively restricted to RMSs, yet encountered more frequently 
compared to other manufacturing systems tailored to specific scenarios, where future 
reconfigurations are seldom contemplated. In this regard, the two proposed modeling 
techniques presented in this paper evaluate multiple RMS configurations using a sin-
gle simulation model, which is more desirable than employing as many simulation 
models as configurations that need to be evaluated and connecting the optimization 
algorithm to each model. The routing and selection interface modeling techniques are 
illustrated in Figure 14 and Figure 15, respectively.  

These modeling techniques adopt NSGA-II to evaluate different RMS configurations. 
The first technique evaluates the route of products as a variable in a simulation model 
containing alternate RMS configurations, Figure 14. In the second technique, the al-
gorithm uses interfaces as variables to generate alternative RMS configurations.  
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Figure 14: Routing modeling technique of SMO for RMS-CA. 

In the second technique, the algorithm uses interfaces as variables to generate alter-
native RMS configurations, as shown in Figure 15. 

 

Figure 15: Selection interface modeling technique for RMS-CA. 

The results from the proposed SMO approach can be efficiently obtained and dis-
played using a range of tools, such as the presented parallel coordinate plot (PCP), see 
Figure 16. This plot shows the results of the optimization of three conflicting objec-
tives, namely, THP, LT, and TBC, for the alternative configurations. The SMO can sup-
port decision-makers with the visualization of graphical information uncovering the 
trade-off between conflicting objectives. Also, the results of this optimization can pro-
vide information regarding which configurations are more efficient in response to 
changing demands and therefore support the scalability and convertibility attributes 
of RMSs. 
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Figure 16: PCP showing the results from the SMO for the RMS-CA of the eight RMS configurations. 

In summary, the findings of this paper highlight the advantages of using SMO for 
RMS-CA. This study contributed to Obj. 1 of this dissertation by presenting two mod-
eling techniques that can efficiently be used to model, optimize, and evaluate alterna-
tive RMS configurations, including a variable number of workstations and in-between 
buffers. This study also contributed to the second objective by extending prior research 
and showing that adopting SMO facilitates RMS-CA when an equal number of ma-
chines are arranged into different configurations.  

4.2.2  PAPER I I :  OPTIMIZING RECONFIGURABLE MANUFACTUR-
ING SYSTEMS: A SIMULATION-BASED MULTI-OBJECTIVE 
OPTIMIZATION APPROACH 

This second study proposed an SMO approach for optimal system configuration, ad-
dressing the tasks and resources assigned to workstations and optimizing three con-
flicting objectives simultaneously: THP, TBC, and the number of machines. The three 
main areas of the design of RMSs introduced in section 2.2, the system configuration, 
the system’s components, and the process planning, are widely studied but rarely ad-
dressed simultaneously. Also, the use of simulation for addressing these areas is spo-
radic and rarely employs MOO. To the best of the author’s knowledge, this study pre-
sented the first approach that uses SMO for dealing with all three main areas, i.e., find-
ing the optimal system configuration, the optimal number of machines, and the opti-
mal work task allocation while optimizing the above-mentioned conflicting objectives. 

This study employed a well-known NSGA-II for optimization. This approach provides 
the optimal way to obtain the highest THP with the minimum number of resources in 
terms of buffer capacity and the number of machines, including optimal task alloca-
tion. Unlike the work presented in Paper I, section 0,  the optimization performed in 
this study considered a variable number of machines and a fixed number of work-
stations in the system.  

The SMO's main elements are the simulation environment and the optimization en-
gine. The process begins with a feasible solution, and the simulation environment al-
lows for the testing of different combinations of input parameters according to con-
flicting objectives. This is an iterative process that evaluates the feedback of the simu-
lation environment to instruct a new combination of input parameters to define the 
Pareto front. The constraints are used to ensure the precedence of the tasks, the max-
imum and minimum number of machines per workstation, and the maximum buffer 
capacity. Figure 17 illustrates the SMO approach, including the optimization parame-
ters used.  

 



CHAPTER 4 :  RESULTS 

 

44 

 

Figure 17: Graphical representation of the proposed SMO. 

This approach was applied to a test case manufacturing process in which the system is 
subjected to disturbances, the number of workstations is equal to three, and the num-
ber of machines used in the system varies from 12 to 18. Some of the main results of 
the optimization are displayed in Figure 18. This figure presents the reconfiguration 
steps from 12 to 18 machines, and the THP and TBC ranges obtained from each con-
figuration. The figure also includes the number of tasks performed per workstation. 
The results in this figure concern only the nondominated solutions obtained from the 
optimization. Figure 18 provides a better understanding of the system, including the 
optimal location of future machines in case future capacity increases are needed. 
Knowing where to add future machines in advance can be convenient and cost-effec-
tive when designing the system, especially when investing in the material-handling 
system 

Another important aspect that can be assessed when using the proposed SMO is the 
THP/TBC relationship, see Figure 19. This figure shows a THP overlapping the system 
with a different number of machines. Thus, the red dashed lines reveal that the system 
with M machines and some TBC values could reach the same THP with M+1 machines. 
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Figure 19: Throughput over TBC. 

 

Figure 18: Reconfiguration steps, throughput, TBC, and task allocation. 
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In summary, this study has proven the proposed SMO approach to be successful for 
RMS optimization and has shown the benefits of considering reconfigurability during 
the design phase of RMSs. This study contributes to Obj. 1 of this dissertation by in-
troducing a new modeling technique that can be used for RMSs with a fixed number 
of workstations and a variable number of machines. Furthermore, this study contrib-
utes to Obj. 2 by proposing a novel SMO approach for optimal systems configuration 
while considering the dynamic behavior of RMSs, addressing task assignment and re-
source assignment, and simultaneously optimizing the previously mentioned conflict-
ing objectives. 

4.2.3  PAPER I I I :  ENABLING CPS AND SIMULATION-BASED 
MULTI-OBJECTIVE OPTIMIZATION FOR MATERIAL HAN-
DLING OF RECONFIGURABLE MANUFACTURING SYSTEMS 

The third study extended prior work to consider the material handling of RMSs. The 
combined use of RMSs and digital technologies, such as a cyber-physical system (CPS), 
may be essential for supporting the dynamic behavior of information and material in 
manufacturing. To date, research focused on RMS-CA has assumed that material han-
dling occurs without disruption, variation, or uncertainty. Failing to consider the dy-
namic behavior of material handling could cause delayed deliveries or even put at risk 
the investment of time or resources in a configuration that underperforms aspects 
such as THP or LT. Second, the vast majority of the research that focused on RMS-CA 
overlooks material-handling aspects. For these reasons, in this fourth study, we pro-
posed the use of CPS combined with SMO to address the dynamic material-handling 
needs involved in the RMS-CA. 

The proposed CPS acquires material-handling data corresponding to the delivery 
times of Automated Guided Vehicles (AGVs) between any two stations and utilizes 
these data as input to an SMO, calculating the optimal configuration of an RMS. The 
proposed architecture, which includes a physical, cyber, and service layer, is presented 
in Figure 20. The physical layer comprehends real-life manufacturing resources and 
Internet of Things (IoT) technologies. The cyber layer facilitates the sensing, captur-
ing, standardizing, and synchronizing of information essential for addressing the dy-
namic needs of material handling in RMS-CA. The service layer uses the delivery times 
of AGVs from the cyber layer and applies the SMO to present an optimal configuration, 
including the number of required AGVs. 
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The optimization objectives and the constraints of the system are defined in the inter-
est of the decision-maker. In the case studied, the conflicting optimization objectives 
utilized were to maximize THP and minimize TBC, LT, and the number of AGVs em-
ployed. Some of the results obtained by the optimization are displayed in the PCP; see 
Figure 21. This figure shows the two configurations that can cope with demand. In 
green, all the solutions that fulfill the rules defined in the SMO are highlighted. The 
rules consist of fulfilling the required demand and having a TBC equal to or lower than 
20. Despite these results, the optimization determined that the more efficient way, in 
terms of the optimization objectives, to fulfill the rules is achieved with configuration 
A, using 4 AGVs, and having a TBC of 12 (the capacity of Buffer 1 equals 6 and for 
Buffer 2 equals 6) where the LT is 2,358 seconds.  

 

Figure 20: Proposed architecture, including a physical, cyber, and application layer that addresses the dynamic needs of 

material handling for RMS-CA. 
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Figure 21: Parallel coordinates plot over configurations A and C, highlighting the applied rules. 

Furthermore, the SMO approach used can also provide a better understanding of dif-

ferent RMS configurations for different numbers of material handling units. As an ex-

ample, Figure 22  presents the THP and TBC relationships for nondominated solutions 

of Configurations A and C in the case where three AGVs are used. This graph helps to 

understand how different configurations perform for a determined number of AGVs. 

 

Figure 22: THP and TBC relationship for configurations A and C when three AGVs are employed. 
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In summary, this study showed how a CPS contributes to including the dynamic be-
havior of material-handling equipment in the RMS-CA. Moreover, we presented an 
architecture for using CPS and SMO and explained the benefits of applying CPS and 
SMO for RMS-CA, including the behavior of material handling to increase operational 
performance. This study contributed to Obj. 1 of this dissertation by incorporating the 
material-handling aspect into the simulation models for subsequent use with the SMO 
approach. Regarding Obj. 2, this study proposed a novel approach that combines CPS 
and SMO to handle material-handling behavior in the RMS-CA. This contribution im-
proves current practices, which often assume that material handling occurs without 
disruptions, such as variations or uncertainties. 

4.2.4  PAPER IV:  OPTIMIZING RECONFIGURABLE MANUFACTUR-
ING SYSTEMS FOR FLUCTUATING PRODUCTION VOL-
UMES: A SIMULATION-BASED MULTI-OBJECTIVE OPTIMI-
ZATION APPROACH 

The fourth study was developed on top of the second study to cope with fluctuating 
production volumes for MPFL RMSs. This study is based on the need of production 
organizations to introduce new products or variants into their production, provoking 
more frequent ramp-up and ramp-down scenarios during transition periods. Conse-
quently, this study presents a simulation-based multi-objective optimization approach 
for optimizing the system configuration of an MPFL subjected to scalable capacities to 
cope with fluctuating production volumes by addressing the assignment of tasks to 
workstations and buffer allocation for maximum throughput and minimum TBC. 

Most SPFL or MPFL studies focused on process plan generation or configuration and 
configuration analysis have neglected key aspects, such as the consideration of buffers, 
variability, and system uncertainty. Also, the lack of studies that use SMO to combine 
task and resource assignments with system configuration in scalable MPFLs for fluc-
tuating production volumes indicates the clear research gap treated in this study.  

The case presented in this study increased the complexity of the problem exponentially 
compared to the previous research found in Section 4.2.2. Unlike earlier studies, the 
SMO approach, in this case, must handle two products with different task sequences 
at different production proportions in an industrial case taken from the automotive 
industry, leading to a highly constrained NP-hard problem that is difficult to solve for 
the optimization algorithm. 

The industrial application used for this study is based on a real crankshaft production 
line. The simulation model of the production line is shown in Figure 23. In reconfigu-
rable workstations, the RMS can add, remove, or relocate machines according to pro-
duction needs.  
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Figure 23: Simulation representation of the production line. 

In this study, we optimized the production for four different proportions 80/20 (80% 
of Part 1 and 20% of Part 2), 60/40, 40/60, and 20/80. Also, the optimization consid-
ered the case in which the reconfigurable workstation employs seven, eight, and nine 
machines.  

The results of the optimizations are shown in Figure 24. In this figure, we present the 
optimized configuration to cope with the studied production proportions in the recon-
figurable workstations of the line. Each quadrant shows the system for a production 
proportion, and the white, light gray, and dark gray represent the system with seven, 
eight, or nine machines. Thus, for a seven-machine scenario, only white machines 
need to be considered; for an eight-machine scenario, white and light gray machines; 
and for a nine-machine scenario, white, light gray, and dark gray machines need to be 
considered. NM represents the number of machines, so in each quadrant of the figure, 
the configuration and the THP range obtained for every number of machines consid-
ered for the different production proportions are shown. This figure also displays how 
much THP can be gained from every machine added to the system.  
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Figure 24: Optimized configurations for the studied scenarios. 

Another interesting aspect gained from the SMO method is, as in the previous study, 
the THP progression, see Figure 25. The left-haft side of the picture shows the THP 
ranges (maximum and minimum included in the Pareto front), depending on the TBC 
for every scenario. The right-hand side shows the evolution of the THP as the TBC 
increases from 340 to 1,100 for seven, eight, and nine machines when the production 
proportion is 80/20. The figure illustrates that the same THP can be obtained with a 
different number of machines, depending on the TBC of the line. 

 
Figure 25: THP progression. 

Another core tenant obtained from this approach is the task assignment to work-
stations for every number of machines, and production proportion studied. Conse-
quently, the optimization results present the information needed for the production of 
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a specific volume and to scale up the production. In other words, this information 
shows, for a determined THP, the required TBC, how they are allocated among the 
buffers in the line, the assignment of machines to the reconfigurable workstations, and 
the tasks assigned to them. 

In summary, the proposed SMO approach determines how to obtain the highest pos-
sible THP with a minimum number of buffers, considering different numbers of ma-
chines and production volumes, including buffers and task allocations. This demon-
strates the benefits of adopting SMO and supports decision-makers by revealing a 
comprehensive amount of data that simplifies the trade-off decision inherent to the 
design and management of RMSs. The proposed approach addresses not only product-
volume changes but also the system scalability aspect (total production volumes), 
providing the optimal way to add resources (machines and buffers) or reconfigure ex-
isting ones to meet new demand scenarios. This study contributes to Obj. 1 by showing 
how to model and incorporate reconfigurable workstations into production lines for 
later optimization. Second, this study contributes to Obj. 2 by further developing the 
novel SMO approach presented in a previous study to cope with fluctuating production 
volumes of an MPFL RMS in an industrial-scale problem. 

4.2.5  PAPER V: ENABLING KNOW LEDGE DISCOVERY FR OM SIM-
ULATION-BASED MULTI -OBJECTIVE OPTIMIZATI ON IN RE-
CONFIGURABLE MANUFACTURING SYSTEMS 

The fifth study investigated the use of knowledge discovery in RMSs by combining 
SMO and data-mining techniques to support decision-making and speed up the un-
derstanding of alternative RMS designs.  In particular, this study applied an FPM al-
gorithm to conduct post-optimality analysis on multi-dimensional datasets from the 
industrial-inspired application considered in the previous study. This study focused 
on discovering the rules to reveal how the tasks assigned to workstations constitute 
reasonable solutions for scalable RMSs. Figure 26 presents the unique concept pro-
posed in this research. This methodology extracts knowledge for decision support by 
systematically exploring and analyzing multiple optimal solutions generated via SMO 
using data mining. 

 

Figure 26: Knowledge discovery methodology for SMO. 
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Aiming to investigate the proposed methodology’s applicability, it was applied to the 
case considered in Study IV. Therefore, the case was based on the crankshaft produc-
tion of two product families under different volumes, each with a specific task se-
quence. The production line has three reconfigurable workstations, wherein machines 
can be added, removed, or reallocated to meet production requirements.  

The optimization had two conflicting objectives (THP and LT) and considered 12 cases 
depending on the number of machines used in the three reconfigurable workstations 
and the production proportion of both products. These cases consist of using seven, 
eight, and nine machines together with the proportions of 80/20 (80% of Part 1 and 
20% of Part 2), the opposite case 20/80, and two more cases in between (i.e., 60/40 
and 40/60, respectively).  

The FPM analysis required a selected and unselected set of solutions that were carried 
out on eight different solution groups. First, all scenarios were combined using the 
Pareto-optimal solutions from all scenarios as the selected set and all remaining dom-
inated solutions as the unselected set. The following three cases used the Pareto-opti-
mal solutions from all scenarios, where the number of machines used matched the case 
as the selected set and the remaining solutions as the unselected set. The last four cases 
considered scenarios in which the proportions were the same in the same way. Figure 
27 presents the selected set (gray) and the unselected set (white) for the eight different 
scenarios studied. By dividing the different scenarios in this way, specific rules related 
to the specific proportions and numbers of machines were discovered.  

 

 

Figure 27: FPM selected and unselected set of solutions. 

While the rules generated separately from these different cases can provide insights 
into optimal task allocations for each case, it is interesting to note that the combined 
case can generate more general rules that apply invariantly to the system, regardless 
of the number of machines or the proportion used. The three cases for different num-
bers of machines generate rules describing the optimal task allocation for a specific 
number of machines regardless of the proportion. Finally, the four cases for the differ-
ent proportions generated rules relating to the optimal task allocation for a particular 
proportion, irrespective of the number of machines. The resulting rules for each case 
can be found in Table 3. In this table, “T” represents tasks from Part 1, while “P” rep-
resents tasks from Part 2. 
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Table 3: Resulting rules. 

 

In summary, this study used data mining in 12 MOO datasets of an RMS to discover 
knowledge that could lead to a better understanding of the systems. The results pre-
sented for the considered MPFL can be used to identify valuable information, such as 
which product to prioritize when allocating tasks and which tasks are more critical to 
the system’s overall performance when optimizing THP and LT. The applicability of 
the presented method is not limited to RMSs. The presented approach showed how 
data mining and FPM could be applied to generated datasets and support a better un-
derstanding of the behaviors of RMSs and their variables under different scenarios, 
providing the decision-makers with critical factors to improve and understand the sys-
tem. Considering the RMSs’ stochastic and complex nurture, supporting decision-
making through knowledge capturing becomes challenging for manufacturing compa-
nies. Therefore, this study contributes to Obj. 2 and Obj. 4 by proposing a method that 
shows how knowledge discovery can be captured and applied to support post-optimal 
analyses of RMSs. 

4.2.6  PAPER VI:  AN ENHANCED SIMULATION-BASED MULTI-OB-
JECTIVE OPTIMIZATION APPROACH W ITH KNOW LEDGE 
DISCOVERY FOR RECONFIGURABLE MANUFACTURING 
SYSTEMS 

The sixth study investigated a customized genetic representation to evaluate the effec-
tiveness and responsiveness of NSGA-II when incorporated into an SMO approach 
and applied to RMSs. Additionally, the previous study’s data-mining methodology was 
incorporated into the proposed approach and showed the importance of the effective-
ness of the optimization approach. In particular, this study presented a tailor-made 
SMO approach enhanced by a novel FPM method for optimizing an RMS and conduct-
ing post-optimal analyses while addressing work tasks, resources, and buffer capacity 
allocations.  

The proposed SMO approach consists of optimization and simulation components. 
The tight integration of the simulation components (DES software) and the optimiza-
tion components (implemented in MATLAB) allows an accurate representation of an 
RMS and its variables, regardless of their nature. One of the key aspects of NSGA-II 
customization is priority-based representation. In such a representation, the priority 
value (between 0 and 1) is used to calculate the number of resources assigned to a 
workstation and the capacity assigned to a buffer and indicates the priority of a task to 
be allocated before other tasks. Additionally, for the designed genetic representation, 
the implemented custom-made encoding and decoding procedures generate a popu-
lation of feasible solutions, considering the process requirements and constraints to 
be mapped to the simulation component. When the RMS solutions are simulated, the 
simulation-based fitness function evaluation results, in terms of multiple objectives, 
are fed back to the optimization component and go through the selection mechanism. 
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Subsequently, the crossover and mutation operators generate a new population of off-
spring to iteratively repeat the process until the stopping criteria are reached. The pro-
posed SMO approach is illustrated in Figure 28. 

 

Figure 28: SMO approach. 

This approach was applied to an MPFL at an R&D facility where two product families 
need to be manufactured are specific volumes, 70/30 (70% of Part 1 and 30% of Part 
2) and 30/70. The process consists of 29 assembly tasks for Part 1 and 24 for Part 2. 
Also, the SMO approach used two conflicting objectives (throughput and TBC) and 
considered the case in which the total number of operators was seven, eight, and nine 
were distributed in three workstations.  

The results of the optimization are illustrated in Figure 29. The left-hand side of the 
figure shows the nondominated solutions and, as expected, the increase in throughput 
when more operators were employed. The right-hand side of the figure presents the 
task assignment to workstations and their related patterns for the nondominated so-
lutions for each scenario. Each row represents one solution, and each column illus-
trates one task for either Part 1 or 2. Moreover, the color of the cells indicates the work-
station where the related task (A indicates tasks from Part 1, and E indicates tasks from 
Part 2) of each part has been assigned. The approach also provided information about 
the optimal layout configuration (number of operators per workstation) and each re-
quired buffer capacity to meet specific production requirements.  
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Figure 29: Objective space of nondominated solutions and their task assignment for RMS scenarios. 

To assess the proposed tailor-made SMO approach, it was compared with that previ-
ously presented. In Study IV, the standard SMO approach was used in a simpler case, 
where the number of tasks was 25 compared to the 53 tasks involved in the current 
case. The same scenarios for the considered RMS application were modeled and opti-
mized using the same algorithm settings. The convergence rate comparison in the up-
per part of Figure 30 presents a higher hypervolume for the solutions obtained from 
the proposed SMO, showing that the proposed approach produces better-quality solu-
tions. The superiority of the proposed approach over the standard was further vali-
dated, not just when adding operators but also by increasing the number of work-
stations. Then, a new set of experiments where the scenarios with nine operators, but 
this time distributed in four and five workstations, were designed and optimized using 
both approaches. As the lower part of Figure 30 shows, the results confirm that the 
proposed SMO approach outperforms the standard SMO, obtaining better conver-
gence when finding the Pareto-optimal front. The left-hand side of the lower part of 
the figure refers to the system using four workstations, while the right-hand side refers 
to the system using five workstations.  This superiority is due to the standard SMO 
approach using a commercial NSGA-II, where the encoding and decoding procedures 
cannot be customized, leading to many unfeasible solutions that must be repaired. 
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Figure 30: Upper: Convergence rate plots of both approaches for the scenarios with seven (left-hand side), eight (center), 

and nine (right-hand side) operators. Lower: convergence rate plots of both approaches for nine operators distributed in 

four and five workstations (WS). 

Furthermore, this study discovered significant knowledge regarding the RMS consid-
ered by applying FPM to the generated datasets. The knowledge was presented as de-
cision rules and revealed critical system information when employing a variable num-
ber of operators and facing fluctuating proportions of the produced products. The ex-
tracted decision rules showed how to optimally allocate the operators and tasks in the 
workstations and the needed buffer capacities for the studied scenarios.  

This study also shows the importance of the optimization approach for knowledge dis-
covery and how the quality of the solutions impacts the quality of the extracted 
knowledge, which might be critical to avoiding misleading information. This is shown 
for the seven operator scenarios in Figure 31. The figure presents the solutions ob-
tained from both approaches: circles for the proposed SMO and squares for the stand-
ard SMO. FPM was then applied to the resulting dataset obtained from the standard 
SMO approach. The blue points represent the solutions that match the rules extracted 
through the proposed SMO, while the red points represent those that match the rules 
extracted from the standard SMO in both datasets. On the one hand, significantly 
fewer blue points than red points, and almost no blue points were found in the stand-
ard data set, indicating the uniqueness of the rules extracted from the proposed SMO 
approach. On the other hand, there are many red points (solutions that match the rules 
extracted from the standard SMO approach) found, regardless of the dataset. This il-
lustrates that the knowledge extracted from the standard SMO dataset is not unique 
and does not provide the best performance for the system. 
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Figure 31: Rules quality comparison of the seven operator scenarios. 

In summary, this study introduced a novel SMO approach that uses a specific genetic 
representation and a customized encoding and decoding mechanism to address the 
main challenging areas of scalable RMS. The proposed SMO-NSGA-II combines the 
task and buffer allocation dilemma with the system’s configuration while optimizing 
several conflicting objectives. The tested performance of the proposed SMO showed 
that it could be significantly enhanced by a problem-specific and customized genetic 
representation. Additionally, the study presented how data mining and knowledge dis-
covery methods can support decision-making in the ever-increasing MOO of RMS-
generated data and highlighted the importance of the optimization approach for the 
quality of the discovered knowledge. Therefore, this study contributes to Obj. 2 and 
Obj. 3 by investigating and proposing problem-specific genetic representation, encod-
ing, and decoding mechanisms to enhance the performance of an SMO approach for 
RMSs when facing scalable capacities and fluctuating production volumes. Further-
more, it contributes to Obj. 4 by investigating the applicability of knowledge discovery 
to RMS applications, revealing the importance of the optimization approach.  

4.2.7  PAPER VII :  KNOW LEDGE-DRIVEN MULTI-OBJECTIVE OPTI-
MIZATION FOR RECONFIGURABLE MANUFACTURING SYS-
TEM 

The seventh study investigated the use of the KDO approach to speed up convergence 
in RMS applications. Besides SMO being a promising tool that leads to improvements 
in RMSs, the use of KDO could represent a significant contribution because, due to its 
dynamic nature and complexity, it might face many timely and expensive optimization 
processes along its lifecycle. 

This study demonstrated how a knowledge-driven NSGA-II could improve the conver-
gence rate of an RMS. This approach was applied to the MPFL considered in Study VI, 
where a variable number of operators and production volumes were assessed in three 
reconfigurable workstations. As in Study VII, the previously used proposed SMO 
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approach was initially applied to six scenarios, one scenario for each pair of some op-
erators (seven, eight, and nine), and the proportion 70% of one product, 30% of the 
other, and vice versa (70/30, and 30/70). These scenarios and the number of nondom-
inated solutions found during the initial optimizations are described in Table 4. In the 
table, the first column refers to the number of operators employed in the RMS, the 
second to the produced proportion, and the third to the number of nondominated so-
lutions found. As shown in the table, the number of optimal solutions for each scenario 
varied from 10–19, except for the last scenario, where only one nondominated solution 
was found.  

Table 4: Scenarios and the number of nondominated solutions found in the initial optimizations. 

 

This study used generalized knowledge about the specific number of operators and 
proportions to improve future optimization processes. For example, general 
knowledge from scenarios with a specific proportion could be used in future scenarios 
that want to investigate some operators not considered before for the same proportion. 
This knowledge discovery only focused on task allocation, which involved 53 decision 
variables that referred to the produced products’ tasks. To generate knowledge, we ran 
FPM in a dataset that combined the output of all initial optimizations and evaluated 
what was common to the optimal solutions of just each specific number of operators 
and proportion. Table 5 presents the discovered rules and indicates the relationships 
between the tasks that distinguish the optimal scenarios from the rest. In the table, A 
refers to tasks from one product, and B refers to tasks from the other.  

Table 5: Rule interactions found using FPM in the initial optimization datasets of each scenario. 

 

The rules described in the above table were applied to the new optimization scenarios. 
The new scenarios consisted of two extra proportions (40/60 and 60/40) using the 
same number of operators as before (seven, eight, and nine) and two different num-
bers of operators (six and 10) with the previous proportions. Therefore, the new sce-
narios were optimized using the same SMO approach, on the one hand, considering 
the rule interactions found (KDO), and on the other hand, not considering the previ-
ously discovered knowledge. The convergence plots comparison of the standard opti-
mization and the KDO for the new scenarios are presented in Figure 32.  
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Figure 32: Convergence plots of the scenarios with seven operators (top-left), eight operators (top-center), nine operators 

(top-right), six operators (lower-left), and 10 operators (lower-right). 

The results showed that the KDO approach converged faster in all cases but one. Only 
when 10 operators were used at a proportion of 30/70 did the KDO not converge faster, 
which indicates that KDO improved the convergence rate compared to the standard 
optimization in the studied RMS. The same conclusion is indicated by Table 6. The 
table presents the area under the curve of the convergence plots shown in Figure 32. 

Table 6: Area under the curve of the convergence plots shown in Figure 32. 

 

In summary, this study showed that KDO could support the optimization of RMS ap-
plications by improving the convergence rate. Additionally, this study illustrated how 
the use of KDO on SMO datasets of RMSs can be achieved. The findings of this study 
have contributed to Obj. 2 and Obj. 4 through the completed exploration of how SMO 
and KDO can support RMS applications in enhancing future optimization scenarios. 
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CONCLUSIONS AND FUTURE WORK 

5.1  CONCLUSIONS 

In today’s uncertain and competitive market, where a combination of an ever-short-
ened product lifecycle, a high degree of customization, and frequent volume changes 
are among the challenges faced by manufacturing organizations, adopting RMS appli-
cations plays a crucial role in the manufacturing industry’s success. RMSs possess the 
capabilities necessary to adapt their functionalities and production capacity to cope 
with uncertainties and changes in a market. However, due to the intrinsic complexity 
of RMSs, managers and decision-makers need support in optimally designing, config-
uring, and reconfiguring RMSs to cope with challenges including task assignments to 
workstations, system configurations, and amounts of resources (e.g., machines, buff-
ers, etc.), which are not usually considered simultaneously. Moreover, although stud-
ies have combined simulation and optimization, the use of SMO is very sporadic, 
mainly focuses on one of the challenge areas at the time and requires manual data 
transfer from the simulation to the optimization and vice versa. In this regard, this 
dissertation proposes using SMO to address several RMS areas simultaneously. It in-
vestigated how the combination of simulation and optimization supports the RMS de-
sign and management. Additionally, this dissertation showed that a problem-specific 
genetic representation could significantly enhance the performance of a standard SMO 
algorithm. 

Knowledge discovery methods have been used in manufacturing systems to extract 
patterns and boost decision-making effectiveness. However, although RMSs consti-
tute a critical enabler for much-needed changeable manufacturing systems, their 
knowledge-capturing and decision-making processes are underdeveloped. Accord-
ingly, the results of this dissertation demonstrate that the use of data mining on RMSs’ 
historical optimization datasets supports a better understanding of their variables un-
der different scenarios.  

Furthermore, the use of KDO on SMO datasets of RMSs is a novel area that can sup-
port the RMS research community. Consequently, this dissertation demonstrated the 
benefits decision-makers could gain from adopting an SMO-KDO approach for RMSs. 
It improves optimization convergence and production efficiency. The use of SMO com-
bined with KDO also contributes to minimizing disruptions in production when a new 
design or implementation needs to be evaluated.  
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In a nutshell, applying SMO combined with KDO on RMSs has proven to be a support-
ive and helpful decision-support tool for manufacturing organizations.  

 

5.1.1  CONTRIBUTIONS TO KNOW LEDGE 
The literature review identified a clear gap in using SMO to address several RMS areas 
simultaneously as well as opportunities for using SMO combined with knowledge dis-
covery and KDO to enhance the decision-making process.  

In the following section, the contribution to knowledge of this dissertation work is for-
mulated as the answers to the four research questions listed in Section 3.1: 

1. How can RMSs be efficiently modeled in a simulation environment for MOO 
optimization? 

Due to the lack of research that efficiently combines simulation and optimization to 
support RMSs, this dissertation investigated and evaluated various suitable modeling 
techniques to successfully apply MOO to RMSs. The modeling techniques targeted dif-
ferent types of RMSs in which the variable number of workstations and resources, as 
well as SPFLs and MPFLs, including material-handling behavior, were all considered 
in a single optimization problem formulation. 

2. How can an SMO approach support the manufacturing industry in becoming 
more competitive when shifting toward RMSs? 

Besides the efficient combination of simulation and optimization for RMSs being 
scarce, prior research has not simultaneously considered several challenging areas 
from a MOO perspective. Therefore, this dissertation researched and evaluated how 
different novel SMO approaches could be efficiently utilized to support improvements 
in challenging areas related to RMS design and management. 

3. How can the performance of an SMO approach be enhanced when optimiz-
ing RMSs? 

Since GA approaches are known to be the most flexible and efficient metaheuristic 
algorithms when applied to RMSs, choosing the appropriate genetic representation is 
a crucial task impacting optimization performance. This dissertation illustrates how 
the SMO performance can be boosted by a customized encoding and decoding strategy 
specifically designed to optimize RMSs. The importance of such a customized encod-
ing and decoding mechanism cannot be undermined because it is not only evaluated 
to improve SMO performance significantly, but it also underpins the high-quality so-
lutions required for applying KDO in RMS applications. 

4. Can knowledge discovery and KDO support the decision-making process for 
RMSs and enhance the performance of the SMO approach? 

Due to the stochastic nature of RMSs and the need to evaluate changing scenarios that 
include different production rates, fluctuating production volumes, and different 
numbers of resources such as machines, buffers, material handling units, etc., using 
SMO generates many large and complex datasets that could be difficult to assess. In 
this regard, this dissertation demonstrated how knowledge discovery and KDO enable 
efficient analyses by exposing underlying knowledge that improves understanding of 
decision variables and future optimization performance, supporting decision-making 
in RMS applications.  

Altogether, this dissertation’s outcome was constructed as a method that demon-
strates how the use of SMO combined with KDO supports a transition toward RMSs. 
It contributes significantly to overcoming the design and management process’s 
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challenging areas while still considering scalability and convertibility, the most critical 
reconfiguration attributes. 

5.2  FUTURE W ORK 

As discussed throughout this dissertation, a shift toward RMSs can support manufac-
turing companies in a highly competitive and volatile market. This dissertation con-
tributes to the manufacturing industry by studying the use of SMO in RMSs. However, 
circularity and sustainability are essential aspects to incorporate into future manufac-
turing systems. While productivity and time efficiency are significant factors in re-
maining competitive, the importance of environmental awareness is being increas-
ingly acknowledged. Considering RMSs as a critical enabler paradigm for coping with 
volatile markets, rapid changes in production, mass customization, globalization, and 
technological advances, environmental consideration has become another essential 
aspect to contemplate in RMS design and management. Future research should focus 
on studying how to include sustainability and circularity aspects in the SMO of RMSs. 
This could be further supported by knowledge discovery methods to better understand 
sustainability drivers when applied to RMSs under different scenarios. Such an objec-
tive would provide new knowledge and methods that account for new metrics during 
RMS design and reconfiguration. 

Regarding RMSs, future research can also consider increasing product variety com-
bined with additional factors of a system’s lifecycle (e.g., reconfiguration frequency). 
However, the findings of this research are not limited to RMSs and could be extrapo-
lated to domains other than manufacturing (e.g., reconfiguration in healthcare facili-
ties or logistics networks).  

Additional research could integrate the use of SMO not just for RMSs but also incor-
porate its implications into a more holistic perspective and study its impact on an en-
tire supply chain. RMS reconfigurations include changes at different levels, ranging 
from cell and production to an entire factory and supply chain. Consequently, the use 
of SMO and KDO could be extended to support the manufacturing industry in finding 
optimal reconfigurations for the association of different levels in a value chain. 
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ABSTRACT 

The purpose of this study is to analyze the use of Simulation-Based Multi-Objective Optimization (SMO) 
for Reconfigurable Manufacturing System Configuration Analysis (RMS-CA). In doing so, this study 
addresses the need for efficiently performing RMS-CA with respect to the limited time for decision-making 
in the industry, and investigates one of the salient problems of RMS-CA: determining the minimum number 
of machines necessary to satisfy the demand. The study adopts an NSGA II optimization algorithm and 
presents two contributions to existing literature. Firstly, the study proposes a series of steps for the use of 
SMO for RMS-CA and shows how to simultaneously maximize production throughput, minimize lead time, 
and buffer size. Secondly, the study presents a qualitative comparison with the prior work in RMS-CA and 
the proposed use of SMO; it discusses the advantages and challenges of using SMO and provides critical 
insight for production engineers and managers responsible for production system configuration. 

1 INTRODUCTION 

Simulation-based optimization allows the decision-maker to systematically search a large decision space 
for an optimal or near-optimal system design without being restricted to  a  few  pre-specified alternatives 
(Xu et al. 2016; Niño-Pérez et al. 2018). Simulation-based multi-objective optimization (SMO) can be 
applied when multiple conflicting objectives exist (Zhang et al. 2017). The benefits of SMO include 
generating a large set of Pareto-optimal solutions in a single optimization run (Dudas et al. 2014), and 
developing insights about system performance based on the relationships among the design variables, 
facilitated by the functional forms of models (Xu et al. 2015). Increasingly, research underscores the 
importance of utilizing SMO in Reconfigurable Manufacturing Systems Configuration Analysis (RMS-
CA) (Manzini et al. 2018).  
 Reconfigurable Manufacturing Systems (RMS) belong to the type of production systems that enable 
adding machines to existing operational systems very quickly, in order to respond rapidly, and economically 
to unexpected surges in market demand (Koren et al. 2018). RMS-CA includes the arrangement of 
machines, equipment selection, and operation assignments impacting the performance of manufacturing 
companies (Youssef and ElMaraghy 2007; Youssef and ElMaraghy 2008). RMS-CA is crucial for the 
manufacturing industry for two reasons. Firstly, RMS-CA is essential for achieving high flexibility, 
dynamic market demand, increasing customization, high-quality products, flexible batches, and short 
product life cycles necessary for increased manufacturing competitiveness (Bortolini et al. 2018). Secondly, 
studies suggest that RMS-CA leads to improved performance when compared to traditional production 
system configurations, including productivity, responsiveness, and cost (Freiheit et al. 2003; Gu 2017).  
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 Prior efforts focused on multi-objective optimization for RMS-CA are scarce and predominantly adopt 
Genetic Algorithms (GA)(Renzi et al. 2014). For example, Goyal et al. (2012) applied a GA for obtaining 
the optimal configuration based on convertibility, utilization of machines, and cost. Similarly, studies 
applied GAs for rebalancing how tasks are allocated in the machines/stages while either minimizing the 
number of machines used to reach a certain capacity or maximizing the capacity of the system for a certain 
number of machines (Wang and Koren 2012; Borisovsky et al. 2013). Likewise, the use of simulation for 
RMS-CA is sporadic, does not involve multi-objective optimization, and has therefore required 
considerable calculation efforts to arrive at solutions (Gola and Świć 2016). The above shows that research 
about SMO for RMS-CA remains limited despite calls for increased understanding and highly relevant for 
achieving the benefits of RMS (Bensmaine et al. 2011; Ng et al. 2011; Koren et al. 2018).  
 Against this backdrop, the purpose of this study is to analyze the use of simulation-based multi-
objective optimization for RMS-CA problems. Particularly, it investigates one of the salient problems of 
RMS-CA: determining the minimum number of machines necessary to satisfy demand. This study adopts 
the non-dominated sorting genetic algorithm NSGA-II (Deb et al. 2002) to achieve SMO for RMS-CA, and 
presents two contributions.  
 On the one hand, this study extends prior research done by Koren and Shpitalni (2010), and propose 
four additional steps for adopting SMO in RMS-CA. A first step involves modeling of RMS configurations 
in a simulation environment including a routing or a selection interface modeling approach. A second step 
includes specifying the optimization objectives of interest to a decision-maker, the constraints of the 
production system, and the simulation parameters. A third step comprehends calculating the outputs of each 
RMS configuration and determining a best solution. The fourth step consists of understanding the 
underlying trade-offs of a particular RMS configuration. The results of this study show how these four 
additional steps including SMO contribute to maximizing production throughput, and minimizing lead time 
and buffer size.  
 On the other hand, this study presents a qualitative comparison between the prior work in RMS-CA 
and the proposed use of SMO by discussing its advantages and challenges. Taken together, the findings of 
this paper advance understanding of SMO for efficiently performing RMS-CA with respect to the limited 
time for decision-making in the industry (Ng et al. 2011). The conclusions of this study present important 
insight for production engineers and managers responsible for production system configuration. The 
remainder of the paper is structured as follows. Section 2 describes current understanding about SMO and 
RMS-CA.  Section 3 presents the method of this study, and shows its empirical results of SMO for RMS-
CA. Section 4 presents the insight facilitated by SMO for RMS-CA and discusses the findings of this study. 
Section 5 concludes.  

2 PROBLEM FORMULATION AND LITERATURE REVIEW 

2.1 Simulation-Based Multi-Objective Optimization 

Multi-objective optimization is a well known research area that utilizes a variety of methods such as 
scalarization and posteriori methods. Some of the most used scalarization method are weighted sum method 
and  ε-constraint method among other. Posteriori methods aim to represent the pareto front, which is 
commonly achieved by using evolutionary algorithms like population-based algorithms, genetic algorithms, 
or simulating annealing (Touzout and Benyoucef 2019). SMO presents a desirable alternative as the 
intersection of two powerful decision-making techniques, namely, simulation and optimization (Jian and 
Henderson 2015). From an optimization perspective, SMO compares the effects of decision variables on 
the output of a model. From a simulation perspective, SMO takes into account the randomness occurring 
in a real-life production system. The combined use of simulation and optimization present several benefits 
when compared to analytical optimization. Analytical optimization assumes that the objective function is a 
single scalar value, which constitutes a strong simplification for many problems in manufacturing (Freitag 
and Hildebrandt 2016). For example, manufacturing companies who are evaluating the best RMS 
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configuration may wish to fulfill multiple criteria and be subject to randomness and variability. In such 
instances, adopting an analytical optimization may not be realistic.  
 SMO adopts the representation of problems utilized in analytical multi-objective optimization 
(Yelkenci Kose and Kilincci 2020). The general representation of an SMO problem consisting of a number 
of objectives and subject to some equality and inequality constraints in the form presented by equation (1). 

 
𝑓!(𝑥) = [𝑓"(𝑥), 𝑓#(𝑥), … , 𝑓$(𝑥), ]	 

(1) 
𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑	𝑡𝑜	{𝑔!(𝑥) ≥ 0	𝑖 = 1,2, … ,𝑚	ℎ!(𝑥) = 0	𝑖 = 1,2, … , ℎ	 

 
 Where x is the decision variable vector representing a feasible solution, i.e., satisfying the m inequality 
constraints and h equality constraints; fi is the objective function to be minimized, and n is the number of 
objective functions.  
 Population-based Metaheuristic algorithms, like GAs, are commonly utilized in multi-objective 
optimization. GAs are a sub-class of evolutionary algorithms based on the theory of natural evolution. The 
best solutions, or parents, from each generation, are selected and combined, creating offspring solutions 
with better chances of attaining higher fitness values optimization. NSGA-II is one example of a multi-
objective genetic optimization algorithm frequently applied in SMO (Lidberg et al. 2019). When 
considering the use of multi-objective optimization for RMS challenges, GAs have shown better results in 
nearing the optimal solutions in a more efficient and timely manner than other optimization algorithms 
(Renzi et al. 2014). The algorithm uses the fast non-dominated sorting technique and a crowding distance 
to rank and select the population fronts (Deb et al. 2002). In NSGA-II, multiple objectives are reduced to a 
single fitness measure by the creation of a number of fronts, sorted according to the non-domination. The 
result of SMO with NSGA-II leads to a set of solutions in the form of Pareto-optimal solutions where the 
final desired solution is selected according to some higher-level information of the problem (e.g., 
throughput, work in progress, or lead time) (Amouzgar et al. 2018). Pareto-optimal solutions include a set 
of solutions representing efficient, non-dominated solutions, and their possible trade-off. Based on a set of 
Pareto-optimal solutions, manufacturing managers may analyze the relationship of objectives, and consider 
individual preferences for arriving at a solution (Muta et al. 2014). 

2.2 Reconfigurable Manufacturing Systems Configuration 

The selection of the best RMS configuration is among the most important choices in the management of a 
RMS (Dou et al. 2010). RMS is essential for achieving the overall objectives and characteristics of a 
production system and its performance (Moghaddam et al. 2018). RMS is a competing alternative to other 
types of configurations, such as, serial production lines or parallel systems.  
 Usually a RMS consists of several stages, each stage consists of multiple parallel and identical machines 
(Koren et al. 2018). RMSs are characterized by cross-over connections after every stage of a production 
process. Products may be transferred from a machine to any subsequent machine in a cross-over connection. 
Importantly, in a RMS, each stage of a production process may not necessarily have an identical number of 
machines (Haddou Benderbal et al. 2017). Therefore, for the same number of machines, there are more 
RMS configurations than for those of serial production lines. Consequently, RMS-CA covers multiple 
research issues and structuring levels of the factory (Andersen et al. 2017), and can be partitioned into three 
sub-problems (Manzini et al. 2018). First, problems determining the minimum number of machines to 
satisfy demand. This type of problem may include product assignment to machines, production 
technologies, or product routing. Second, problems defining a specific layout and production process. 
Third, problems focusing on planning of production and guaranteeing product delivery. 
 Koren and Shpitalni (2010) propose a method for calculating the number of machines in a system, the 
first RMS-CA sub problem above. This methos involves (1) determining the minimum number of machines. 
(2) Calculating the number of possible RMS configurations, including the analysis of a large number of 
alternative RMS configurations. (3) Reducing the number of RMS configurations by eliminating those 
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RMS configurations that do not meet demand. (4) Evaluating the performance of the RMS configurations 
to select a winning one.  As will be explained below, SMO can be applied effectively in this method. 

2.3 Summary of Literature Review 

As introduced in the Sections 1 and 2, the literature on RMS configurations is extensive and frequently 
resorts to simulation or multi-objective optimization (Wang and Koren 2012). Prior studies on RMS-CA 
have relied on analytical calculations for determining the minimum number of machines satisfying demand 
(Koren and Shpitalni 2010).  This procedure is essential in manufacturing environments requiring rapid 
adaptations of capacity and functionality (Renna 2010). However, adopting SMO for RMS-CA constitutes 
a novel contribution to a classical problem that traditionally requires significant calculation and modeling 
efforts (Fu et al. 2014; Xu et al. 2016). 
 RMS-CA is a commonly addressed problem when designing a new RMS (Koren et al. 2018). Prior 
studies applied analytical optimization or simulation independently to RMS-CA (Talbi et al. 2016). 
Simulation has also been combined with analytical optimization in the analysis of several RMS 
configurations (Gola and Świć 2016). However, prior efforts which used simulation and multi-objective 
optimization require the manual transfer of results from one to the other (Petroodi et al. 2019). To the best 
of our knowledge, this study is the first proposing SMO for RMS-CA involving several RMS configurations 
including variable number of stages. An advantage of SMO over previous efforts focusing on multi-
objective optimization includes the evaluation of various RMS configurations with a single model. This 
study proposes two modeling approaches for SMO in RMS-CA including a product routing and selection 
interface modeling approach. These modeling approaches adopt NSGA-II to evaluate the route of products 
as a variable in a simulation model containing alternate RMS configurations. 

3 METHOD AND RESULTS OF SIMULATION MULTI-OBJECTIVE OPTIMIZATION 
FOR RECONFIGURABLE MANUFACTURING SYSTEM CONFIGURATION ANALYSIS 

This study illustrates the use of SMO in RMS-CA for determining the minimum number of machines 
necessary to satisfy demand. To do so, this study adopts the above-mentioned method for RMS-CA on an 
industrial application example. In this example, a manufacturing company designs an RMS that includes a 
14.4 minutes machining process. The machining process includes work on three faces of a product, which 
requires different fixtures, and three different types of machines. The machining process consists of five 
tasks: four tasks in Face I, one task in Face II, and one task in Face III, as shown in Figure 1. The machining 
process is subject to disturbances, and machine availability is estimated to be 90% with  an average repair 
time of 5 minutes. The machining process must satisfy a demand of 550 products/day in a 23-hour working 
day. 
 According to the method proposed by Koren and Shpitalni (2010), the first step in RMS-CA involves 
determining the minimum number of machines. Equation (2) is used in order to determine the number 
machines, M, needed in a balanced system, where D is the daily demand (parts/day), T is the machining 
time (min./part), A is the machine availability (i.e., 0.9 or 90%), and W is the daily working time (minutes 
per day). The resulting number of machines, according to the equation (2), is equal to 6.37 which has to be 
rounded up to M = 7 machines. 

 
𝑀 = %	∗	(

)	∗	*
                                                                              (2) 
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Figure 1: Task sequence for Faces I, II, and III in the machining process. 

 The second step in RMS-CA involves calculating the number of possible RMS configurations. The 
total possible number of RMS configurations, C, for the M machines, arranged in S number of stages, is 
determined by Equation (3), which for this example yields 64 configurations: 

 
                                                                      𝐶 = . (,-")!

(,-0)!(0-")!
/                                                                        (3) 

 The third step in RMS-CA comprises the reduction of the number of RMS configurations. Considering 
that the machining process takes place in three faces of the product and a different fixture is required for 
every one of these faces, and the systems can be divided into three sub-systems, one for every face. By 
applying Equation (2) to every sub-system, the equation yields 3.67 for Face I, 0.88 for Face II, and 1.81 
for Face III. Consequently sub-systems 1, 2, and 3 require 4, 1, and 2 machines respectively. 
 Equation (3) determines the number of RMS configurations for every sub-system. For the first sub-
system with 4 machines, Equation (3) yields 8 possible RMS configurations arranged in one, two, three, or 
four stages. The second sub-system comprises only one machine, so it requires only one RMS 
configuration. The third sub-system involves two machines, and could require two possible RMS 
configurations (serial or parallel). However, the number of RMS configurations can be reduced to one 
(parallel) when considering that this sub-system performs only one machining task. Consequently, the 
machining process involves a total of eight different RMS configurations arranged between three and six 
stages as shown in Figure 2.  
 The fourth step of RMS-CA involves evaluating the performance of the RMS configurations. 
Evaluating the performance of several RMS configurations imposes two challenges. First, assessing 
performance including simulatenous and multiple objectives. Second, developing multiple stochastic 
simulation models each representing single RMS configurations, and including the variability in the 
machining process.  In the example above, RMS configurations may include any combinations that consist 
of three to six stages of machines, together with their inter-stage buffers.  
 This study argues that SMO together with the optimization algorithm NSGA-II can be effective for 
addressing these two challenges. In the example above, SMO can assess different combinations of input 
variables according to the optimization objectives and the system constraints in order to find the best outputs 
solutions. For example, SMO can determine the most suitable RMS configurations that fulfills demand, 
minimizes total buffer capacity (TBC) and lead time (LT), and maximizes throughput per hour (TH). Then, 
NSGA-II can consider multiple factors simultaneously. The optimization engine including NSGA-II 
evaluates iteratively the feedback from the outputs in order to instruct a new combination of input 
parameters in the effort to define the Pareto front. Nevertheless, proposing a SMO modeling approach is 
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necessary for evaluating efficiently multiple RMS configurations, including variability of the process, in a 
single simulation model.  

Figure 2: Eight different RMS configurations for the machining process. 

Evaluating multiple and alternative RMS configurations with a single simulation model is desirable 
when compared to multiple simulation models searching independently for the best trade-off solutions. Two 
modeling approaches are proposed for achieving SMO for RMS-CA with a single model. The proposed 
modeling approaches are software independent and could be adopted regardless of the software. This study 
utilizes the software FACTS Analyzer, currently available in our laboratory, for implementing SMO for 
RMS-CA with a single model that can represent multiple RMS configurations. FACTS Analyzer includes 
a DES engine wherein almost all the variables declared in the simulation models can be used as the input 
variables for the optimization algorithm and multiple output variables and their functions can be set as the 
multiple objectives for a SMO problem using NSGA-II (Ng et al. 2011).  

We refer to the first modeling approach as a routing approach. In the routing approach the optimization 
algorithm evaluates alternative product routes as input variables and includes a fixed number of machines. 
In this setup, the routing approach evaluates eight RMS configurations in a single SMO model. Figure 3 
presents the routing approach of SMO for RMS-CA. The left-hand side of Figure 3 shows the SMO model 
including all possible routes for eight RMS configurations. The right-hand side of Figure 3 presents the 
route for RMS configuration A of Figure 2. 

We refer to the second modeling approach for achieving SMO for RMS-CA as a selection interface 
modeling approach. In this case, the algorithm will generate a different RMS configuration depending on 
which input variable (interface) is selected in the SMO model. Figures 4 presents the selection interface 
modeling approach of SMO for RMS-CA. Figure 4 exemplifies the selection interface object and shows 
that the selection includes eight objects representing the RMS configurations. Figure 4 presents A, C and 
H RMS configurations contained in the interface object. 
 The routing and selection interface modeling approach evaluate multiple RMS configurations in a 
single SMO model. Routing and selection interface modeling differ in the amount of objects used in a model 
and present unique benefits. The selection interface modeling requires more objects for every SMO model 
and additional modeling and setup time than the routing one. However, the selection interface modeling 
approach has a cleaner model representation, which increases understandability for stakeholders and 
managers unfamiliar with simulation. Oppositely, the routing approach requires less modeling time and is 
therefore desirable in large scale problems involving multiple machines. 
 Solving the RMS-CA above, this study applied 30,000 iterations and 30 replications for evaluating the 
performance of the RMS configurations by SMO. The decision variables for the SMO model include the 
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alternative routes for each RMS configuration and the capacity of buffers in-between machines. The 
capacity of each buffer is constrained to a range between one and ten products. An additional constraint 
constitutes the total buffer capacity (e.g., the summation of all inter-stage buffers, from start to finish in the 
machining process) which may not exceed 20 products. Parameters are evaluated based on unitary buffer 
increments for each simulation run following the optimization objective functions:  

 
𝑀𝑎𝑥𝑖𝑚i𝑧𝑒 𝑓1=TH(𝒙) : Throughput per hour 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2=TBC(𝒙) : Total Buffer Capacity 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓3=	LT(𝒙) : Lead Time 
 
Where: TBC <=20 

 

Figure 3: Routing approach of SMO for RMS-CA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Selection interface modeling approach of SMO for RMS-CA. 
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3.1  Simulation-Based Multi-Objective Optimization Results 

The results from SMO for RMS-CA of the eight RMS configurations is presented in the parallel coordinate 
plot of Figure 5. Every trace of Figure 5 constitutes the result of a simulation run towards reaching the 
objective of every RMS configuration. The columns in Figure 5 represent the TH, LT, TBC, and the eight 
RMS configurations, from A to H. The results from the SMO for the RMS-CA show three clusters of TH. 
The first cluster includes RMS configurations A and C with a TH range between 21.137 and 25.208. The 
second cluster involves RMS configurations B and E with a TH range between 20.001 and 21.321. The 
third cluster contains RMS configurations D, F, G, and H with a TH range between 16.563 and 17.297.  
Table 1 presents the results of SMO for RMS-CA where each row representsa RMS configuration with its 
number of stages, and the range of value for TBC, TH, and LT. It is important to note that RMS 
configurations A and C are the only ones meeting the requirements of 550 parts/day or 23.913 parts/hours 
for 23 working hours per day.  

 
Figure 5: Parallel coordinate plot showing the results from SMO for the RMS-CA of the eight RMS 
configurations. 

Table 1: Results of SMO including stages, total buffer capacity, throughput, and lead time for eight RMS 
configurations. 

RMS 
configuration 

Stages 
Total buffer capacity 

(parts) 
Throughput 
(parts/hour) 

Lead time 
(seconds) 

A 3 2-20 23.137-25.208 1190-2063 
B 4 3-20 20.591-21.321 1158-1256 
C 4 9-20 21.794-24.301 1300-2142 
D 4 3-11 17.165-17.294 1067-1078 
E 5 17-20 20.001-21,243 1311-1530 
F 5 5-19 16.563-17.242 1100-1162 
G 5 6-16 17.046-17.297 1146-1191 
H 6 12-19 16.826-17.236 1266-1352 

 
 The SMO results for RMS configurations A and C are presented graphically in the parallel coordinate 
plot of Figure 6 and determine the best trade-off solutions. The green lines in Figure 6 correspond to RMS 
configurations (both A and C) lying on the Pareto front. RMS configurations A and C are grouped in blue 
and red circle on the right hand side column. The SMO results reveal that the RMS configuration A satisfies 
demand with the lowest LT and TBC. The SMO results also exhibit that RMS configuration A, when 
equipped with a TBC of five in size (2 between first and the second stage, and 3 between the second and 
the thrid stage) can yield a TH of 24 parts/hr., LT of 1334 seconds and WIP of 9 products. 
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Figure 6: SMO comparison of RMS configuration A and C. 

4 INSIGHT FACILITATED BY SIMULATION-BASED MULTI-OBJECTIVE 
OPTIMIZATION AND DISCUSSION 

A core tenant of RMS is designing production systems that enable responding rapidly and economically to 
unexpected surges in market demand. Adopting SMO in RMS-CA may reveal the underlying trade-offs of 
selecting an RMS configuration. Consider again the parallel coordinate plot in Figure 5. The SMO results 
show that RMS configuration A is desirable for meeting a demand of 24 products/hour with the lowest LT 
and TBC. However, RMS configuration A is disadvantageous for demands ranging between 0 and 17, or 
17 and 21 products/hour because other RMS configurations meet the desired throughput at a lower LT and 
TBC. Such kind of insights provided by SMO is crucial because it tells an equal number of machines with 
different RMS configurations can yield distinct LT while meeting the required TH. Furthermore, these 
results highlight the importance of considering alternate RMS configurations. 
 An additional insight resulting from SMO includes evidencing the efficiency of RMS configurations. 
We refer again to the results presented in the parallel coordinate plot of Figure 5. The SMO results show 
that the RMS configurations A to H were subject to equal changes in TBC ranging between two and 20 
products, but increases in TBC did not lead to an increase of TH for every RMS configuration. RMS 
configurations A and C present the highest rise of THP  with the increase of TBC. Configurations B and E 
present a significant increase in the THP dependent on TBC. Oppositely, RMS configurations D, F, G, and 
H give almost equal THP regardless of changes to TBC. This difference is explained by the presence of 
bottlenecks and process constraints in the RMS configurations resulting in under-utilized occupation of the 
buffers. Figure 7 exemplifies the unutilized TBC occupation for configuration D. Figure 7 presents the 
buffers occupation percentage for configuration D with a TBC = 3 on the left-hand side, and a TBC = 15 
on the right-hand side. For the case of TBC = 3, all three buffers have a capacity of one, and for TBC = 15, 
all three buffers have a capacity of five. This shows a low buffer capacity occupation even when they have 
a capacity of one which is even lower as the capacity of the buffers increases to five.  
 RMS-CA focuses on machine arrangement, equipment selection, and operation assignment (Manzini 
et al. 2018). Prior studies about RMS-CA recognize the importance of understanding trade-off decisions 
and evaluating multiple objectives leading to superior performance (Bortolini et al. 2018). The results of 
this study suggest that SMO for RMS-CA leads to a comprehensive understanding of RMS configurations. 
This study presents two salient findings, including a series of steps for the use of SMO for RMS-CA and a 
qualitative comparison with the prior work in RMS-CA and SMO. 

The findings of this study present novel contributions highlighting the advantages and challenges of 
SMO for RMS-CA. The study shows that SMO may reduce unnecessary calculations by adopting an 
optimization algorithm for evaluating multiple RMS configurations in one simulation model. This is 
important because it shows manufacturing companies may efficiently perform RMS-CA when adopting 
SMO. This is desirable because of the limited time for decision-making in the industry and the lack of 
expertise in the design of production systems. The results of this study facilitate adopting SMO for RMS-
CA which is essential for uncovering the trade-off between multiple objectives such as TH, LT, and TBC. 
This finding is critical as it may support the scalability of a production system in response to changing 
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market demands and convertibility of new products, which together constitute two of the underlying reasons 
for the use of RMS (Andersen et al. 2017). 

 
Figure 7: Unutilized TBC occupation for configuration D. 

  
 Previous publications identify a number of challenges associated with adopting SMO. For example, the 
considerable time and effort spent in the development of SMO models and the limited knowledge retrieved 
by decision-makers from its results (Fu et al. 2014). Similarly, earlier studies point to the adoption of SMO 
during the design but its sporadic use during the operation of production systems (Xu et al. 2016). Clearly, 
there exists a need for continued research efforts bridging the gap between SMO and manufacturing 
practice. Importantly, this study shows that decision-makers may benefit from SMO not only in the 
selection of the best RMS configurations, but also from the trade-off decisions inherent to a choice 
involving multiple and conflicting objectives. Thereby, decision-makers may justify the investment of 
resources by using SMO for RMS-CA. In addition, this study emphasized the importance of SMO for RMS-
CA that take into account the changing levels of demand which is crucial as to cope with changes in demand 
is one of the key underlying reasons for adopting RMS, and therefore must be addressed frequently during 
the operation of production systems (Koren and Shpitalni 2010). To this extent, this study promotes the use 
of SMO in RMS beyond the design phase of production systems.  

5 CONCLUSIONS 

This study analyzed SMO for RMS-CA, and investigated one of its salient problems: determining the 
minimum number of machines necessary to satisfy the target demand. The study proposed a series of steps 
for the use of SMO for RMS-CA. Unlike prior research, this study synthesized existing RMS-CA 
understanding and adopted DES and the well-known multi-objective optimization algorithm, NSGA II, to 
automatically model, represent and optimize RMS configurations. This study showed that adopting SMO 
for RMS-CA reveals critical information for selecting an optimal RMS configuration, including the number 
of stages, machine layout, and trade-offs between multiple objectives such as TH, LT, and TBC. 
Additionally, this paper suggested a routing and selection interface modeling approach for SMO in RMS-
CA. These modeling approaches are critical for analyzing multiple RMS configuration via SMO, and 
efficiently performing RMS-CA with respect to the limited time for decision-making in industry. In 
addition, the study qualitatively compared the prior work in RMS-CA and the proposed the use of SMO 
into an existing four-step procedure. The findings from the results in this paper suggest that SMO can 
facilitate effective RMS-CA by revealing the trade-offs when the equal number of machines is arranged 
into different RMS configurations. Generally speaking, the results of this study also suggested that SMO 
may address RMS-CA problems efficiently by providing graphical, visualization information like parallel 
coordinate plots. This study is limited by the choice of problem. An immediate step includes verifying the 
results of this study in industrial cases. Therefore, future work includes applying SMO for RMS-CA to 
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production system design probems found in real-life manufacturing industry. These problems may include 
additional constraints, such as material handling, investment cost and machine availability. 
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Erik Flores-Garćıa1*†, Carlos Alberto Barrera-Dı́az2†, Magnus
Wiktorsson1, Amos Ng2 and Tehseen Aslam2

1*Department of Production Engineering, KTH Royal Institute of
Technology, Kvarnbergagatan 12, Södertälje, 151 36, Sweden.
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Abstract

Reconfigurable manufacturing systems (RMS), cyber-physical systems
(CPS) and simulation-based multi-objective optimisation (SMO) are
essential for addressing the dynamic behaviour of materials and informa-
tion in manufacturing. However, the lack of consideration for material
handling jeopardises recent advances in these fields. Accordingly, this
study proposes the use of CPSs including SMO to address the dynamic
allocation of resource of material handling in the configuration analy-
sis (CA) of RMSs and enhance operational performance. We focus on
CA because of its influence on the arrangement of machines, equip-
ment selection, and operational assignments, influencing the performance
of RMS. The study presents a proof-of-concept CPS and SMO in
a laboratory environment for evaluating trade-off solutions including
throughput, buffer capacity, lead-time, and resources in material han-
dling. This study contributes to the existing literature in three ways.
First, it proposes a CPS architecture that includes physical, cyber,
and digital service layers for applying SMO in the CA of RMS.
Second, it presents a procedure for SMO, including initialization, envi-
ronment, optimisation engine, and outputs, and applies NSGA-II to
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improve the existing calculations of the CA of RMS. Third, it shows
benefits the operational performance of applying CPS and SMO to
address the dynamic behaviour of material handling in the CA of RMS.

Keywords: cyber physical systems, simulation-based multi-objective
optimisation, material handling, configuration, reconfigurable manufacturing
systems

1 Introduction

The combined use of reconfigurable manufacturing systems (RMSs) and digi-
tal technologies, including cyber-physical systems (CPSs), may be essential for
addressing the dynamic behaviour of materials and information in manufactur-
ing [1, 2]. RMSs include a type of production system that enables the addition
of machines to existing operational systems very quickly to respond rapidly
and economically to unexpected surges in market demand [3, 4]. Recent pub-
lications have suggested that RMSs may be essential for managing production
volumes, shortening product life cycles, and rapidly changing market oppor-
tunities [5, 6]. Accordingly, some studies have contended that RMS may help
manufacturing companies achieve market demand and avoid the financial and
capital investments associated with purchasing, installing, and maintaining
machines that are not operating [7, 8].

The literature has increasingly argued that digital technologies are indis-
pensable for addressing the dynamic behaviour of materials and information
within the boundaries of factories. This reflects the growing interest of
researchers in developing CPSs in material handling, which facilitates on-time
delivery and addresses changes in delivery tasks, the movement of equipment
and breakdowns [2, 9, 10]. CPSs have computing, communication, and stor-
age capabilities that facilitate real-time, efficient and stable operation and can
monitor the networked computer system of each entity in physical reality [11].
They also contribute to three critical aspects for increasing the operational
performance of material handling [12]. First, ubiquitous data enable the active
perception of forklifts, automated guided vehicles (AGVs) and staff. Second,
CPSs detect and respond rapidly to disturbances in material handling. Third,
they actively communicate with and adjust the status of the material handling
equipment to optimise performance. In particular, the literature underscores
the importance of combining a CPS with simulation-based multi-objective
optimisation (SMO) in material handling [13, 14]. This is essential for consid-
ering trade-off decisions affecting the performance of manufacturing systems.
For example, [15] combined a CPS and SMO to achieve self-adaptive collabo-
rative control and minimise waiting time, makespan, and energy consumption
in material handling. [16] proposed a proactive material handling method for a
CPS-enabled shop floor that included SMO to reduce energy consumption, pro-
cessing time, and work in progress. [13] applied a CPS together with SMO and
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investigated the self-organizing configuration for production logistics systems
and minimised cost, time and energy in material handling.

Despite these advances, the literature provides limited guidance about pro-
cedures for responding quickly and economically to changes of resource in
material handling that correspond to distinct configurations of RMS [17, 18].
Publications about RMS and material handling give precedence to handling
of materials with gantry-cell structures or automated guided vehicles (AGVs),
and the minimisation of transportation time [18, 19]. The literature argues
that the routing of AGVs for material handling should remain unchanged to
preserve the high efficiency that distinguishes RMS from other production sys-
tems [20]. These studies are indispensable for understanding the movement of
material and information in RMS. However, the literature about RMS presents
two critical limitations. First, the literature on RMSs has assumed that mate-
rial handling occurs without disruptions and disregarded uncertainties that
occur daily on the factory floor [19, 21, 22]. Second, studies on RMS have
been relatively unchanged since their conception and relied on lengthy ana-
lytical calculations [23]. Accordingly, applying current analytical calculations
while considering material handling is time-consuming and may not meet the
timely response necessary in modern manufacturing. For example, although
research efforts have applied multi-objective optimisation for the CA of RMSs,
any focus on material handling remains absent [24–27].

Addressing the absence of a procedure for resource allocation in material
handling of RMS is important for two reasons. First, manufacturing compa-
nies disregarding the implications of material handling in RMSs risk investing
time and resources in configurations that underperform essential operational
aspects, including throughput and lead time [28]. Second, they jeopardize the
timely delivery of products essential for achieving customization in manufac-
turing [29]. The literature suggests that the configuration analysis (CA) of
RMSs presents a unique opportunity for addressing this problem. The CA of
RMSs involves analyzing the arrangement of machines, equipment selection,
and operation assignments, impacting the performance of manufacturing com-
panies [30, 31]. For example, a system configuration must include the number
of machines and material handling units such as AGVs [32].

Accordingly, the purpose of this study is to propose the use of CPSs that
include SMO to address the dynamic allocation of resource of material handling
in the CA of RMSs and enhance operational performance. We focus on a case
study in the automotive industry because of the extensive research efforts
on RMSs in this industry [5, 33]. The case study applies AGVs for material
handling, which is particularly relevant for the purpose of this study because
of the increased research efforts to apply CPSs and SMO [2, 5]. This study
presents three novel contributions originating from a proof-of-concept CPS and
SMO in a laboratory environment that extend recent research efforts about
CPS and RMS [34–36]. First, it proposes a CPS architecture that includes
physical, cyber, and digital service layers for applying SMO in the CA of
RMS. This is essential for acquiring data dynamically and processing data to
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assign resource in material handling. Second, it presents a procedure for SMO,
including initialization, environment, optimisation engine, and outputs, and
applies NSGA-II to improve the existing calculations of the CA of RMS. Third,
it shows benefits the operational performance of applying CPS and SMO to
address the dynamic behaviour of material handling in the CA of RMS. The
results of the study show that the proposed approach presents improvement
in throughput, lead time, buffer capacity, and number of AGVs.

The remainder of this study is organised as follows. Section 2 presents
related studies, including CPSs and SMO for material handling and the CA
of RMSs. Section 3 describes the proposed framework by applying CPS and
SMO for material handling in the CA of an RMS. Section 4 describes the
employed SMO approach. Section 5 presents the results and the steps followed
when applying the proposed framework. Section 6 analyses the results of this
study and its contributions to theory and manufacturing practices. Section 7
concludes this study and presents future research steps.

2 Related studies

2.1 Configuration analysis for reconfigurable
manufacturing systems

System configuration is among the main areas that need to be addressed
when designing an RMS. System configuration deals with the arrangement
of machines and components in the system [5, 37]. This area has a signif-
icant impact on the system’s functionality and productivity [38]. However,
deciding on configurations is a complex NP-hard problem compared to con-
ventional manufacturing systems, which are typically arranged in either pure
serial or pure parallel configurations. An RMS consists of a set of worksta-
tions, each including one or several identical machines performing a set of tasks
[39]. Therefore, the CA of the RMS significantly affects the determination of
the best RMS configuration for the accomplishment of the production system
objectives. Consequently, a review of the most relevant studies focused on the
CA of RMSs is presented below.

The challenge of selecting the optimal configuration found in the CA
of the RMS process has previously been addressed in several studies using
mathematical and optimisation methods. Koren and Shpitalni presented a
mathematical method that included four steps: calculating the number of
machines required in the system; determining the number of feasible RMS
configurations; reducing the number of potential RMS configurations; and
assessing the RMS performance to select the desired RMS configuration [3].
Gola and Świć described a combination of a mathematical method and simu-
lation to analyse the performance of previously modelled RMS configurations
[40]. Saxena and Jain employed a mathematical model to minimise the cost of
RMS configuration design [41]. Moghaddam et al. proposed a mathematical
programming model that tackles the CA design problem from a cost perspec-
tive in a multiproduct RMS [42]. Koren, Wang, and Gu presented a method
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for addressing the scalability of RMSs for the optimal configuration, including
maximum throughput or minimum number of machines at different production
capacities [7]. Additional studies that address the CA of RMSs as a single-
objective optimisation problem have tackled the issue by considering cost or
profits as the objective [23, 30, 43–47].

When it comes to multi-objective optimisation, Goyal, Jain, and Jain
employed a genetic algorithm-based approach whereby the non-dominated
sorting genetic algorithm (NSGA-II) was utilised to obtain non-dominated
solutions in terms of convertibility, utilisation of machines and cost [25]. Ashraf
and Hasan applied a multi-objective NSGA-II approach for minimising cost
and maximising reliability, operational capability, and reconfigurability [48].
Additionally, Goyal and Jain applied multi-objective particle swarm optimisa-
tion, considering convertibility, utilisation of machines, and cost [49]. Similarly,
Dou et al. applied multi-objective particle swarm optimisation for the con-
figuration design of an RMS by considering cost and tardiness as conflicting
objectives [50].

The combination of simulation and metaheuristics has shown numerous
advantages when applied to problems with a high level of uncertainty [51].
However, the use of simulation and optimisation for addressing the challenges
found in RMSs is sporadic and mainly theoretical. Recent studies identify the
combination of simulation and optimisation as a critical future challenge to be
addressed when focusing on the CA of RMSs, and the need to include perfor-
mance metrics such as throughput and lead time [18]. Kazemisaboor, Aghaie,
and Salmanzadeh proposed a simulation-based optimisation framework for
process plan generation in RMSs [52]. Petroodi et al. presented a single objec-
tive simulation-based optimisation approach for the optimisation of product
sequence scenarios for minimum total completion time in a RMS [53]. When
it comes to the studies that consider the CA of RMSs, Diaz, Aslam, and Ng
used an SMO approach while optimising a multi-part RMS under fluctuating
production volumes for maximum throughput, minimum total buffer capacity
and minimum number of machines used [54]. Table 1 presents studies applying
distinct approaches of optimisation to address the CA of RMSs.

2.2 Cyber physical systems for material handling

CPS are among the main digital technologies that have been transforming the
movement of materials and information in manufacturing [48]. They enable
networking and bi-directional connection between virtual and physical worlds
and facilitate computational storage for interacting with resources in factories
[49]. CPSs include systems capable of sending and receiving data from devices
in a network and integrating real-world manufacturing systems with commu-
nication networks and infrastructure, computational applications, and digital
services [50, 55]. Importantly, CPSs in material handling do not require dis-
carding existing resources. Instead, they transform existing material handling
resources, including workers, materials, and equipment, into smart objects that
can send and receive data from a network.
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Table 1 Studies applying distinct approaches of optimisation to address the CA of RMSs.

Optimisation
approach

Study Purpose

Single-objective
analytical
optimisation

[7] Maximise the throughput of an RMS after its
reconfiguration

[23] Optimise capital cost and system availability of RMS
configurations with genetic algorithms and tabu search

[30] Selection of the near-optimal alternative configurations for
demand scenarios for configurations of RMS

[41] RMS configuration design methodology with optimisation
of the present worth of total cost

[42] Address changes in RMS configuration and scalability in
the production of a family of parts

[43] Compute the reconfiguration cost between two
scalable-RMS configurations

[44] Minimise the costs of configurations in RMS subject to
space investment, capacity, and precedence of operations

[45] Optimise multi-part flow-line configurations of RMS for a
part family

[46] Optimise economical configurations for a given demand
period in RMS

[47] Optimise the configuration of modular products and RMS
driven by individual customer requirements

Multi-objective
analytical
optimisation

[25] Optimise performance and cost for the assignment of
machines in RMS

[48] Selection of configurations in RMS with conflicting
objectives

[49] Optimisation of RMS configuration considering cost,
machine utilization, operational capability, and
convertibility

[50] Optimise the configuration of an RMS including cost and
tardiness

Simulation-based
single-objective
optimisation

[25] Minimise completion time of jobs in RMS

Simulation-based
multi-objective
optimisation

[54] Maximise throughput and minimise total buffer capacity
to cope with fluctuating production volumes in RMS

Applying a CPS to material handling represents a transformative paradigm
that may enhance traditional practices in production logistics [56]. Accord-
ingly, [57] developed an assessment tool for analysing the performance of
production logistics, including CPSs. However, the application of a CPS in
material handling is complex. Therefore, the literature suggests three aspects
for guiding the implementation of CPSs in this way[13]. These aspects include
the acquisition of data from the shop floor, analysis and transformation of
data, and use of data for achieving an increased operational performance of
material handling.

The acquisition of data from the shop floor in a CPS differs from traditional
approaches for on-site data collection and benefits from additional digital tech-
nologies. For example, Bluetooth, Wi-Fi, and the Industrial Internet of Things
(IIoT) transfer data within a manufacturing facility, and the Internet provides
external data sharing [58]. Furthermore, cloud computing facilitates access to
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information and services regardless of location or time [59]. Sensors transmit
data to production logistics, manufacturing, information technology (IT) sys-
tems, and human operators, revealing the status of orders, material handling
resources and the environment [11]. Sensing devices can interact with the envi-
ronment and allow material handling to receive and execute decisions from the
control systems [57].

CPSs support the analysis and transformation of data for extracting and
distributing meaningful information to IT production systems [56]. They com-
bine existing and new data to generate meaningful information. For example,
a CPS gathers existing data from ERP, MES or additional systems, includ-
ing schedules for production planning, capacities and due dates [60]. CPS also
establish communication with platforms or communication tools, legacy sys-
tems, and the environment. Information undergoes encapsulation, processing
into a standard format, transport, filtering and storage [61]. Staff or devices can
then use this information for decision-making and control of the manufacturing
system, including its material handling.

The literature includes extensive work involving the use of data when
combining CPSs and SMO to enhance the operational performance of mate-
rial handling [13, 16, 49, 62]. Combining a CPS and SMO is critical for
responding quickly to changing environments and addressing exceptions [63].
For instance, [64] analysed the use of a CPS and an improved genetic algo-
rithm (GA) for multi-AGV path optimisation within spinning drawing frames
to solve complex multi-AGV scheduling. [11] introduced a design perspective
for IIoT-driven analytics in production logistics, including CPSs, to opti-
mise operational performance, uptime, and sustainability. [65] focused on the
dynamic uncertainty of manufacturing environments and developed a closed-
loop adaptive scheduling solution based on CPSs and machine learning with
four phases: production data acquisition, dynamic disturbance identification,
scheduling strategy adjustment, and schedule scheme generation. [29] inves-
tigated the dynamic synchronisation of production logistics in manufacturing
and applied a multidisciplinary design optimisation method for coordinating
resources in material handling. Table 2 presents studies applying CPS and
SMO for material handling.

2.3 Identified gap and research questions

The literature acknowledges the importance of applying digital technologies
such as CPSs in RMSs for addressing the dynamic behaviour of materials and
information. It suggests that applying a CPS in the CA of RMSs contributes
to rapid response and improves the productivity, responsiveness and cost of
manufacturing systems [27, 39, 66]. However, recent research efforts have over-
looked material handling, an essential aspect for addressing dynamic behaviour
of RMS [67]. This study contributes to increasing the understanding of the
use of CPSs using SMO to address the dynamic needs of material handling.
Specifically, it answers three research questions (RQs) about applying CPS to
the CA of an RMS in material handling:
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Table 2 Studies applying CPS and SMO for material handling

Study Purpose
[11] Combine IIoT and CPS for acquiring and processing data of material handling

resources, and determining and visualising their performance
[13] Apply CPS and IIoT to material handling for realizing self-organising config-

urations that reduce manufacturing time and energy consumption
[16] Propose a CPS for the proactive handling of material in a shop floor leading

to reduced consumption of energy and optimisation of routes
[29] Present cloud-manufacturing, CPS and IIoT solution for addressing dynamic

execution of tasks in material handling
[34] Propose a CPS for developing autonomous mobile robots improving safe nav-

igation and avoidance of obstacles in shop floors
[62] Apply CPS for improving tasks in production logistics and reducing part

inventory in changing environment
[64] Combine a CPS and optimisation for allocating resources, scheduling, and

planning paths of AGVs

RQ 1. How does a CPS contribute to addressing the dynamic behaviour of
material handling equipment in the CA of the RMS?

RQ 2. How does the combined use of a CPS and SMO improve the existing
analytical calculations of the CA of the RMS and address the dynamic needs
of material handling?

RQ 3. What are the benefits to operational performance when applying
CPS and SMO to address the dynamic behaviour of material handling in the
CA of the RMS?

3 Proposed framework

This study proposes the use of a CPS with a SMO to address the dynamic needs
of material handling in the CA of RMSs. Extant literature about CPSs for
RMSs underpin this proposal. Namely, this study gives precedence to acquisi-
tion of data in real-time with the purpose of achieving flexible decision-making
distinguishes CPSs for RMSs [36]. This is indispensable for securing the respon-
siveness to deal with sudden changes in RMSs. The literature identifies seven
general functions characterizing CPSs for RMSs [68]. The acquisition of data
ensures the responsiveness of the CPS and facilitates the identification of new
requirements for reconfiguration of the RMS [69]. The transmission of data
plays a crucial role in facilitating the integration of new modules into the RMS
[70]. The storage of data includes the hierarchies of modules, the orientation
of services, and the distribution of resources, all of which are essential for the
efficient functioning of the CPS for the RMS [70].

The analysis of data, including prediction and simulation, is critical for
facilitating adaptation to changes in the RMS [71]. The monitoring of the man-
ufacturing process, including its configuration in virtual environments, allows
for effective control and optimization of the CPS for the RMS [70]. Visualiza-
tion of the properties of modules enables the identification of potential issues
and opportunities for optimization within the RMS [70, 71]. The autonomous
adaptation of resources to new requirements is a crucial function of the CPS for
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the RMS, ensuring efficient and effective performance in the face of changing
conditions [69].

The proposed CPS acquires material handling data corresponding to the
delivery times of AGVs between any two stations and utilises these data as
input to an SMO to calculate the optimal configuration of an RMS. The pro-
posed CPS calculates the optimal configuration of the RMS and the quantity
of AGVs required to meet demand. The CPS assigns AGVs to different work-
stations, executes missions for the delivery of materials by each AGV and
monitors the performance. The CPS detects disturbances to material han-
dling, including the extended time planned for the delivery of material. It also
informs staff of these disturbances through a visual application and initiates an
SMO analysis that determines the need for a change in the material handling
or configuration of the RMS. Staff can interact with the CPS through a user
interface to monitor and execute or configure and analyse whether planned
changes in demand require a different RMS configuration. The proposed CPS
includes three layers with different components, namely physical, cyber and
service layers. Figure 1 presents the proposed architecture, including a phys-
ical, cyber, and application layer, addressing the dynamic needs of material
handling for the CA of the RMS. The following sections describe each layer
and the transfer of information across them.

3.1 Physical layer

The physical layer comprises real-life manufacturing resources and IIoT
technology. Physical manufacturing resources include machines, AGVs, raw
materials and WIP. Additionally, the physical layer includes IIoT technol-
ogy and sensor networks. This study addresses the dynamic requirements of
material handling. Accordingly, it provides precedence to IIoT devices for
dynamic tracking and identification of material handling resources. The litera-
ture presents different technologies to achieve this purpose, including WLAN,
Bluetooth, WiFi, and Zigbee [72]. This study applies ultra-wide bandwidth
(UWB) tags and radio frequency identification device (RFID) sense points
because of their increased accuracy (e.g., 10 cm) and robust indoor positioning,
compared with the alternatives above [73].

To address the dynamic needs of material handling, each AGV includes
UWB tags that send data to fixed RFID sense points placed throughout the
manufacturing area. The position of a UWB tag on a shop floor is calculated by
the time of flight of a radio signal from the UWB tag to the RFID sense point.
UWB tags include active and sleep modes. In the active mode, the UWB tag
transmits data, including the name, time, and geo-position, three times every
second. Sleep mode is a power-saving mode that disables the transmission of
data in a UWB tag and starts after 60 seconds of inactivity. The UWB tag
changes to the active mode when motion is detected. The RFID sense points
connect to a cloud server to send data via an application programming interface
(API).
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The data connection allows bidirectional communication between the phys-
ical and cyber layers, which is necessary to address the dynamic requirements
of material handling. The first method of communication includes transferring
data between the RFID sense points and the cyber layer. This study applies a
RESTful API, including the RFC 2616 protocol for transferring data originat-
ing from the RFID sense point and stored in the cloud server to the cyber layer.

Fig. 1 Proposed architecture including a physical, cyber, and application layer addressing
the dynamic needs of material handling for the CA of the RMS.
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The reason for applying a RESTful API is its lower bandwidth requirement
for accessing and using the data. This API provides data for a JSON object,
including tag identifier, time, latitude, longitude, temperature, vibration and
coordinate positions X, Y and Z.

3.2 Cyber layer

The cyber layer captures real-time data and standardises, processes and syn-
chronises information essential for addressing the dynamic needs of material
handling in the CA of the RMS. Capturing real-time data from the physi-
cal layer to the cyber layer is essential for CPSs in material handling and
involves three aspects. First, we capture data on the status of material handling
resources. This involves the individual characterisation of an AGV, including
its name, position, distance, speed, and status (e.g., in motion, idle, or charg-
ing). Second, we capture data about the manufacturing process, including the
number of machines, cycle times, the sequence for manufacturing, disturbances
in the manufacturing process, and work in progress. Third, we capture data
on disturbances in material handling. In particular, we focus on capturing the
time exceeding the planned delivery of material originating from breakdowns,
maneuvers, or changes in tasks. Accordingly, capturing real-time data includes
the time, distance, and route followed by an AGV when executing material
handling tasks between any two points in the factory.

Data acquisition from the physical layer to the cyber layer is essential
for the CPS in material handling. This study applies Node-Red as middle-
ware for data acquisition and the implementation of communications across
applications and inputs/outputs to the cyber layer. The choice of Node-Red
originates from ease with which flow-based visual programming improves the
understandability of industrial users and its simple connection to hardware
devices, APIs and online services as part of IIoT. Frequently, data acquisition
requires addressing the challenges associated with the data connections. For
example, the challenge of applying the RESTful API is that the increased load
and response time for data transfer undermines the visualisation of the exe-
cution of material handling activities in a virtual environment. Accordingly,
the framework proposes data acquisition from a RESTful API as a trade-
off between the flowing visualisation of material handling resources and data
overload.

The cyber layer enables standardization, processing, and synchronisation
of information critical for identifying dynamic behaviour, including distur-
bances in material handling. Standardising and processing information requires
that the middleware in the cyber layer transforms data originating from IIoT
devices into information. Accordingly, Node-Red standardises information by
filtering data from the JSON object containing the movement of the UWB
tag attached to an AGV. Node-Red retains data, including tag name, time,
longitude and latitude and discards all other data. Subsequently, information
concerning the movement of an AGV is transferred to and stored in a database.
Furthermore, the cyber layer enables synchronising information, which refers
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to the ability of resources in material handling to execute and adapt to changes
originating on the factory floor [29]. The execution of material handling activ-
ities characterises the tasks and paths followed by an AGV during material
handling. A database provides a schedule of tasks for material handling, includ-
ing the time for pickup and delivery, the type of task and the delivery and
pickup locations. In addition, the database specifies the motion profile of the
AGV, including its speed, acceleration and breaking profiles. The cyber layer
facilitates adaptation to changes that originate on the factory floor. In par-
ticular, the cyber layer identifies the difference between the time planned and
executed in the delivery of material between any two points.

3.3 Service layer

The service layer is the top layer of the proposed architecture and provides
three digital services that address the dynamic needs of material handling for
the CA of an RMS, thereby enhancing operational performance. In particular,
the service layer addresses disturbances to material handling, including the
extended time planned for the delivery of material, by applying an SMO to
the CA of an RMS. Importantly, disturbances extending the time planned
for the delivery of the material may occur consistently at multiple times per
day. However, these disturbances do not justify immediate corrective action
for the configuration of the RMS. Instead, the response of the SMO for a
CA of an RMS should only occur when the extended time for the delivery
of the material is beyond a certain threshold [63]. Accordingly, the service
layer requires a combination of real-time and non real-time information. On
the one hand, real-time information is necessary for monitoring the status of
AGVs during material handling and executing missions for them to delivery
materials. However, non real-time information is necessary for presenting staff
information, including the optimal configuration of an RMS and the number
of AGVs for material handling.

The first digital service includes an SMO for the CA of an RMS. In this
service, the SMO acquires data from the cyber layer, analyses, evaluates and
ranks the performance of each RMS configuration and selects the optimal
configuration. It then acquires information from the cyber layer, including the
number of AGVs and the time taken to deliver materials across all stations. We
applied a module with an embedded heuristic for the SMO to analyse, evaluate,
rank, and select the least number of AGVs yielding the highest performance
for the optimal configuration of the RMS.

The second digital service involves material handling execution. It assigns
AGVs to the shop floor and executes missions for material handling. Accord-
ingly, the execution service assigns each AGV a distinct area consisting of
groups of machines in the RMS. The sensors then inform the user that a part
is ready for picking, and the execution service assigns a mission to the AGV
located in that area. The mission includes moving the AGV to the pickup sta-
tion, docking to the station, transporting the part, docking at the next station
during the process, and leaving the material.
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The third digital service involves monitoring material handling and pro-
viding the operational performance of an AGV. The information presented
by the monitoring service includes spaghetti diagrams, heat maps, utilisation,
and the distance travelled by the AGV in an RMS. Finally, a database stores
information to analyse the results of the CA of the RMS and compares the
results with those at different periods, processes, or sites.

3.4 Transfer of information

Transferring information to and from the digital service of the SMO for an CA
of an RMS is essential for addressing the dynamic needs of material handling in
the CA of the RMS. In particular, changes in status or disturbances affecting
resources in material handling may justify a modification to the configura-
tion of the RMS or assigning additional resources to an existing configuration.
Information about resource in material handling includes the number of AGVs,
their status (active, idle, or charging), assigned areas for picking and deliv-
ering material, or an increase in demand (e.g. additional tasks in material
handling). Similarly, transferring information about disturbances in material
handling (e.g., collisions, blocked pathways by staff or equipment, or problems
with materials scheduled for delivery) and extending the time planned for the
delivery of material are of equal importance.

The proposed framework considers the non-real-time transfer of informa-
tion to and from the digital service of SMO for the CA of an RMS, as suggested
in prior studies. There are two reasons for this choice. First, real-time informa-
tion is essential for monitoring the movement of materials and information, but
it requires careful consideration of its application to justify its computational
expense and infrastructure [65]. Second, not all changes or disturbances in an
RMS justify an immediate change in configuration or resources [64]. Instead, it
is necessary to establish a threshold for identifying disturbances by modifying
the RMS configuration or assigning additional resources to an existing config-
uration [74]. Accordingly, transferring information to the SMO digital service
for the CA of an RMS occurs exclusively when the threshold value is exceeded.

There are three types of RMS information that are transferred from the
digital service of SMO for the CA. The first concerns information about the
manufacturing process, including the name of a station, its cycle time, the
availability of the station, the product type, the buffer capacity and the quan-
tity. The second information about the AGV, including its name, status, and
location. The third type concerns information about disturbances in mate-
rial handling that extend the time required for material delivery. Examples
include the material handling route, planned delivery time, actual delivery
time, collisions, breakdowns, and stop time.
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4 Simulation-based multi-objective
optimisation

This section describes the SMO for CA of the RMS to address the dynamic
needs of material handling and enhance operational performance. Addressing
the CA of RMS is essential to achieve the objectives of a production system.
However, because of the NP-hard essence of the CA of RMS problem, meta-
heuristics and, more specifically, GA-based approaches are suitable solution
methods [26, 39, 75]. Therefore, this study applies NSGA-II for optimisation
because of its proven efficacy in addressing this type of problem.

The process starts with initialisation, where the first population of feasi-
ble solutions is generated and modelled in the simulation engine. After these
solutions are simulated, the results are fed to the optimisation engine and
evaluated in terms of the multiple conflicting objectives. The optimisation
engine instructs a new set of input parameters to be tested in the simulation
engine. This is an iterative process where the simulation model enables the
optimisation engine to test different sets of feasible solutions according to the
optimisation objectives and systems/process constraints to find optimal output
solutions. Figure 2 presents the SMO for CA of RMS, including initialisation,
environment, optimisation engine and outputs.

The iterative evaluation process between the simulation model and opti-
misation engine determines the set of input parameters. This establishes the
next configuration to be tested by optimisation. The process continues until
the integrated optimisation and simulation engines converge on a set of Pareto-
optimal solutions or the stopping criteria, a prespecified number of generations,
is reached.

Analyse Configuration

Evalaute optimisation 
objectives  

Additional  
Evaluations?

No

Rank 
Configurations  

Optimisation Engine 
NSGA-II

Simulation 
Environment

Initialisation

Demand scenario
Number of machines
Number of configurations
Number of AGVs
Mufacturing process details
Max./Min. buffers capacity
 ...

Closed-loop
Sim-Opt

    

Constraints, Decision variables, and objectives

Yes

• Opt. RMS configuration
• Min. AGVs required
• Min. buffers required

SMO Outputs

    Constraints             Decision variables           Objectives

f 1 = T HP
f 2 = T BC
f 3 = LT 
f 4 = N_AGV

Machines assignment
Tasks assignment
Buffer assignment 
AGVs assignment

Buffer contraints
Process constraints
AGVs constraints 
Station constraints

Fig. 2 SMO for the CA of an RMS, including initialisation, environment, optimisation
engine and outputs.
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This study applies an SMO approach that connects the optimisation
algorithm to a simulation model. The model contains alternative RMS configu-
rations to improve the RMS performance in terms of four conflicting objectives.
The SMO evaluates the best trade-off solutions, including the four conflicting
optimisation objectives: throughput for each configuration of the RMS, buffer
capacity, the lead time and the number of material handling resources (e.g.,
AGVs). Equations 1–4 describe the conflicting optimisation objectives.

Nomenclature

Parameters
j workstation index
i, r tasks index
k machines index
S number of workstations
NT number of tasks
M total number of machines in the RMS
Bmin minimum safety buffer
Bmax maximum buffer capacity
AGVmax maximum number of available AGVs
Pir precedence relationships: 1 if task i is the predecessor of task r; 0

otherwise
TRij technological requirement: 1 if task i can be assigned to workstation

j; 0 otherwise
xij 1 if task i is assigned to workstation j; 0 otherwise
ykj 1 if machine k is assigned to workstation j; 0 otherwise

Objectives
THP Throughput (jobs per hour, or JPH)
LT Lead time
TBC Total buffer capacity
N AGV Number of employed AGVs

The optimisation objectives selection aims to enhance the RMS perfor-
mance while maintaining high-efficiency utilisation in terms of buffer capacity
and amount of material handling equipment. Accordingly, four conflicting
optimisation objectives are defined as follows:

Maximise f1 = THP =
number of products

simulationhorizon− warmup
(1)

Minimise f2 = TBC =

S∑
j=2

Bj−1 (2)

Minimise f3 = LT (3)

Minimise f4 = N AGV (4)
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The following constraints must be satisfied when optimising the RMS.

Task allocation: each task can only be assigned to one workstation:

S∑
j=1

xij = 1,∀i = 1, 2, . . . , NT (5)

Machine allocation: each machine must only be assigned to one workstation:

S∑
j=1

ykj = 1,∀k = 1, 2, . . . ,M (6)

Precedence relation: a task is assigned to a station only if all its predecessors
are assigned to the same or earlier workstations:

S∑
j=1

(xrj − xij) ≤ 0; ∀(r, i) ∈ Pir (7)

Technological requirement: a task is allocated to a workstation if it has the
required machinery to perform the task:

xij ≤ TRji; ∀i = 1, 2, . . . , NT, ∀j = 1, 2, . . . , S (8)

Buffer capacity limitations: each inter-workstation buffer should not
become less than a specific safety capacity nor exceed a maximum buffer
capacity:

Bmin ≤ Bj−1 ≤ Bmax; j = 2, . . . , S (9)

AGV limitation: the number of employed AGVs cannot exceed the total
number of available AGVs:

N AGV ≤ AGVmax (10)

The output of the SMO obtains the optimal configuration for the desired
goal. Therefore, this approach establishes rules in the interest of the decision
maker that are based on the optimisation objectives and provides the most
efficient way to reach the desired demand. The SMO approach allows setting
equality or inequality rules using the optimisation objectives, including greater
than, greater than or equal, less than, less than or equal, or equal. These
rules can be used to satisfy decision makers’ requirements and be modified
to adapt the output of the SMO to a new requirement if needed. The SMO
module automatically selects optimal solutions using the embedded heuristic
based on predefined rules. This study applies a CPS, with an SMO to address
the dynamic needs of material handling in the CA of an RMS and enhance
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the operational performance. Figure 3 describes the process, including decision
support activities between the CPS and the SMO in the CA of the RMS.

First, the process is initiated with the acquisition of data from the CPS,
including the capture, process, storage and update of information in the
database. Next, users specify the rules for the CA of the RMS. Finally,the
SMO executes the CA of the RMS and sends the results of the optimal con-
figuration to the CPS. The process begins again with changes in parameters,
including demand or the preferences of decision makers for example, if the
minimum/maximum buffer capacity, the number of AGV requirements or the

Rules Formulation
Yes

CPS time resolution loop Decision support activities

Yes

No

Yes

No

Start

Problem established?
Problem 

Formulation

Demand
Change?

Execute SMO 
module

Start

Execute SMO module

Change in
Decision-maker

preferences?

No

Fig. 3 Execution conditions for the SMO addressing the dynamic needs of material handling
in the CA of an RMS.
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requirements of the decision variables change. The process applies parallel com-
puting to ensure that the computational time for the execution of the SMO
agrees with that of the resolution cycle of the CPS. The applicability of this
approach is demonstrated using the case described in Section 5.

5 Empirical results

This section describes the implementation of CPS and SMO to address the
dynamic needs of material handling in the CA of the RMS. It presents a case
study of the automotive industry and its implementation in a proof-of-concept
in a laboratory environment. Finally, the section presents the results of the
SMO, leading to the selection of a configuration of the RMS.

5.1 Case description

This section presents a case for applying the proposed framework. The case
is based on [3] and supplements it with material handling activities includ-
ing pick-up and delivery by AGVs. A manufacturing company produces an
automotive part in 14.4 minute machining process that targets the design of
an RMS. The machining process includes the machining of three faces and
requires different fixtures and types of machines. Additionally, the machining
process consists of six tasks: four tasks in Face I, one task in Face II and one
task in Face III, as shown in Figure 4. The machining process is subject to
disturbances, and machine availability is estimated to be 90% with an average
repair time of 5 minutes. The machining process must satisfy the demand for
550 products/day in a 23-hour working day.

5.2 Implementation in a laboratory environment

The physical layer included resources for executing material handling and IIoT
devices for acquiring and transmitting the real-time status of an AGV. The
study utilised a mobile industrial robot (MiR) AGV for executing material
handling. Parts were manually placed in the AGV upon arrival at a manufac-
turing cell or buffer. Additionally, the AGV could deliver or pick parts from a
warehouse or travel to a charging station. Confirmation of completion of the
material handling tasks is performed with a graphical user interface. The study
applied IIoT devices including UWB tags and RFID sense points for acquiring
and transmitting the real-time status of the AGV. A UWB tag transmitted
real-time data, including the position of the AGV, to six RFID sense points
three times every second.

The cyber layer involved the data capturing from IIoT devices and the
processing and synchronisation of information. This study applies Node-Red
1.3.5 as a middleware for capturing data and processing and transferring infor-
mation. Node-Red captures and processes information by converting raw data
from IIoT devices into information about the position of the AGV. To do so,it
calls the API from the cloud server containing the data from the RFID sense
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2.1 min

1.2 min

1.9 min

3.1 min
2 min

4.1 min

Face I

Face II

Face III

Tasks sequence:
Bottom-up

Fig. 4 Machining process over six steps, including Face I, Face II and Face III.

points and retrieves a JSON object. Node-Red then establishes and maps the
parameters for determining the position of the AGV (e.g. time, AGV name,
longitude, latitude, speed, and acceleration) from the JSON object.

In addition, Node-Red contributes to transferring information on the posi-
tion of the AGV to databases which is critical for registering its movement and
transferring this information to an SMO model. With the purpose of saving
resources in the database, the implementation in our laboratory would transfer
data exclusively when the AGV was in motion. Furthermore, Node-Red was
crucial for transferring real-time information from the IIoT devices to digital
services, including the monitoring and execution of material handling by the
AGV.

5.3 Application of simulation-based multi-objective
optimisation

This approach begins by determining the required number of machines in the
system and the number of possible configurations. The number of machines
required was calculated with Equation 11, where the number of machines
needed in a balanced system is M, the daily demand is represented by D, the
machining time of the part in minutes is represented by T, the disturbances
of the machines is indicated by A, and W is the working time is per day in
minutes. Equation 11 yielded 6.04 machines, which needed to be rounded up
to the nearest integer; this indicated that the minimum number of machines
required was M = 7.

M =
D ∗ T
A ∗W

(11)

Equation 12 was used to determine the number of possible RMS configu-
rations C for the previously calculated M=7 number of machines distributed
in up to S=7 number of workstations. The resulting number of configurations,
according to Equation 12, for this studied case was 64.

C = (
(M − 1)!

(M − S)! (S − 1)!
) (12)
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The specific machining process requirements were considered to focus on
the reduction of 64 possible configurations. As shown in Figure 4, the machin-
ing process consisted of three faces that required different fixtures for each
face. Consequently, each face might be treated as an individual subsystem, and
Equations 12 could be applied to them.

Applying Equation 11 to the new subsystems and rounding up the results to
the nearest integer indicated that the subsystem for Face-I required 4 machines,
the subsystem for Face-II required 1 machine and the subsystem for Face-III
required 2 machines.

M =
550 ∗ 8.3

0.95 ∗ 1380
= 3.48 → 4 M =

550 ∗ 2

0.95 ∗ 1380
= 0.88 → 1 M =

550 ∗ 4.1

0.95 ∗ 1380
= 1.72 → 2

Equation 12 was applied to determine the number of possible configurations
of the resulting subsystems. When applied to the first subsystem which con-
sisted of four machines, Equation 12 yielded eight possible configurations that
were arranged into one, two, three or four workstations. As the second subsys-
tem consisted of one machine, there is only one possible configuration. When
applied to the third subsystem, which consisted of two machines, the results
indicated two possible configurations, either in serial or in parallel. However,
considering that the third subsystem performed only one machining task in
Face III, the only possible configuration would be to assign two machines to
one workstation arranged in parallel. Therefore, the RMS consisted of seven
machines that could be configured in eight different ways and assigned to three,
four, five, or six workstations, as shown in Figure 5. There were buffers between
the workstations; therefore, depending on the configuration, the system could
have two, three, four, or five in-between buffers.

This approach evaluated eight possible RMS configurations in terms of
THP, TBC and LT. This study utilised the FACTS Analyzer simulation soft-
ware [76] for the development of an SMO model. The discrete-event simulation
engine included in FACTS used the variables declared in the model as input
parameters for the optimisation algorithm and the outputs of the model as
multiple objectives in an SMO problem.

The baseline simulation model included several routing alternatives.
Depending on which routing was active, one of the possible RMS configura-
tions was enabled. In this approach, alternative routings were used by the
optimisation engine as an input variable to allow a single simulation model
to evaluate all alternative RMS configurations in terms of assigning tasks and
machines to workstations. Figure 6 illustrates the simulation model. As an
example, the upper part of Figure 6 presents the route for configuration B,
whereas the lower part presents the route for configuration H.

This study used three conflicting optimisation objectives to evaluate the
RMS configurations. The well-known multi-objective optimisation algorithm
NSGA-II with a population size of 50 was applied to the simulation model using
20,000 iterations, no warm-up time, and three replications. The algorithm
employed a simulated binary crossover with a 0.8 probability, and a polynomial
mutation with a probability of 1 divided by the number of decision variables.
The assignment of alternative tasks and machines to workstations together
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with the capacity of the in-between workstation buffers were set as decision
variables for the SMO model. The TBC, as the summation of all buffers in
the system, was constrained to a maximum of 20 products. The capacity of
each buffer was constrained to a maximum of 10 and could accept unitary
increments. The objectives used were defined by Equations 1–3.

The results of the SMO are displayed in the parallel coordinate plot in
Figure 7. The columns in the plot represent, from left to right, THP, LT, TBC
and Configuration. The results show that the solutions can be classified into
three clusters depending on the THP. These clusters are highlighted in green,
blue and red for the highest, medium, and lowest THP groups, respectively.
In addition, the plot shows that solutions included in configurations A and B
fall into the highest THP cluster, those included in configurations B and E
fall into the medium THP cluster and those included in configurations D, F,
G and H fall into the lowest THP cluster.

Table 3 presents the results of the SMO for CA in the RMS. Each row in
the table represents one of the studied configurations. For each studied con-
figuration, the tables show the number of workstations, the maximum and
minimum THP obtained with that specific configuration and the minimum
TBC and LT obtained for the extreme values of THP shown in each configura-
tion. The table reveals that only the configurations A and C could cope with
the original demand of the studied case of 550 parts per day; therefore, they
were considered for implementation.

Because only two configurations could produce the desired demand, the
CPS data were imported into feasible configurations A and C in this case.
Up to this point, the results presented did not consider the material handling
aspect. Most RMS-CA studies assume that parts can be delivered to machines
and transported through the RMS, neglecting the impact of material handling
in different RMS configurations. Consequently, this approach combines a CPS
and an SMO to address the material handling aspect of RMS-CA.

(A)

(F)

(B)

(E)

(C)

(D)

(G) (H)

Fig. 5 Eight possible configurations of RMS assigned to three, four, five or six workstations.



Springer Nature 2021 LATEX template

22 Enabling CPS and SMO for RMS

Fig. 6 Simulation model describing routing for configurations A and H.

Fig. 7 Parallel coordinate plot including the results of the SMO.

This study investigated the impact of AGVs depending on the travel time
data gathered from the CPS. In addition, the SMO used travelling time data
to optimise the number of AGVs required to cope with demand in the studied
case. Figure 8 presents the execution of material handling, including CPS and
SMO, for CA in the RMS.

AGVs facilitate material handling in an RMS because of their movement
flexibility and ease of path modification [5, 18]. AGVs usually operate in two
ways. First, the AGV is in charge of transporting part from workstation to
workstation throughout the entire process, and only when a part has gone
through all the processes will the AGV be available to carry a different part.
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The AGV is also in charge of moving parts from and to workstations in the
second method; however, in this case, the AGV is assigned to parts for indi-
vidual trips. Therefore, the AGV can carry different parts while the others are
being processed. In this study, the AGVs operated as in the later case, whereby
they were assigned parts for individual trips. In the current RMS, workstations
were integrated via the AGVs, which served all workstations, loaded parts
onto the machines, unloaded them from the machines and brought them to
the in-between buffers.

• Each AGV could transfer only one part at a time.
• The AGV could pick up and transfer a part as soon as it became available.
• Parts can be transferred from one machine to any subsequent machine at
the next workstation.

• The AGVs dispatching rule was considered to be the longest waiting time
rule.

• The paths of the AGVs were unidirectional.
• If there were no available parts to be transferred, the AGV would finds a
parking area.

Another optimisation problem was set up to include the material handling
equipment for configurations A and C. The implemented connection between
the CPS and the simulation model allowed the material handling time data to
be transmitted to the model. The minimum safety buffer was set to 1, and the
maximum buffer capacity was set to 20. The maximum number of available
AGVs was 6. The conflicting optimisation objectives were defined by Equations
1, 2 and 4. Figure 9 shows the parallel coordinate plot of the results of the
SMO and the objectives for configurations A and C.

Columns from left to right represent the THP, TBC, and number of AGVs,
respectively. The left-hand side of Figure 9 presents the results for config-
uration A, and the right-hand side presents the results for configuration C.
Solutions with a THP equal to or higher than the demand (550 parts per day)
are highlighted in blue for configuration A and red for configuration C. It is
shown in the PCP that configuration A was able to reach the demand with a
minimum of three AGVs, whereas configuration C needed at least four AGVs
to satisfy the demand.

Table 3 Results of the SMO for CA in the RMS.

Configuration Workstations TBC THP Lead time
A 3 2 - 12 25.85 - 26.84 1039 - 1339
B 4 3 - 7 22.23 - 22.55 1001 - 1034
C 4 4 - 20 24.86 - 25.92 1227 - 1960
D 4 3 - 6 18.30 - 18.37 946 - 955
E 5 5 - 17 21.98 - 22.30 1102 - 1154
F 5 14 - 19 18.17 - 18.37 981 - 999
G 5 6 - 20 18.21 - 18.37 1018 - 1054
H 6 6 - 19 18.01 - 18.37 1074 - 1126
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Fig. 8 Execution of material handling, including the CPS and SMO for CA in the RMS.

Another interesting aspect that can be supported by the use of PCP is the
impact of the TBC and the number of AGVs on the lead time. Rules can be set
in the SMO approach and PCP to understand this relationship and simplify
the decision-making process. In this case, configuration A satisfied the required
demand with a lower lead-time.

The results of the optimisation where three AGVs were used are presented
in Figure 10. The figure shows the THP and TBC relationships for the non-
dominated solutions of configurations A and C. For A, the minimum TBC was
equal to 2 when the two buffers included in that configuration had a capacity
of 1, and for C, it was 3 when the three buffers of that configuration had a
capacity of 1. Figure 10 shows a better THP progression for A than for C as
the buffer capacity increased, reaching their maximum THP with TBC equal
to 21 (configuration A) and 37 (configuration C).

The maximum THP reached when three AGVs were employed was 553
parts per day for configuration A and 544 for configuration C. Despite the
THP difference between configurations A and C being less than one part per
hour, it was sufficient to employ a different number of AGVs to cope with the
demand, as seen in PCP. Another aspect seen in the figure is that configuration
A could reach any THP with a lower TBC than configuration C. In the studied
case, configuration A could produce the desired demand with one AGV fewer
than configuration C. This was achieved with three AGVs and a TBC of 21
(buffer 1 capacity equals 8 and buffer 2 capacity equals 13).

Although the preliminary results showed that configurations A and C coud
provide the required demand, the use of CPS facilitated the consideration of
material handling, leading to an accurate analysis of its impact on the THP for
both configurations. Despite the detailed insight provided by the optimisation
results on the performance of different configurations, the established rules
determined the optimal way to achieve the objectives, considering the decision
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maker’s interest. In the case in this study, two rules were considered: satisfying
demand and a TBC of less than or equal to 20.

Figure 11 presents the results of the parallel coordinate plot for config-
urations A and C and highlights in green all the solutions that fulfilled the
established rules. It shows that configuration A also fulfilled the rules with a
lower number of AGVs and LT. Despite these results, the optimisation deter-
mined that the most efficient way to fulfill the rules, in terms of the objectives,
was achieved by configuration A, which used four AGVs and had a TBC of 12
(buffer 1 capacity equal to 6 and buffer 2 capacity equal to 6), where the LT
was equal 2358 seconds.

Fig. 9 The parallel coordinate plot of the results of the SMO and objectives for configura-
tions A and C.

Fig. 10 THP and TBC relationship for non-dominated solutions of configurations A and C.
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Fig. 11 Parallel coordinate plot for configurations A and C highlighting the solutions that
fulfill the rules.

6 Discussion

The purpose of this study was to apply a CPS, including a SMO, to to address
the dynamic allocation of resource of material handling in the CA of RMSs
and enhance operational performance. This study contributes to advancing
understanding of the CA of RMSs by applying digital technologies in a field
that relies on analytical calculations. Additionally, this study contributes to
the analysis of the implications of material handling in the CA of RMSs, a
situation not previously addressed in the literature. These findings are decisive
for securing the benefits of RMSs, including rapid and cost-effective changes
in market demand. The results of this study are critical for staff responsible
for deciding the optimal configuration of RMSs and their material handling
and present distinct benefits to operational performance, including THP, LT
and TB.

6.1 Cyber physical systems in the configuration analysis
of reconfigurable manufacturing systems (RQ1)

In the current volatile market, studies have estimated a reduction in the lifecy-
cles of manufactured products and an increase in product variety [19, 77, 78].
In these shorter product lifecycle scenarios, the question of how to optimally
configure and reconfigure an RMS, including its material handling needs, is a
challenge for which manufacturing companies and decision-makers need great
support. The case presented in this study demonstrates how the combination
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of an SMO and a CPS is a promising decision-support tool for the manufactur-
ing industry. Consequently, RMS setups can benefit from a combination of an
SMO and a CPS to achieve new levels of efficiency in the RMS-CA challenge.

The empirical results of this study have important implications for the
CA of RMSs. In particular, this study proposes an IIoT-based architecture
for realising a CPS that leads to the CA of an RMS for material handling in
manufacturing. These findings extend earlier research efforts [64] that explored
the use of digital technologies applied to RMSs. Specifically, we propose an
architecture for capturing, processing, and synchronising information for the
CA of the RMS, including material handling. These findings are important for
two reasons. First, they present a blueprint for securing the interconnection
between IIoT devices and middleware, leading to value-added services essen-
tial for the plug-and-produce approach that is necessary in RMS. Second, the
results provide empirical insight into earlier works that characterise the poten-
tial benefits of applying CPS in RMS, but have so far remained at a conceptual
level [1] Taken together, the proposed architecture presents an important step
in clarifying the acquisition of data in material handling and their use for
adjusting and responding to changes that affect the configuration of an RMS.

Additionally, this study underscores the importance of applying CPS to
increase the visibility of material handling in the CA of RMSs. This study
presents empirical data originating from the bidirectional communication facil-
itated by the CPS for the execution of tasks in material handling. IIoT included
in CPS is essential for providing access to real-time data, which is critical
for increasing visibility in the use of resources (e.g., time and equipment)
to achieve the goals of a configuration in an RMS. Importantly, the results
show that manufacturers cannot work under the assumption of the mean or
estimated values for the pick-up and delivery of materials. Instead, our data
indicate that maneuvering, docking, layout and lifting contribute to the time
associated with material handling activities and that these times are unavoid-
able in RMS. These findings suggest that manufacturing companies stand to
benefit from the increasing level of automation in material handling but can-
not assume error-free operations. Instead, manufacturing companies applying
bidirectional communication originating from CPSs stand to benefit from the
monitoring, optimisation, execution of tasks, and increased understanding that
are indispensable for adapting to the dynamic operations of RMSs.

Furthermore, this study contributes to the current academic discourse by
targeting the increase in automation for material handling in RMS. Previous
studies have pointed to the need to adjust workstations to abrupt production
changes at a low cost and with minimum effort [6]. Our findings extend this
concept to include resources in material handling (e.g. AGVs) and propose
a CPS to achieve this dual goal. Specifically, the results show that the CPS
contributes to selecting the configuration of an RMS and assigning tasks and
their corresponding resources in material handling to achieve a level of opera-
tional performance. This is important because RMS involves frequent changes
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in configurations and depends on the consideration of both operational per-
formance and the costs of material handling and machine relocation. This
situation differs from configurations in traditional manufacturing systems that
precede long-term material handling and cost considerations [18].

6.2 Cyber physical systems and simulation-based
multi-objective optimisation in reconfigurable
manufacturing systems (RQ2)

CA is indispensable for establishing how an RMS secures the goals of shorter
lead times, material flow efficiency, and lower inventory levels and relocation
costs [66, 79]. To do so, the literature on the CA of RMS has proposed selec-
tion approaches that are rigorous but difficult to achieve without specialised
knowledge. This situation contrasts with the consistent application of CA for
RMS in manufacturing practice. To address this problem, the results of our
study show that combining CPS and SMO is essential for complementing the
knowledge of staff familiar with the needs of RMS but lacking rigorous meth-
ods for the CA of RMS. Consistent with recent research efforts, the findings of
our study revealed that CPS and SMO contribute to the vertical integration
of a physical and digital world, enabling interoperability, transparency, and
autonomy in RMS [75]. This is essential for seamlessly acquiring and process-
ing data and presenting information to digital services accessed by staff (e.g.
SMO for CA of RMS). Consequently, combining a CPS and an SMO reduces
the need for manual calculations and facilitates the application of optimisa-
tion in the CA of the RMS. Accordingly, this study contributes to meeting
the short decision-making time in the manufacturing industry and avoiding ad
hoc solutions leading to failed configurations.

This study identifies that the combined use of a CPS and an SMO is essen-
tial for providing the timely response expected from RMSs. In particular, it
shows that combining a CPS and an SMO enables an accurate CA based on
real-time data. Accordingly, our findings extend those of other scholars [56]
and demonstrate that CPSs facilitate the simultaneous networking of various
devices and link physical inputs and outputs with optimisation algorithms. For
example, the real-time collected and processed data are analysed by the SMO,
enabling critical decisions such as the specific number of material handling
units and buffer capacity for different configurations and demand scenarios of
the RMS when sudden changes need to be addressed effectively. This is criti-
cal for achieving fast iterations involving the generation, testing, analysis, and
deployment of new configurations [80]. The implications of this finding are par-
ticularly relevant to material handling applications that encounter problems
originating in a dynamic environment (e.g. delivering urgent tasks, avoiding
dead locks, or operating in limited areas) [5].

Additionally, the findings show that combining a CPS and an SMO is
decisive for establishing trade-off decisions that may appear counterintuitive
to staff but lead to increased competitiveness. Previous studies focusing on the
CA of RMS have relied on analytical calculations and an SMO for evaluating



Springer Nature 2021 LATEX template

Enabling CPS and SMO for RMS 29

multiple objectives, leading to superior performance [44]. The results of our
study extend this work and present novel findings that disclose the necessary
resources in material handling and their implications for throughput, lead time,
and buffer capacity in an RMS configuration. This is important because our
findings suggest that combining a CPS that acquires data from resources in
material handling and an SMO may prevent staff from selecting configurations
that meet demand at the expense of additional resources.

6.3 Operational benefits of applying cyber physical
systems in reconfigurable manufacturing systems
(RQ3)

This study presents the benefits for operational performance when applying
CPS and SMO to address the dynamic behaviour of material handling in
the CA of RMS. This finding originates from the architecture proposed in
Sections 3 and 4 and the empirical results in Section 5. The findings show
that combining a CPS and an SMO for the CA of an RMS presents distinct
operational benefits, including improvements to the number of workstations,
TBC, LT, throughput, and resources in material handling. The results of this
study present a direct response to prior research efforts, identifying the need
for empirical results analysing the trade-offs involving logistics and RMSs and
the effects of different configurations [19]. This is important because it trans-
forms the CA of an RMS from a strategic problem, focusing on the long-term
costs of material handling, to a tactical one, giving precedence to operational
performance [18]. Accordingly, applying a CPS and an SMO to address the
dynamic behaviour of material handling in the CA of an RMS underscores the
significance of the arrangement of machines and transportation of materials to
achieve productivity, responsiveness, convertibility, and scalability.

The results of our study provide critical insights into the operational ben-
efits when considering the dynamic behaviour of material handling in the CA
of an RMS. Importantly, our findings show that when considering material
handling resources, one RMS configuration does not fit all possible cases. For
example, the results of our work show that configuration A is the most desir-
able for meeting the demand. This configuration produced 550 products/day,
including a lower number of AGVs, TBC and LT. However, our results also
showed that THP lower than 22 products/hour for other RMS configurations
is desirable and can meet THP at a lower TBC and LT. This finding is deci-
sive for the scaling of the capacity of a system that depends on the resources
of material handling. Accordingly, the findings of this study provide insight
into the consequences of material handling resources on operations, a situation
that remains pending empirical insight in the literature [7].

6.4 Managerial contributions

This study presents decisive managerial contributions for applying a CPS and
an SMO to the material handling of RMS in manufacturing. In particular,
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it clarifies the use of data from AGVs in material handling for the CA of
RMSs, including SMO. These findings are relevant to production engineers,
logistics developers and production managers responsible for determining the
arrangement of machines and the flow of materials in factories. Our study
exemplifies the digitalisation of the CA of RMSs and its operational benefits by
combining the CPS and SMO. Accordingly, managers can plan activities and
manage resources to develop CPS physical, cyber, and digital service layers.

The results of our study shed light on the effects of material handling on
the performance of RMSs. Specifically, the findings of this study reveal that
the arrangement of AGVs and the time for material handling contribute to the
performance of RMS configurations. This is significant for managers because
material handling accounts for 20-50% of manufacturing costs [80]. Therefore,
managers responsible for the implementation of RMS may benefit from the
early involvement of staff responsible for and knowledgeable about logistics.
The early involvement of such staff is indispensable for specifying requirements
in material handling, including routes for delivery of material, transportation
quantity, equipment selection, charging policy and safety. These are require-
ments that contribute to performance, but receive scant attention during the
development of manufacturing systems [81]. Our findings highlight the impor-
tance of applying digital and quantitative tools during the CA of RMS. This
is in stark contrast to manufacturing practices in which the configuration of
manufacturing systems comprises substantial ad hoc tasks and includes lim-
ited use of quantitative tools [5]. This finding is important for managers for
two reasons. First, the results of our study show that applying digital tech-
nologies, including a CPS and an SMO, may contribute to the formalisation
of the CA of RMSs. This is important because increased formalisation may
contribute to establishing processes in the CA of RMSs that are accessible to
staff, regardless of their experience in a particular area. Second, the results of
this study present an approach requiring little time and effort from staff for
the acquisition and analysis of data necessary for the CA of RMSs. Instead,
managers applying a CPS and an SMO for the CA of an RMS can make better
use of the knowledge of their staff and focus their staff’s time on the analysis
of trade-off decisions or the benefits of one configuration over another.

7 Conclusion

The purpose of this study was to propose the use of a CPS, including an SMO,
to address the dynamic allocation of resource of material handling in the CA
of RMSs and enhance operational performance. The study presented an SMO
model for evaluating trade-off solutions including the optimisation objectives
of throughput, buffer capacity, lead time and the number of resources in mate-
rial handling. This study provides three contributions. First, it describes the
manner in which extant knowledge about CPSs in material handling applies
to the CA of RMSs. Second, the results of this study provide critical insights
for advancing existing procedures in the calculation of the CA of the RMS.
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Specifically, this study contributes to the field of RMS by combining CPS and
SMO to automate calculations and digitalise the CA of RMSs. Third, this
study presents important implications for manufacturing competitiveness by
applying RMS. The results of this study show that applying the proposed
framework involving a CPS and an SMO to address the dynamic material
handling needs in the CA of an RMS enhances operational performance. Specif-
ically, the results of the SMO assisted in the choice of configuration, leading to
a reduction in the number of AGVs, a TBC of 12 and an LT of 2358 seconds.

This study has three limitations. The first involves applying the proposed
framework to a laboratory environment based on a case from the automotive
industry. Accordingly, there is a need to validate the results in an industrial
context and in additional types of industry. A second limitation of this study
is the use of a CPS and an SMO to address the dynamic material-handling
needs in the CA of an RMS with a fixed demand. An increasing number of
studies have been providing evidence for the need to respond rapidly and eco-
nomically to unexpected surges in market demand. Therefore, an immediate
next step would involve investigating the effects of changes to product vari-
ants dynamically instead of selecting the configuration of an RMS based on
changes in product quantity. A third limitation of our study corresponds to
the dispatching rules for material handling resources in the CA of the RMS.
Presently, our study considers the lowest waiting time rule for assigning tasks
to AGVs. Therefore, future research could address the CA of the RMS, includ-
ing material handling, by comparing alternative dispatching rules that satisfy
the preferences of managers.
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ABSTRACT In today’s global and volatile market, manufacturing enterprises are subjected to intense global
competition, increasingly shortened product lifecycles and increased product customization and tailoring
while being pressured to maintain a high degree of cost-efficiency. As a consequence, production organi-
zations are required to introduce more new product models and variants into existing production setups,
leading to more frequent ramp-up and ramp-down scenarios when transitioning from an outgoing product
to a new one. In order to cope with such as challenge, the setup of the production systems needs to shift
towards reconfigurable manufacturing systems (RMS), making production capable of changing its function
and capacity according to the product and customer demand. Consequently, this study presents a simulation-
based multi-objective optimization approach for system re-configuration of multi-part flow lines subjected
to scalable capacities, which addresses the assignment of the tasks to workstations and buffer allocation
for simultaneously maximizing throughput and minimizing total buffer capacity to cope with fluctuating
production volumes. To this extent, the results from the study demonstrate the benefits that decision-makers
could gain, particularly when they face trade-off decisions inherent in today’s manufacturing industry by
adopting a Simulation-Based Multi-Objective Optimization (SMO) approach.

INDEX TERMS Multi-objective optimization, reconfigurable manufacturing systems, simulation-based
optimization, genetic algorithm.

I. INTRODUCTION
In the current competitive manufacturing industry, companies
often face a dynamic market wherein fluctuating production
volumes need to be addressed to cope with demand vari-
ations. How rapidly can a manufacturing system react and
adjust its functionalities and capacity according to demand
and volume variations encompasses one of the most critical
considerations for manufacturing companies [1]–[3]. Recon-
figurable Manufacturing Systems (RMS) concept was first
introduced by Koren et al. [4] as an attempt to address, among
others, the challenges derived from such demand and volume
fluctuations. RMS are production systems capable of adding,
removing, and relocating components, e.g., machines, mate-
rial handling equipment, etc., to rapidly fulfill expected or
unexpected market shifts [5]. Recent studies imply that RMS
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may be crucial for addressing dynamic production volumes.
Therefore, they can help manufacturing companies attain
market demands while evading the large investment lost
related to non-operating machines [2], [6]. To this extent,
RMS are responsive manufacturing systems that provide the
capacity and functionality needed for several demand periods
by adding or reconfiguring the arrangement of machines and
the process plan in a cost-effective manner [1].

RMS consists of several workstations (WSs) where each
WS contains several parallels and identical machines [7].
In this study, the RMS configuration is determined by the
number of parallel machines and the task sequence to be
performed in every WS. The RMS configurations can be
classified according to the number of products they produce.
Single-part flow line (SPFL) configuration when a single
product is produced in the system, and the multi-part flow
line (MPFL) configuration when several products are made
in the system [8]–[10]. The use of MPFL configurations is
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becoming more and more common, especially in the auto-
motive industry where several parts are fabricated in the same
flow line [1]. Up to this time, prior studies focused on RMS
configuration analysis and task assignment for MPFL are
scarce [1], [11], [5]. Furthermore, studies that have treated
similar problems, such as the configuration analysis and task
assignment for RMS, have set interstation buffers to the same
constant capacity, practically ignoring the buffer allocation
problem.

Despite the advantages of RMS in handling demand fluc-
tuations and scalable capacities in comparison to traditional
manufacturing systems, designing and managing these sys-
tems involve complicated and combinatorial NP-hard prob-
lems that can be benefited from the use of simulation and
optimization techniques [6], [12]–[14]. Due to its betters
results in nearing the optimal solutions, metaheuristics meth-
ods such as Genetic Algorithms (GAs) have gained attention
from many researchers in the field [12]. However, regardless
of the successful applications shown by both techniques,
studies presented their deficiencies when employed sepa-
rately. For decades, simulation methods have been success-
fully employed for modeling and analyzing manufacturing
systems [15]. The complex and dynamic scenarios found in
manufacturing systems need to be analyzed, assessed, and
hence modeled in simulation technology. When a simula-
tion model is built, engineers and decision-makers obtain a
better understanding of real-life systems [16]. Simulation,
especially Discrete-Event Simulation (DES), is identified
as a practical approach to evaluate the uncertainty found
in complex manufacturing systems and can consider the
changes of the system over time [17]. Nonetheless, as the
complexity and the number of variables in the manufacturing
system increases, the use of simulation becomes computa-
tionally impractical. On the other hand, the use of optimiza-
tion methods such as metaheuristics can provide solutions to
bigger-scale NP-hard problems [12]. Still, in regards to RMS,
most of the studies simplified the problem by neglecting
the variability of the system and hence producing inaccurate
results. To overcome these shortcomings, Simulation-Based
Optimization (SBO) emerged to use the benefits of both,
i.e., combining the advantages of simulation and optimiza-
tion. SBO has been proven to be a successful method that
leads to improvements in manufacturing systems. Although
SBO has been previously used to optimize RMS, the use
of Simulation-BasedMulti-Objective Optimization (SMO) to
deal with the RMS configuration problem and task assign-
ments to WSs is sporadic. Accordingly, researchers identify
opportunities in the use of SMO techniques in real-scale RMS
problems [6], [18].

Against this backdrop, this study aims at contributing to
the RMS research domain by presenting an SMO approach
for the optimization of the system configuration of an MPFL
subjected to scalable capacities to cope with fluctuating pro-
duction volumes by addressing the assignment of the tasks to
WSs and buffer allocation for maximum throughput (THP)
and minimum total buffer capacity (TBC), simultaneously.

The remaining of the paper is organized as follows: In
section 2, a literature review of some of the most relevant
work in related areas is presented, and its shortcomings are
identified. In section 3, the current industrial need to use and
optimize RMS to tackle fluctuating production volumes for
dynamic market demand is explained. In section 4, the pro-
posed SMO approach is explained. Section 5 shows the
proposed approach applied and validated in an industrial-
inspired application. Lastly. Section 6 summarizes and con-
cludes this study.

II. LITERATURE REVIEW
An optimal RMS design needs to address three main areas:
the system configuration, the components of the system, and
the process planning [5]. The system configuration involves
the arrangement of machines in the systems [5]. This has a
great impact on the productivity, functionality and scalability
aspects of the system [19]. The majority of the research
focuses on machine assignment to WSs. The components of
the system deal with the type and number of machines or
components required to reach the desired production capac-
ity [5]. This is a critical area for capacity planning and scal-
ability. Most of the research concerning this area is devoted
to optimizing the number of machines in the system. Lastly,
the process planning includes how tasks are allocated to the
WS and balanced throughout the system. This area impacts
on the reconfiguration efficiency of the system in handling
the fluctuating production volumes [20], [21]. Research tends
to focus on optimizing the task allocation to WSs. Con-
sequently, during the lifecycle of an RMS, changes in the
production are accommodated through one or several recon-
figurations. For an RMS to scale the production capacity
or deal with demand fluctuations, the system is required to
efficiently change its configuration by adding, re-allocating,
or removing components and rebalancing the tasks in the
reconfigured system [2], [22]. Hence, most of the research
on RMS uses a range of different techniques to target one or
several aspects related to the mentioned areas. Some of the
most relevant studies are listed below.

When it comes to SPFL, Koren and Shpitalni introduced a
four stepsmathematical approach for determining the number
of machines required in a system and selecting the desired
RMS configuration to reach the desired production capac-
ity [3]. Another mathematical approach was presented by
Wang and Koren in [22] to either maximize the throughput
of the system or minimize the number of machines used
in the system. In this approach, the authors reconfigure the
system and rebalance the task assignment to meet a new
production demand in an RMS without buffers. In a later
study, Koren, Wang and Gu extended the previous study,
including three scenarios in which the in-between buffers
have the same constant buffers capacity and defined five
design-for-scalability principles. Studies such as [23]–[27]
have focused on the cost or profits aspects to find the optimal
SPFL configurations. Some other studies, such as [28]–[30],
targeted the task assignment and employed a GA to find the
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best task allocation for minimal reconfiguration cost or the
number of machines.

Contrary to the single-objective above studies, Goyal et al.
in [9] presented a GA-based approach to obtain the optimal
configuration in terms of cost, convertibility, and utiliza-
tion of machines. Goyal and Jain [31] presented another
multi-objective study, using a particle swarm optimization
in this case, to find a set of non-dominated SPFL also with
convertibility, utilization of machines, and cost as objec-
tives. Another multi-objective, in this case, simulation-based
approach, was presented by Barrera-Diaz et al. in [15], where
NSGA II was employed for the selection of the optimal con-
figuration in terms of maximum production rate, minimum
buffer capacity, and minimum lead time. Multi-objective
approaches for RMS process plan generation were studied by
Khezri et al. in [32], targeting sustainability, total production
time, and production cost as objectives.

In the case of MPFL, Saxena and Jain used a mathematical
approach to minimize RMS configuration design cost [33].
Two linear programming approaches for the configuration
design of scalable RMSwere illustrated in a hypothetical part
family example by Moghaddam et al. in [34]. Bortolini et al.
in [35] presented another linear programming approach for
the design of RMS, focusing on part routings with time cost
minimization as the objective. Hasan et al. present a method
in [36] to determine the optimal configuration and part family
sequence in an RMS. Youssef and ElMaraghy in [10] used a
GA to find the optimal MPFL configuration with minimal
cost. Minimal capital cost was again the objective in another
GA approach proposed by Dou et al. for the MPFL config-
uration problem in [8]. Dou et al. in [1], a multi-objective
particle swarm optimization was proposed to address the
MPFL configuration problem where minimal cost and tardi-
ness were set as the objectives. Some studies have applied
simulation-based methods to solve MPFL process plan gen-
eration problems. Musharavati et al. in [37] studied the pro-
cess plan generation in MPFL through a simulated annealing
approach. The authors considered a total cost single-objective
function. Completion time and cost were the objectives in
a study presented by Benyouced and Tiwari [38], where an
NSGA II was adopted for the process plan generation in the
MPFL. Bensmaine et al. [39] studied an SBO approach for
the process plan generation of MPFL in which NSGA II
is employed to optimize total time and cost. Another SBO
approach was studied by Touzout and Benyoucef [40] for
process plan generation of an MPFL with three objectives,
total time, total cost, and greenhouse gasses emissions. The
authors compared the use of three hybrid metaheuristics
algorithms.

Regardless of the purpose of the study, e.g., process plan
generation or configuration analysis, most of the SPFL or
MPFL studies have neglected important aspects such as
buffers consideration or system uncertainty and variability.
Besides, although SBO has been employed, its use is very
sporadic and has either focus on process plan or config-
uration analysis. None of the reviewed studies have used

FIGURE 1. Shortened lifecycles. Inspired by [42].

SBO to combine tasks and resource assignment with system
configuration analysis in a scalable MPFL for fluctuating
production volumes. This indicates a clear research gap in
the use of SMOmeta-heuristics techniques to simultaneously
address several RMS areas considering optimal buffer capac-
ities as additional decision variables and the unreliability of
the machines.

III. INDUSTRIAL NEEDS
Globalization has contributed to bringing the world closer.
People around the world are more connected than ever before,
information and financial flows are more rapid than ever and
products that are manufactured in other parts of the world are
seamlessly available to end-users as local products. Never-
theless, this transformation has also contributed to creating
a volatile and sometimes unknown landscape for the manu-
facturing industry. Manufacturing enterprises today are sub-
jected to intense global competition, increasingly shortened
product lifecycles and increased product customization and
tailoring while being pressured to maintain a high degree of
cost-efficiency [41].

The previous stable lifecycles of development and release
of new products were characterized by a smooth ramp-up
with a steady volume increase which generally was followed
by a maturity phase with stable demands and then a smooth
ramp-down. In today’s global and volatile market, these life-
cycles are not only becoming shorter and shorter, but they
also display new characteristics, as shown in Fig. 1, where
product volumes rise much faster to a first peak following a
decrease in demand after a period of time, which is mitigated
by promotions campaigns, minor product updates or facelifts
increasing the demand to a second peak before a sudden
decrease in demand of the product due to announcement
of a new product release These lifecycle characteristics are,
to a large extent, the results of the end user’s requirements
of increased customization and personalization of products
which is forcing manufacturing industry into a new man-
ufacturing paradigm shift from today’s mass customiza-
tion to mass personalization or individualization [5]. As a
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consequence of the shorter product lifecycles and customiza-
tion, production is required to manufacture an increasing
number of product models and variants [42]. It is estimated
that product lifecycles have been reduced by 25%, leading
to that product variety has more doubled in the last two
decades [43].

With the above-said trend, production organizations in
the future are most likely required to introduce more new
product models and variants into existing production setups,
leading to more frequent ramp-up and ramp-down scenarios
when transitioning from an outgoing product to a new one.
For instance, Fig. 1 depicts the interactions of the product
lifecycles of A1, A2 and A3 with overlapping ramp-up and
ramp-down period between one product to another. Some
industry domains are already today facing even more inter-
secting product lifecycles where the production organization
is required to ramp up both product A2 and A3 over a period
of time whilst still ramping down product A1. In order to
cope with the higher degree of new product models, the pro-
ductions system setups need to shift towards RMS, which,
as explained in the introduction, provide a higher degree of
modularity and reconfigurability, making production capable
of changing its function and capacity according to the product
and customer demand [44].

The RMS paradigm provides the manufacturing industry
and production organizations the ability to quickly adapt to
these market and product changes in a cost-effective manner,
in which the efficiency of a dedicated manufacturing system
with high throughput and the flexibility of a flexible manu-
facturing system is combined with the capability of adapting
to market requirements, both in terms of product and vol-
ume [3]. However, the question regarding how to optimally
configure the RMS through the transition phase, i.e., ramp-up
and ramp-down, from one product family to another, is still
an issue where production organizations and managers need
greater decision support. The case study in this paper, see
section 5, presents such a scenario taken from the automotive
industry. The company is currently producing a single set of
crankshafts, including some variants with the product family.
In parallel to this, they are currently initiating a production
ramp-up of a new product family of crankshafts, thus facing
the above-stated issue of how optimally configure the produc-
tion resources through this transition whilst still reaching the
production target levels, such as throughput, buffer capacity,
etc. Here, SMO is utilized to provide the decision support to
the production managers on how to reconfigure their produc-
tion resources whilst maximizing throughput and minimizing
buffer capacities for each possible production configuration
setup through the ramp-up and ramp-down of the two product
families.

IV. A SMO APPROACH
A. THE OVERALL METHODOLOGY: HOW TO USE SMO
FOR OPTIMIZING RMS RE-CONFIGURATIONS
Decision support using the SMO approach in manufacturing
systems design and improvement projects can be represented

FIGURE 2. SMO loop.

by four iterative loops consisted of four main activities,
as shown in Fig. 2. Loop (1) consists of the start phase when
the problem is analyzed and formulated into a simulation-
optimization problem. It is often overlooked that decision-
making activities, here referring to not only the final decision
for implementation but also any decisions involved during the
whole project, which would affect the final outcomes of the
analysis, results and the final decision. This is an important
point to note because deciding what decision variables to
be included, their ranges and other constraints as well as
which simulation outputs are included in the SMO as the
optimization objectives all directly affect the selection of
the abstraction level and simulation modeling represented as
Loop (2). These optimization settings, including objectives,
decision variables and constraints, are the inputs to ‘‘Multi-
Objective Optimization’’, see Loop (3). In return, the opti-
mization activity sends back the results from the SMO-loop
representing the outputs of the optimization, i.e., Loop 4,
in terms of Pareto-optimal solutions to ‘‘Decision Making’’
for choosing the final solution (Loop (3)). It is also possible
that the decision-maker can adjust the final solution, possibly
to be verifiedwith the simulation and comparewith the results
from the SMO run.

In terms of MOO, to the best of our knowledge, the SMO
approach in this specific study is the first that simultane-
ously maximizes THP and minimizes TBC while provid-
ing the optimal MPFL configuration and task allocation
for fluctuating production volumes and scalable capacities.
In other words, this approach determines how to obtain the
highest possible THP with the minimum number of buffers
considering different numbers of machines and production
volumes, including buffers and task allocation. This could
support not only individual product volume changes but
also the system scalability aspect (total production volumes),
providing the optimal way to add resources (machines and
buffers) or reconfigure existing ones to meet new demand
scenarios.
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The number of aspects simultaneously considered by this
approach increases the complexity of the problem exponen-
tially. The SMO consists of two main components, the sim-
ulation model and the optimization engine. The process
starts with a feasible solution is generated in the simulation
model. The simulation model enables the input parameters
combination and experimentation following the optimization
objectives and the system constraints to find the optimal
output solutions. This is an iterative process in which the
optimization engine processes the outputs of the simulation
as the values of the objective functions in order to assign a
new combination of input parameters so as to converge to
a set of near-optimal values for the decision variables over
time. The SMO approach and its mechanisms are graphically
illustrated in Fig. 3. Optimization methods can be classified
into exact and non-exact methods. Exact methods like math-
ematical programming or ε constraints and non-exact like
metaheuristics which include the trajectory and population-
based methods, have been previously applied to similar prob-
lems. However, when considering the RMS challenges in a
multi-objective optimization context, population-basedmeta-
heuristic methods have been identified as one of the most
powerful optimization methods and Genetic Algorithm (GA)
as the most efficient in nearing optimal solutions [12]. There-
fore, this approach employs the well-known fast elitism non-
dominated sorting genetic algorithm II (NSGA-II) [45] for
optimization due to its efficiency in handling multi-objective
problems with 2 or 3 objectives.

The optimization objectives in this study are defined in
Equations (1) to (3). The considered constraints are presented
in Equations (4) to (11).

List of symbols

j workstation index.
S number of workstations.
i, r tasks index.
N number of tasks.
k machines index.
M total number of machines in the RMS.
mmax maximum number of machines per workstation.
Mmin minimum number of machines in the RMS that

must be assigned for production.
Bmin minimum safety buffer.
Bmax maximum buffer capacity.
Bj buffer capacity for workstation j.
P Set of precedence relationships (r, i ∈ P if and

only if task r is an immediate predecessor of task
i).

xij 1 if task i is assigned to workstation j; 0 otherwise.
ykj 1 if machine k is assigned to workstation j; 0

otherwise.

Three conflicting optimization objectives are defined as
follows.

Maximize f 1 = THP : Throughput (jobs per hour)

(1)

Minimize f 2 =
∑S

j=2
Bj−1 : Total Buffer Capacity (2)

Minimize f 3 =
∑Kmax

k=1

∑J

j=1
ykj : Number of Machines

(3)

The following constraints have to be fulfilled when opti-
mizing the RMS.

Task allocation: each task can only be assigned to one
workstation:∑S

j=1
xij = 1, ∀i = 1, 2, . . . ,N (4)

Precedence relation: a task is assigned to a station only
if all its predecessors are assigned to the same or earlier
workstations:∑S

j=1
j
(
xrj − xij

)
≤ 0, ∀(r, i) ∈ P (5)

Machine allocation: each machine must only be assigned
to one workstation:∑S

j=1
ykj = 1, ∀k = 1, 2, . . . ,M (6)

Technological requirement - a task is allocated to a work-
station if it has the required machinery to execute the task:

Cik × xij ≤ ykj ∀k = 1, 2, . . . ,M; i = 1, 2, . . . ,N ;

j = 1, 2, . . . , S (7)

Workstation utilization: at least one machine should be
assigned to each workstation:∑M

k=1
yki ≥ 1, ∀j = 1, 2, . . . , S (8)

Floorspace limitation - each workstation cannot have more
than a certain number of machines:∑M

k=1
ykj ≤ mmax, ∀j = 1, 2, . . . , S (9)

Machine utilization- the assignedmachines toworkstations
cannot exceed the total number of available machines. More-
over, to ensure production, a minimum number of machines
should be assigned to workstations:

Mmin ≤
∑Kmax

k=1

∑J

j=1
ykj ≤ M (10)

Buffer capacity limitations- each inter- stations buffer
should not become less than a certain safety capacity and
should not exceed a maximum buffer size:

Bmin ≤ Bj−1 ≤ Bmax j = 2, . . . , S (11)

The applicability of this approach is demonstrated by an
illustrative example in Section 4.3 and then an industrial-
inspired case described in Section V.
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FIGURE 3. Graphical representation of the SMO.

B. OPTIMIZATION ALGORITHM DETAILS
Genetic algorithms have been extensively used to optimize
production and manufacturing systems [46]. NSGA-II is
one of the most used multi-objective evolutionary algo-
rithms (MOEA) [13]. The designed combination of the
fast non-dominated sorting approach and the crowding dis-
tance calculation to sort and rank the solutions stated
by their fitness value endow the well-balanced conver-
gence and spread required by any efficient MOEA [41].
When compared to its earlier version, the elitist mech-
anism of the NSGA-II combines the best parents with
the best offspring obtained from the genetic operations,
see Fig. 5.

1) FAST NON-DOMINATED SORTING
There are three major techniques that render the outstand-
ing performance of NSGA-II [47]: (1) a fast non-dominated
sorting approach that reduces the computational complexity
in other GA-based MOEA; (2) the elitism selection proce-
dure described above; and (3) the use of crowding distance,
as a measure for comparison and selection after the non-
dominated sorting, to preserve the diversity of the solutions
in the population. Fast non-dominated sorting is the proce-
dure to efficiently sort the solutions into multiple fronts with
different ranks based on their dominance relationships. For
each couple of solutions (S1, S2), three types of relationships
can be established: solution S1 dominates solution S2, solu-
tion S1 is dominated by solutions S2, and lastly, neither of
them dominates each other (i.e., they are non-dominated).
This dominance relationship is established by comparing
the objectives set by the values (fitnesses) of the objective
functions. When the comparison of all different solutions
in the population is made, the non-dominated solutions will
form the first front (rank 1) of solutions in the current

FIGURE 4. Fast non-dominated sorting and crowding distance calculation.

population. Then the same process will be repeated in the
same population, excluding the first front from the popula-
tion to find the second-best front (rank 2) of solutions. This
process is repeated iteratively until all solutions are classified
into different fronts, as shown in Fig. 4.

2) CROWDING DISTANCE
To ensure a good spread of solutions, it is important to deter-
mine the density of the solutions when selecting the solutions
to be preserved into the next generation. The crowding dis-
tance calculation procedure helps to determine the rank of
the solutions in the same front once the fast non-dominated
sorting is completed. This is attained by assigning to every
solution the average side distance of the cuboid (shown as
a dashed box) formed by the nearest solution points on the
same front with the same rank, see Fig. 4. Consequently, the
crowding distance calculation helps to determine the most
dispersed (i.e., less crowded) solutions of the front. These
solutions will have a preference to be preserved for the next
generation to ensure a more diverse population.
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FIGURE 5. NSGA II implementation. Inspired by [41].

3) CROSSOVER AND MUTATION OPERATORS OF NSGA II
For the generation of the new population, NSGA II uses
the crossover and mutation operators. The crossover operator
takes place between two solutions. This operator randomly
intersects the chromosome of two solutions and then com-
bines the genes from different parts of the chromosome of
each solution to generate two new solutions. As inspired by
the biologicalmutation, this operator occurs randomly in each
generation to maintain the diversity from one generation to
the next. This operator modifies one or several genes/points in
the solution/chromosome according to the mutation probabil-
ity. As the mutation probability increases, the more changes
the solution will occur. Therefore, with a high mutation prob-
ability, the solutionmay change completely from the previous
one.

The implementation of the NSGA II, according to [45],
is conceived as in Fig. 5. Applying the crossover and muta-
tion operators to a population Pt, Qt offspring of size N is
generated. Then a combined population is sorted applying the
previously explained fast non-dominated sorting and crowd-
ing distance comparison. To create the N best solutions that
become the next population Pt+1. F1, F2, and F3 represent
the best, second best, and third best non-dominated sets of
solutions in the new combined population. The combined
population is determined by Rt, the union of Pt, and the off-
spring Qt, so Rt = Qt∪Pt. Finally, the solutions from the set
F1 have the highest priority to remain, the solution in F2 the
second-highest priority, and so on. As a summary, the major
steps followed by the NSGA II algorithm are illustrated by
the flowchart in Fig. 6.

4) GENETIC REPRESENTATION AND CONSTRAINT
HANDLING
In this study, the chromosome of the problem is repre-
sented by a gene vector of integer numbers which is initially
randomly generated from concatenating different encoded
real-valued genes into one chromosome. Such a vector
consists of three sub-strings of genes. The first sub-string
represents the number of machines assigned to the recon-
figurable WSs. The second sub-string represents machining
task assignment to WSs regardless of the number of parts
considered in the problem and the third one represents the

FIGURE 6. NSGA II flowchart. Inspired by [41].

buffer capacities allocation. The length of the vector L is
equal to the sum of the lengths of these three sub-strings.

The first sub-string of the gene vector that represents the
number of machines per WS has a length determined by the
number of WSs that can add or remove machines to cope
with production changes. Then, each position in this part of
the vector represents a specific WS and receives an integer
with a value between 1 and mmax (i.e., the maximum number
of machines per workstation), which represents the number
of machines assigned to that specific WS. The total num-
ber of machines used in all WSs is bounded by Constraint (9).

The next sub-string of the vector, task assignment, repre-
sents whether the tasks are performed on the specific WSs
and its length is the number of reconfigurable WSs times the
number of manufacturing tasks to be assigned to the WSs.
As an example, if there are five tasks of part A and six tasks
of part B to be distributed in 2WSs, the length of this segment
of the vector becomes 22. This segment only receives binary
numbers: 1 if a task is performed in the considered WS and
0 if it is not. It is important to note that each task can only be
performed by a workstation and the precedence of the tasks
are ensured by Constraints (3) and (4) together.

The last gene of the vector represents the capacity of every
buffer in the manufacturing line and its length is equal to
the number of buffers in the line. In this part, integer values
are generated in a range between Bmin and Bmax , minimum
safety buffer and maximum buffer capacity as formulated in
Constraint (10).

Fig. 7 shows the solution representation for a simplified
example with two WSs, two tasks to be assigned, and one
inter-station buffer to allocate its capacity. In this example,
there are 3 machines in the firstWS, 2 machines in the second
WS, task 1 is performed in the first WS, task 2 in the second
WS, and the buffer has a capacity of 200.
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FIGURE 7. Solution representation simplified example.

FIGURE 8. Crossover operator.

In the case of this study, the genetic operators, crossover
andmutation, works independently in the three different parts
of the vector.

A uniform crossover operator is used to generate two
offspring from two parent solutions [48]. In this type of
crossover, every bit of the string in the offspring takes a value
from either of the parents. In this case, after the parents are
randomly selected, the bits of the offspring have the same
probability of taking a value from the same bit of either of the
parents. Fig. 8 illustrates the process of this crossover where
the arrows indicate fromwhich parent the bits of the offspring
have copied their values.

A uniform mutation operator was employed to maintain
diversity in future generations. This type of mutation ran-
domly selects one or several bits from the parent, which
will be mutated in the offspring. The non-mutated bits in
the offspring are maintained from the parent. The higher the
mutation probability, the more bits will be mutated in the
offspring. In the case of this study, the mutated bits have an
equal probability of taking any possible value according to
the defined constraints. Fig. 9 illustrates the uniformmutation
operator, where the dark positions in the offspring represent
the mutated bits from the parent. Considering that genetic
operators work independently in the different parts of the
vector, in the illustrated example of Fig. 9, the offspring has
one mutated bit in the machines per WS string, two mutated
bits in the task assignment string, and one mutated bit in the
buffer allocation string.

A repairing procedure is activated when no feasible solu-
tion has been reached with the genetic operators. In the
studied problem, the constraints ensure, among other aspects,
the limited number of machines per WS, the total number of
machines in the system, technological constraints, the prece-
dency of the tasks, and that buffers take a feasible capacity.
Therefore, this becomes a highly constrained combinatorial

FIGURE 9. Mutation operator.

FIGURE 10. Solution repair method example.

optimization problem that creates many unfeasible solutions
that need to be repaired.

The repairing method used consists of finding the nearest
feasible solution. This is achieved by solving a mixed-integer
programming (MIP) problem that aims at minimizing the
distance between the unfeasible solution and the closest feasi-
ble solution. When the minimum distance from an infeasible
solution to a feasible solution can be obtained with several
feasible solutions, then one of these feasible solutions is ran-
domly selected. If we consider the total number of machines
in the system to be constrained to be equal to 4, Fig. 10
represents the example of how an infeasible solution would
be repaired. In the shown example, two feasible alternatives
solutions have the same probability to be selected.

C. AN ILLUSTRATIVE EXAMPLE
This sub-section presents the SMO results from a hypothet-
ical RMS model to illustrate the applicability of the pro-
posed approach. In this illustrative example, all of the three
optimization objectives presented in equations (1)-(3) were
applied. Thismodel consists of amachining process that takes
960 seconds, divided into 36 tasks. Due to space limitations
and the technological constraints of the machining processes,
some tasks (i.e., 3, 17, and 33) need to be performed in three
different types of machines. The process is subject to realistic
disturbances wherein machine availability is considered to
be 90%, with a mean time to repair (MTTR) of 5 minutes.
The RMS consists of threeworkstationswith two inter-station
buffers. Machines in the same workstation perform the same
task sequence. There is space for up to 6 machines in each

144202 VOLUME 9, 2021



C. A. Barrera Diaz et al.: Optimizing RMS for Fluctuating Production Volumes

FIGURE 11. A simplified example.

TABLE 1. Throughput and buffers capacity.

workstation. A minimum of 12 machines (i.e., Mmin = 12)
can be used in the system. Within the context of RMS, it is
assumed that these installed machines can be moved around
the workstations or removed and then added back later in
future configurations, dependent on whether scaling down or
up of the system is needed Fig. 11 shows a system started
with four machines in each workstation and possesses extra
space for up to two extra machines in each workstation (i.e.,
mmax = 6). Therefore, the RMS taken into account can vary
from 12 to 18 machines distributed in three workstations,
hence,Mmax = 18.
The non-dominated solutions generated from SMO for this

simplified model are presented in TABLE 1. It lists the solu-
tion ranges for the THP whenM increases from 12 to 18 and
for the buffer capacities, B1 and B2, between the workstations
needed for achieving that THP. TBC is the second objective
in the optimization, which refers to the total buffer capac-
ity capacities in the RMS (B1 + B2). An important insight
elicited immediately by checking the results in TABLE 1 is
that the optimized average THP increase that can be gained
from every machine added to the system is approximately
2.97 JPH (Jobs Per Hour). This is important for the engineers
to consider when scaling up (or down) of the system to adjust
the production volume required.

TABLE 2 presents how the results for system configu-
ration and task allocation presented in TABLE 1 can be
achieved. WS1, WS2, and WS3 represent the number of

TABLE 2. Configuration and work tasks allocation.

parallel machines in workstations 1, 2, and 3, respectively.
The fifth column shows the number of tasks performed in
each workstation (i.e., no. of tasks assigned to workstation
1/no. of tasks to workstation 2/no. of tasks to workstation 3).

Note that the number and location of the machines pre-
sented in Table 2 cannot be implemented in a rigid sys-
tem wherein installed machines are not movable. Therefore,
in order to scale up a rigid system, the reconfiguration steps
need to consider the existing system architecture. Therefore,
for such a system, every new configuration needs to reuse
the previous layout to achieve the next level of configuration.
Considering this constraint, Fig. 12 presents the reconfigu-
ration steps if the system would be scaled up from 12 to
18 machines. Similarly, only the THP and TBC ranges of
the non-dominated solutions are presented here. In addition,
this figure also shows the number of tasks performed in each
workstation for the different configurations obtained from the
optimization in order to obtain the THP range presented.

Another directly visible result from Fig. 12 is how the
consideration of a rigid system changed the configuration
presented in TABLE 2 for the system with 12, 13, 14, and
15 machines. Therefore, instead of 2-4-6 for 12 machines,
2-6-5 for 13 machines, 2-6-6 for 14 machines, and 3-6-6
for 15 machines, they have been changed to 4-4-4, 5-4-4,
5-4-5, 6-4-5, respectively. Consequently, this represents a cer-
tain compromise in the THP for those configurations, as seen
when comparing the configurations in Fig. 12 with TABLE 1.

Essentially, Fig. 12 provides a helpful understanding and
view of the system, including the optimal location of addi-
tional machines if future capacity increases are needed.
Knowing where to add machines in advance can be conve-
nient and cost-effective when designing the system, espe-
cially when investing in the material handling system.

Another critical aspect of the design of manufacturing
systems is the buffer capacity consideration. Fig. 12 also
shows the optimized allocation of the buffer capacities for the
given configurations. Essentially, Fig. 12 provides a helpful
understanding and view of the system, including the optimal
location of additional machines if future capacity increases
are needed. Knowing where to add machines in advance can
be convenient and cost-effective when designing the system,
especially when investing in the material handling system.

TABLE 3 presents the total task time in seconds per work-
station for the seven configurations in Fig. 12.
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FIGURE 12. Reconfiguration steps, throughput (THP), total buffer capacity
(TBC), and work task allocation.

TABLE 3. Total task time in seconds per workstation per configuration.

However, there are many more factors that can affect the
decision-making tasks in manufacturing companies. The use
of tools like the parallel coordinate plot (PCP) in Fig. 13 can
support the knowledge elicitation and display which choices
are available according to different constraints. Decision-
makers can use this plot as a decision support tool and filter
the solutions according to different constraints. In this PCP
shown in Fig. 13, the columns from left to right represent
the THP, the total number of machines (M ), the number of
machines in every workstation and the two buffer capacities
(i.e., B1 and B2). In the current plot, solutions including 15,
16, and 17 machines have been colored in blue, red, and

green, respectively, to show the considerable overlapping pro-
duction rate and buffer capacity among the different numbers
of machines. Accordingly, the PCP can help decision-makers
visualize the optimized trade-offs between THP, the number
of machines and buffer capacity to facilitate well-informed
decision-making.

A concrete illustration of how decision-making can be sup-
ported is visualized in the throughput progression as the total
buffer capacity, TBC, increases between 0 and 35 for the
systems, presented in Fig. 14.

Fig. 14 shows that for this simplified manufacturing sys-
tem, the curves indicate THP levels saturate early on, with
respect to increasing TBC. On the other hand, different
machine availability and MTTR values could significantly
impact this relationship. Nonetheless, the red parallel dashed
lines revealed that M number of machines, for some TBC
values, can provide the same THP asM+ 1machines. Hence,
the PCP can support decision-makers with the visualization
and understanding of this trade-off situation in which the
capacity of the system can be increased, either by adding
machines or buffer capacity.

V. AN INDUSTRIAL APPLICATION
This section presents an industrial application study in an
automotive manufacturer to illustrate the proposed SMO
approach. The case is based on a 4-cylinder crankshaft pro-
duction line. A crankshaft is a key component of an engine.
It includes, in addition to several bearing surfaces, channels
for lubrication and a threaded stem for driving such genera-
tors and other external components in an engine. The number
of bearing surfaces is influenced by the size of the crankshaft,
which is controlled by the number of cylinders in the engine
and its configuration.

The production line manufactures two product families.
It consists of 18 WSs wherein processes including unpack-
ing, milling, mass balancing, turning, drilling, deburring,
grinding, washing and quality control are performed together
with 17 inter-station buffers. The company invested in recon-
figurable/modular CNC machines which are placed in the
bottleneck and most critical part of the line, WSs 90, 100
and 110. Unlike the rest of the machines used in the line,
the modular machines can be added to the reconfigurable
WSs and moved to be employed in other reconfigurable WSs
if needed due to production changes. The simulation model
is shown in Fig. 15 in which the dashed area represents
where the reconfigurable WSs of the line are placed. More-
over, this MPFL is subjected to uncertainty and variability -
all machines in the system consider a specific availability
and MTTR and setup time when switching product types.
When it comes to the three reconfigurable WSs, machine
availability is considered 87.41% of processing time with
MTTR = 3 hours and 1 min setup time when switching
between different part types. Each buffer has a minimum
safety buffer Bmin = 20 and a maximum buffer capacity
Bmax . The buffers employed use a rack system to adjust the
capacity. Each buffer fits up to 15 racks and each rack can fit
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FIGURE 13. Parallel coordinate plot relating THP with the decision variable.

FIGURE 14. Optimized total buffer capacity vs. throughput mapping.

up to 20 parts. Therefore, Bmax becomes 300. In addition, all
buffers consume 5 seconds as the material handling time that
should not be neglected in the simulation model.

Unlike the previous example presented in Section 4.3, the
reconfigurable WSs in this industrial case can add, remove
and relocate machines according to the production needs.
In each of these three WSs, there is space for up to 5 modules
(machines). Fig. 16 represents an example of the three recon-
figurable WSs when they have 7 machines, configured in a
4-1-2 setting, meaning 4 machines in WS90, 1 in WS100 and
2 in WS110. In this example, it remains space for 1, 4, and
3 extra machines inWS90,WS100, andWS110, respectively.

In this study, both parts in the considered MPFL need
to be produced at a certain volume to meet the customers’
demands. As such demands fluctuate and change over time,
the configuration of the WSs 90, 100, and 110 evolve accord-
ingly to meet the demand changes. The changes in the
WSs affect not only the layout and the total number of
machines needed in the aforementioned reconfigurable WSs,
but also the tasks assigned to them. Also, as the demand
changes, the reconfigurable configuration evolves, impacting
the capacity of the buffers needed for the line. Our company

has to investigate howmuch they could producewith an initial
investment of 7 reconfigurable machines in the aforemen-
tioned WSs for different proportions of part 1 and part 2,
80/20 (80 % part 1 and 20 % part 2), 60/40, 40/60, and 20/80.
Furthermore, it is also useful to know the production capacity
that can be gained from every machine added to the system,
including where to add it, according to the desired production
proportions and how the re-allocation of the machining tasks
of part 1 and part 2 can be optimized. This study aims at
attaining the maximum THP with the minimum TBC; apart
from the optimized TBC, the results have to tell the capacity
of every buffer in the line according to all the scenarios
studied.

The sequence and times of the machining tasks of the
produced parts are considerably different. The total machin-
ing times of the two parts for the reconfigurable WSs (90,
100, and 110) are 256 seconds divided into 15 tasks for
part 1 (4cylP), and 274 seconds divided into 10 tasks for
part 2 (4cylD). The task precedence for both parts is shown
in Fig. 17. The machining processes of these three WSs
involve milling, drilling of oil holes, and turning main bear-
ings and tap. Due to technological constraints, tasks 1, 2, and
11 for part 1, and 1, 9, and 10 for part 2 need to be performed
in different WSs.

VI. RESULTS AND ANALYSIS
This section presents the results of the optimization for the
previously explained scenarios, modifying the production
proportions from 80% of part 1 and 20 % of part 2 to the
opposite scenario 20% of part 1 and 80% of part 2, consider-
ing 20% steps changes in between the scenarios. Moreover,
each of the mentioned proportions was investigated with 7,
8, and 9 machines in the reconfigurable WSs. Consequently,
there are in total 12 scenarios to optimize.

Every scenario was optimized individually using NSGA
II with 15000 iterations. An SMO software called FACTS
Analyzer [49], in which a DES engine and various optimiza-
tion algorithms are tightly integrated, was used for model-
ing the studied manufacturing line and carrying out all the
optimization runs. This software allows to include almost
all model variables (e.g., processing times, times to repair
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FIGURE 15. Simulation model representation of the production line.

FIGURE 16. Reconfigurable workstations layout.

and buffer capacity), regardless of their nature (continuous
variables or integers), as decision variables and constraints
for the optimizations. In this way, the simulationmodel serves
for the iterative implementation for all possible combinations
of the input variables according to the objectives defined by
equations (1) and (2), and the constraints of the optimization
defined in section 4.

Fig. 18 illustrates the optimized configurations and the
required changes to cope with the studied scenarios in the
reconfigurable WSs of the line. Each quadrant in the fig-
ure represents a production proportion. The white machines
describe the machines included a 7-machine configuration,
the light and dark grey machines describe where to add a
machine for an 8 and 9 machines configuration, respectively.
Then, for the 7-machine scenarios, only white machines need
to be considered; for the 8-machine scenarios, white and
light grey need to be considered, and for the 9-machine
scenarios, all represented machines need to be considered.
NM represents the number of machines, so in each quadrant
of the figure is shown, the configuration and the THP range
obtained for every number of machines considered for the
different production proportions.

Considering the maximum THP in each of the studied
scenarios, as seen in Fig. 18, the average THP gained per

FIGURE 17. Precedency graphs.

machine added regardless of the production proportions
is 7.36. However, the results show an overlapping in THP as
the number of machines increases. For a better understanding
of this THP overlapping, Fig. 20 displays on the upper part
the THP ranges (minimum and maximum THP included in
the Pareto front depending on the TBC) for every scenario.
Furthermore, the lower part of the figure illustrates the THP
evolution as the TBC increases from 340 to 1100 for 7, 8 and
9machines when the volume proportions are considered to be
80% part 1 and 20% part 2. The figure displays how different
number machines in the reconfigure WSs can share the same
THP range. Every solution from the optimization presents
the required information for the production of a particular
volume in different proportions. This information includes,
for a determined THP, the required TBC and how they are
allocated among the buffers in the line, the assignment of
machines to the reconfigurable WSs, and tasks assigned to
them. When focusing on the conflicting optimization objec-
tives THP and TBC, the parallel coordinate plot can support
the interpretation of their relationship.
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FIGURE 18. Optimized configurations for the studied scenarios.

FIGURE 19. Parallel coordinate plot over THP, TBC, and buffers.

As an example, Fig. 19 displays, in the parallel coordinate
plot, the non-dominated solution for the scenario where the
reconfigurable WSs employ 8 machines and the line is pro-
ducing in a proportion of 40% of part 1 and 60% of part 2. The
columns represent the THP, TBC, and all individual buffers
of the system. In this scenario, the lowest THP included
in the Pareto front is 51.59 and is reached with a TBC
of 340, and the highest THP is 61.32 reached with a TBC
of 1660. This plot, besides revealing the trade-off between
the objectives, also includes details about every individual

buffer in the system. As an example of how this plot could
support decision-makers, specific filters or rules could be set
to simplify the understanding. In this case, the non-dominated
solutions which a THP higher than 60 are represented with
the purple lines and lower than 60 with the green line.
As indicated in the figure, the solutions with THP higher than
60 have a TBC range between 1400 and 1660. Moreover,
every solution includes information on the specific capacity
of each buffer in the system. Therefore, rules can be used
to reveal and simplify the understanding of how variables
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TABLE 4. Task assignment for maximum THP.

FIGURE 20. THP progression example.

affect the overall performance of the system. In the case
represented in the figure, the purple lines can show which
buffers are more important than others for getting THP over

60. Although all solutions included here are on the Pareto
front, the highlighted solutions displayed in the PCP can give
additional information about which buffers are more relevant
for different decision-making scenarios and their capacities
can be extracted and better understood with the graphical aid.
This type of additional insight resulting from applying SMO
enables a more confident decision-making process which is
one of the advantages of this approach.

Another core tenant of this approach is the task assigned
to WSs; TABLE 3 illustrates the task assignment to WSs
for the maximum obtained THP in the studied scenarios.
It presents the results from the optimization and provides
details about how to rebalance the tasks and reconfigure the
system as the production proportion and volume change. The
three groups of columns in the table represent the system
when there are 7, 8, or 9 machines in the reconfigurable WSs.
The first three rows of the table, from top to bottom, indicate
the total number of machines employed in the reconfigurable
WSs, the volume proportion, and the number of machines
per reconfigurable WS. In addition, the light, medium, and
dark grey symbolize whether a task is performed in WS90,
WS100, or WS110, respectively.

VII. CONCLUSION AND OUTLOOK
RMSs are acknowledged to possess the capabilities that
enable manufacturing companies to provide the required
production capacity when needed. However, the research in
real-scale industrial cases is still limited and often neglects the
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variability ofmanufacturing systems so that inaccurate results
can be produced. Furthermore, the use of SMO to deal with
the RMS configuration problem and task assignments toWSs
is sporadic. Against this backdrop and unlike other state-of-
the-art methods, this article presented an SMO approach that
simultaneously addresses the RMS configuration together
with the tasks and resource assignment in an industrial-
scalable MPFL for fluctuating production volumes. This
approach also considers the unreliability of the equipment
and deal with the buffer allocation dilemma - how many are
needed and where to place them optimally. Consequently,
it can be concluded that the proposed SMO approach pro-
vides support for the production planning and management
of RMS when facing fluctuating production volumes. The
applicability of the proposed SMO approach is not limited
to manufacturing systems with modular machines and could
also be applied to other types of RMS, such as human-based
assembly/manufacturing systems, in which different configu-
rations could be achieved through other means, e.g., employ-
ing a flexible material handling system like gantry robots.
However, this would require adjustments in the approach to
consider the new requirements.

Essentially, this study not only demonstrates the bene-
fits that decision-makers could gain by adopting an SMO
approach when selecting the RMS configuration and task
assignment for fluctuating production volumes scenarios but
also reveals a comprehensive amount of data that support the
trade-off decisions inherent to a choice that requires rapid
decision making and adaptation. To this extent, this study
emphasizes the use of SBO in systems that may face fluc-
tuating demands, which is one of the reasons for the adoption
of an RMS beyond the design phase.

As discussed in the analysis of the results, rules can be
used to reveal and simplify the understanding of how different
RMS variables affect the overall performance of the system.
A relatively recent research area within SMO is the extraction
and utilization of knowledge from the optimization data using
data mining because the Pareto-optimal solutions generated
may reveal the clues about what constitutes the good solutions
with respect to different criteria. Data mining methods can
help to extract such patterns that may ultimately help the
decision-maker in gaining a better understanding of solving
the problem under different situations (e.g., demands). The
knowledge gained can also be used in future related opti-
mization scenarios. Such a process of generating and utiliz-
ing the knowledge within SMO is generally referred to as
Knowledge-Driven Optimization [50]. Future research may
also consider increasing the variety of the product families
together with their volume proportion scenarios as studied in
the current paper as well as including additional RMS aspects
like reconfiguration frequency and the entire lifecycle of the
system.
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ABSTRACT 

Due to the nature of today's manufacturing industry, where enterprises are subjected to frequent changes 

and volatile markets, reconfigurable manufacturing systems (RMS) are crucial when addressing ramp-up 

and ramp-down scenarios derived from, among other challenges, increasingly shortened product lifecycles. 

Applying simulation-based optimization techniques to their designs under different production volume 

scenarios has become valuable when RMS becomes more complex. Apart from proposing the optimal 

solutions subject to various production volume changes, decision-makers can extract propositional 

knowledge to better understand the RMS design and support their decision-making through a knowledge 

discovery method by combining simulation-based optimization and data mining techniques. In particular, 

this study applies a novel flexible pattern mining algorithm to conduct post-optimality analysis on multi-

dimensional, multi-objective optimization datasets from an industrial-inspired application to discover the 

rules regarding how the tasks are assigned to the workstations constitute reasonable solutions for scalable 

RMS. 

1 INTRODUCTION 

In the current competitive market, manufacturing companies are frequently challenged by demand 

variations, and therefore they often need to address fluctuating production volumes. Consequently, the 

efficiency of a manufacturing system in reacting and adjusting its capacities and functionalities to cope with 

the volumes and demands changes constitutes a critical challenge for production organizations (Dou et al. 

2021; Koren et al. 2017; Koren and Shpitalni 2010). To tackle, among other challenges, those caused by 

the demand and volume changes, Koren et al. 1999 first introduced the concept of reconfigurable 

manufacturing systems (RMS). RMS are production systems capable of adding/removing resources and 

modifying their capabilities to efficiently cope with expected or unexpected market shifts (Diaz et al. 2020; 

Koren et al. 2018). In such a manner, RMS are responsive manufacturing systems that, cost-effectively 

through reconfigurations such as the arrangement of machines or the process plan, can provide the required 

functionalities for several demand periods (Diaz et al. 2021). In a nutshell, RMS are essential to the current 

manufacturing industry to achieve high flexibility, fluctuating production volumes, flexible batches, and 

the required short life cycles for today's competitive market (Bortolini et al. 2018). Studies suggest that this 

type of system provides better performance in terms of scalability, productivity, responsiveness, and cost 

when compared to traditional production systems (Freiheit et al. 2003; Gu 2017). 
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For decades, simulation techniques have successfully been applied within the manufacturing industry. 

Simulation has successfully become a powerful tool for designing, analyzing, and optimizing 

manufacturing systems (Mourtzis et al. 2014; Pehrsson et al. 2015). The complexity found in the dynamics 

scenarios of manufacturing systems can be assessed, modeled, and supported using simulation technology. 

When a simulation model is constructed, stakeholders and decision-makers better understand the systems 

(Mourtzis, 2020). Simulation tools are used to understand the behavior and performance of production 

systems under different scenarios defined by a set of input variables. However, as the complexity of 

manufacturing systems grows, the amount of input variables and feasible combinations increases 

exponentially. Against this backdrop, simulation-based optimization allows engineers and decision-makers 

to search in ample decision space for an optimal or near-optimal combination of input variables (Niño-

Pérez et al. 2018; Xu et al. 2016). Simulation-based multi-objective optimization (SMO) is used when 

several conflicting objectives are pursued. However, the use of SMO reveals a large amount of data, 

including the impact of the input variables on the studied scenarios. Most studies usually focus on finding 

the optimal solution for a specific case. Still, as the size of the manufacturing system and the number of 

scenarios that need to be considered increases, the number of input variables combination grows 

exponentially. A relatively recent research area within SMO is knowledge discovery, wherein data mining 

methods are applied to the optimization dataset to reveal underlying information about what constitutes a 

satisfactory solution according to different criteria from the generated Pareto-optimal front. These data 

mining methods support the extraction of patterns that can provide the decision-makers with a better 

understanding of solving the problem under different scenarios (e.g., production volumes) (Bandaru et al. 

2017). 

Regarding the design of manufacturing systems, knowledge discovery methods have been successfully 

applied to extract patterns and rules between the capabilities of the system and product features. In (Kou 

and Xi 2018), it has been shown how association rules extracted from historical datasets can significantly 

impact production development effectiveness. Still, as commented recently in (Tripathi et al. 2021), data 

mining and knowledge discovery methods are challenging areas for future research and the evolution of 

manufacturing systems. RMS have a significant impact and act as an enabler on today's so-needed 

changeable and reconfigurable intelligent manufacturing systems (ElMaraghy et al. 2021). Due to the 

intrinsic complexity of RMS, an increasing number of researchers underscore the importance of applying 

SMO to tackle the design problems of RMS (Barrera Diaz et al. 2021; Bensmaine et al. 2013; Bortolini et 

al. 2018; Diaz et al. 2020; Renzi et al. 2014). As today's product lifecycles are becoming shorter and shorter, 

manufacturing systems evolve to become not only more flexible to be re-configurated more frequently but 

also more complex. Therefore, optimization problems generate an ever-increasing amount of data, making 

knowledge capturing and decision-making a more complicated task (Algeddawy and Elmaraghy 2011; Diaz 

et al. 2021). Accordingly, due to the nature of today's manufacturing industry being subjected to frequent 

changes and volatile markets, data mining and knowledge discovery methods have become even more 

crucial for RMS applications (ElMaraghy et al. 2021; Koren et al. 2018). Knowledge discovery methods 

are necessary for supporting engineers and decision-makers for two main reasons. Firstly, because many 

decision variables need to be considered when optimizing RMS, setting up a new optimization scenario can 

be considerably time-consuming. In this regard, gathering knowledge from previous optimizations can 

support understanding new scenarios without running further optimizations. Secondly, the analysis of SMO 

results can be simplified by the rules extracted from the optimization. These rules can be used to reveal 

how different decision variables affect the overall performance of the system.  

One of the main challenging areas of RMS is the process planning and how to reconfigure the tasks to 

the workstations (WSs) under different scenarios. To this extent, this study uses the multi-objective 

optimization datasets from an industrial-inspired application to apply data mining methods and discover 

how the tasks assigned to WSs constitute reasonable solutions for a scalable RMS that need to be analyzed 

under different production volumes scenarios. This knowledge will be extracted and represented in rules 

from the best trade-off solutions between the optimization objectives, namely throughput (THP) and 

Leadtime (LT). Consequently, this study aims at proposing a methodology to conduct post-optimality 
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analysis on multi-dimensional, multi-objective optimization datasets by applying a novel flexible pattern 

mining algorithm in an RMS application. The remaining of the paper is structured as follows. Section 2 

describes the understanding of the main RMS design challenges, SMO, and Knowledge Discovery. Section 

3 presents the methods of this study and the studied case. Section 4 presents the findings and discusses the 

insight that facilitated the proposed process. Conclusions and future work can be found in Section 5. 

2 LITERATURE REVIEW 

2.1 Reconfigurable Manufacturing Systems Challenges 

RMS can be explained as the capability of a production system to change and reallocate its components 

effectively and efficiently to fulfill several new predictable or unpredictable restrictions/conditions of a 

system as many times as required (Goyal et al. 2012). Researchers support the idea that manufacturing 

organizations should be equipped with RMS that can rapidly be reconfigured to cope with changing markets 

and customers' needs to respond to a volatile market (Koren and Shpitalni 2010; Rösiö and Säfsten 2013). 

However, the RMS design and management are underdeveloped and involve crucial challenges in the 

research community (Andersen et al. 2018). These aspects include three main areas named the system 

configuration, the components of the system, and the process planning (Koren et al. 2018). The system 

configuration tackles the physical arrangement of machines and affects the overall performance and the 

functionality and scalability aspects of the system (Diaz et al. 2020; Koren et al. 1998). Most of the research 

focused on this area deals with the machine assignment to WSs. The components of the system refer to the 

required type and number of resources, e.g., machines and buffers, to achieve the desired production 

capacity and are considered a critical aspect for capacity planning and scalability (Koren et al. 2018). The 

majority of the research in this area focuses on optimizing the number of machines in the system. Lastly, 

the process planning area refers to how tasks are balanced throughout the RMS and assigned to the WSs, 

having a significant impact on the reconfigurations of the system to handle fluctuating production volumes 

(Azab et al. 2007; ElMaraghy 2007). Previous research in this area mainly focuses on optimizing the task 

assignment to WSs. Consequently, for an RMS to cope with fluctuating production volumes, it needs to 

address the previously explained areas and change its configuration by re-assigning, adding, or removing 

resources and rebalancing the tasks in the system (Koren et al. 2017; Wang and Koren 2012). These 

challenges constitute complex NP-hard problems that can be aided by simulation and optimization 

techniques (Bortolini et al. 2018; Delorme et al. 2016; Diaz et al. 2021; Michalos et al. 2012).  

2.2 Simulation-Based Multi-Objective Optimization and Knowledge Discovery 

2.2.1 Simulation-Based Multi-Objective Optimization and Multi-Criteria Decision Making 

Multi-Objective Optimization (MOO) is a widely known research area focused on optimizing several 

conflicting objectives. Scalarization and posteriori are some of the most used MOO methods. Scalarization 

methods include ε-constraint and weighted sum method, among others. Posteriori methods generate a set 

of trade-off or non-dominated solutions which form the Pareto-optimal front, representing that optimizing 

one of the objectives degrades another. The rest of the solutions found in the objective space are known as 

dominated solutions as they are inferior to the non-dominated solutions in all the considered objectives. 

Thus, decision-makers often need support to simplify the selection of the best choice among all the available 

alternatives. Multi-Objective Evolutionary Algorithms (MOEAs) are among the most commonly used 

algorithms for generating the Pareto-optimal front (Deb 2014; Touzout and Benyoucef 2018). Accordingly, 

SMO can be seen as a combination of simulation and optimization. The intersection of these two powerful 

techniques has shown advantages compared to analytical optimizations or applied separately (Barrera Diaz 

et al. 2021; Jian and Henderson 2015). From a simulation perspective, SMO considers the variability and 

randomness found in RMS, avoiding simplifying the problem, which might result in inaccurate solutions. 

From an optimization perspective, SMO allows for solving more complex or impractical issues that would 
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not be attainable by only simulation techniques (Carson and Maria 1997). The general representation of an 

SMO problem consists of several conflicting objectives defined by the objective function, possibly 

subjected to several equality and inequality constraints. 

In practical scenarios, a single solution has to be chosen among all the near Pareto-optimal solutions 

generated by MOEAs. This task is not trivial since it often involves considering qualitative aspects of 

candidate solutions as perceived by one or more domain experts (decision-makers). Several methods have 

been developed within Multi-Criteria Decision Making (MCDM) to handle this task. These can broadly be 

classified into a priori, posteriori and interactive methods (Agrawal and Srikant 1995). A priori methods 

assume that the decision maker’s preference is available before the optimization run, which is incorporated 

in the optimization algorithm to focus the searching process. While this drastically reduces the 

computational effort needed to find the most preferred solution, the decision-makers cannot always be 

expected to know what they want at the outset, especially in optimization scenarios that are unfamiliar to 

them. On the other hand, posteriori methods generate and present a representative Pareto-optimal front to 

the decision-makers. Its advantage over a priori methods is that the decision-makers can get a complete 

picture of all the available trade-off solutions in the objective space. Interactive methods aim to balance 

finding multiple trade-off solutions and the computational cost needed to find the complete Pareto front by 

interacting with the decision-maker who can provide his/her preference to guide the search and then narrow 

down the number of solutions to be considered during the optimization process. This implicitly entails an 

iterative process as the decision-maker is allowed to change and update the preferences during the 

optimization. While such approaches are more practical than a priori methods, they also increase the 

cognitive load on the decision-makers, which is a vital aspect to consider for practical decision-making 

activities.  

2.2.2 Knowledge Discovery and Flexible Pattern Mining 

Much of the literature on multi-criteria decision support is focused on assisting the decision-maker in 

visualizing and navigating the objective space. In practical optimization scenarios, it can be argued that a 

more informed decision requires not only finding a solution that conforms to the decision-maker’s 

preferences but also knowledge about how those preferences affect the decision variables. Specifically, the 

decision-maker may be interested in knowing how different variable values change with preferences and 

what are the most important variables within a given region of preferences. Such knowledge can be 

extracted from solutions of an MOEA using various data mining and machine learning techniques (Bandaru 

et al. 2017). While some traditional data mining methods can be used directly with MOO data, they often 

need to be customized to consider that MOO data consists of two distinct spaces, the objective space and 

the decision space. The decision-maker provides preference in the objective space, while the knowledge 

about the variables exists in the decision space. Moreover, knowledge discovery in MOO also requires the 

methods to be interactive so that the decision-makers can realize the impact of changing their preferences. 

Flexible Pattern Mining (FPM) is a recent interactive data mining method designed with the goal of 

knowledge discovery in MOO and multi-criteria decision support. FPM uses the popular Apriori algorithm 

(Agrawal and Srikant 1995) to discover discriminative decision rules in the MOO data that distinguish 

between a chosen selected set (typically preferred solutions) and an unselected set (typically all other 

solutions). The Apriori algorithm was developed for extracting frequent itemsets (items that are often 

bought together) from market basket data. Hence, it treats all variables as categorical and extracts 

knowledge in the form of patterns. The main difference in FPM is the way the MOO data is processed to 

convert continuous and discrete variables into categorical features that can then be handled by the Apriori 

algorithm. Thus, FPM is able to extract complex decision rules formed by singular rules of the form 𝑥ₜ >
 𝑐, 𝑥ₜ <  𝑐 or 𝑥ₜ =  𝑐, where 𝑥ₜ can be any of the variables in the MOO data and 𝑐 is a value for that 

variable from the data. Each decision rule is associated with a selected significance (𝑠𝑖𝑔) and an unselected 

significance (𝑢𝑛𝑠𝑖𝑔), indicating the percentage of solutions that follow the decision rule in the selected and 

unselected sets. Thus, a highly discriminative rule should have a very high 𝑠𝑖𝑔 value, and a meager 𝑢𝑛𝑠𝑖𝑔 
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value. An example of such a discriminative rule is [𝑥₁ >  4.2 ∧  𝑥₅ <  10.5 ∧  𝑥₆ =  2] with 𝑠𝑖𝑔 =
90% and 𝑢𝑛𝑠𝑖𝑔 = 5%. It indicates that 90% of the solutions in the selected set have 𝑥₁, 𝑥₅ and 𝑥₆ values 

as specified by the rule, while this is true for only 5% of solutions in the unselected set. If the selected set 

consists of preferred solutions, this decision rule informs the decision-maker that variables 𝑥₁, 𝑥₅, and 𝑥₆ 

are critical to determining whether a solution is desirable or undesirable. 

3 METHOD AND PROBLEM FORMULATION 

3.1 An Interactive and Iterative Methodology 

 

Figure 1: SMO-KDO Methodology. 

The unique concept proposed in this research is Knowledge-Driven Optimization (KDO) – instead of 

merely capturing knowledge from experiences (e.g., in the form of rules of thumb) or experiments by using 

physical equipment, extracting knowledge for decision support is achieved through systematically 

exploring and analyzing (e.g., using data mining and visualization techniques) multiple optimal solutions 

(designs/configurations/settings) generated via MOO on simulation models. The conceptual framework of 

the double-loop SMO-KDO methodology is schematically described in Figure 1. Within this 

methodological framework, there are six processes: (1) Problem Formulation; (2) Simulation; (3) MOO; 

(4) Knowledge Discovery; (5) Visualization, and (6) Decision-Making. The numbered labels in Figure 1 

are purposed to identify the nine interactive and iterative loops among the processes, but their number order 

describes a typical workflow of such a methodology. By interactive, it means that there are always some 

users, like a decision-maker (or a group of decision-makers) with a team of simulation/production 

engineers, who interact with each other and control these processes. On the other hand, iterative means that 

any process and any loop can be re-visited and run multiple times until the user is satisfied with the results 

that can be fed into the other processes or to support the final decision.  

3.2 Problem Formulation 

The datasets used to show the applicability of the SMO-KDO methodology come from an industrial 

application study in the Swedish automotive industry. The case is based on a 4-cylinder crankshaft 

production that manufactures two product families, part 1 (4cylP) and part 2 (4cyLD). The production line 
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consists of 18 WSs, wherein 3 are reconfigurable WSs placed in the bottleneck of the line. Unlike in the 

rest of the line, these 3 consecutive reconfigurable WSs can add, remove and relocate machines to cope 

with production changes up to a maximum of 5 machines per WS. The considered multi-part flow line 

(MPFL) needs to produce two parts at specific volumes. As the demand fluctuates, the system 

configuration, components of the system, and process planning of the reconfigurable WSs change to meet 

the new production scenario. These changes affect not only the layout and the total number of machines 

needed in the aforementioned WSs, but also the assignment of tasks to them. Due to the company's interest 

in specific scenarios, the SMO was applied to a total of 12 scenarios considering different production 

proportions and the number of machines in the reconfigurable WSs. The scenarios consisted of modifying 

the production proportions of part 1 and part 2 from 80/20 (80 % part 1 and 20 % part 2), the opposite case 

20/80, and considering two more cases in between, i.e., 60/40 and 40/60, respectively. In addition, each of 

these proportions needed to be studied for 7, 8, and 9 machines in the reconfigurable WSs, making 12 

different scenarios. Figure 2 shows the precedence of the tasks for both parts in the reconfigurable WSs.  

 

Figure 2: Precedency graphs. 

Each scenario was optimized using NSGA II and 15000 iterations. An SMO software called Facts 

Analyzer (Ng et al. 2011), which integrates a discrete-event simulation (DES) engine and several 

optimization algorithms, was used to model the studied manufacturing line and run the optimizations. Two 

conflicting optimization objectives were used: 

 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓1 = 𝑇𝐻(𝑥): 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑗𝑜𝑏𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟) ,                                       (1) 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2 =  𝐿𝑇(𝑥) ∶  𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒.                                                  (2) 

 

Accordingly, in this study, we have applied FPM method to the decision space of the generated datasets 

to find patterns and rules in the tasks assignment that could support decision-makers in understanding how 

they impact the studied scenarios and how this could help setting-up future optimizations scenarios. To 

extract the knowledge about the influence and interaction of the tasks under different scenarios, we compare 

the Pareto-optimal solutions to the rest. This comparison was applied to eight different sets of Pareto-

optimal solutions according to various criteria such as the number of machines or production proportion, 

as shown in the results sections.  

1799

Authorized licensed use limited to: University of Skovde. Downloaded on April 25,2023 at 13:38:45 UTC from IEEE Xplore.  Restrictions apply. 



Barrera Diaz, Smedberg, Bandaru, and Ng 

 

 

4 RESULTS 

This section explains the knowledge discovery process, followed by the presentation and discussion of the 

results. The formulation of the simulation model resulted in many duplicated solutions; therefore, to not 

bias the resulting knowledge, it is first necessary to process the data and remove all duplicate solutions. 

Further, due to the problem formulation of task allocation as Boolean values, the task allocation variables 

were combined into one integer value per task, representing the station the task was assigned to. The values 

1, 2, or 3 represent if the study was performed in the first, second, or third reconfigurable WS on the line. 

Finally, non-dominated sorting is applied to find the Pareto-optimal solutions. These three data processing 

steps were performed for each of the twelve scenarios before combining them into a single dataset. This 

study's data processing and analysis were performed using the openly available decision support tool KDO-

Mimer1, which facilitates knowledge discovery in MOO. 

The combined results from the optimizations can be seen in Figure 3. The left-hand side of the Figure 

shows all twelve datasets combined in a 2D scatter plot where the axes represent the objectives of the 

optimizations. The dark red, green, and blue represent the non-dominated optimal solutions for 7, 8, and 9 

machines, respectively. The 3D scatter plot presented on the right-hand side shows a better visualization of 

the twelve scenarios where the axes represent the optimization objectives (THP), the total numbers of 

machines used in the reconfigurable WSs, and the different proportions studied. 

 

 

Figure 3: Combined datasets and the studied scenarios. 

Figure 4 illustrates how the Pareto-optimal solutions P are grouped into eight subsets to be compared 

with the dominated solutions D according to different proportions and numbers of machines. The FPM 

procedure requires a selected and an unselected set of solutions. We combine all other cases in the first 

considered case and use the Pareto-optimal solutions from all scenarios as the selected set and all remaining 

dominated solutions as the unselected set. Next, we consider the three cases for the different number of 

machines. We use the Pareto-optimal solutions from all scenarios where the number of machines used 

matches the case as the selected set and the remaining solutions as the unselected set. For the last four cases, 

 
1 https://assar.his.se/mimer/html 
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we consider the scenarios where the proportions are the same, in the same way. Figure 4 demonstrates the 

selected set (gray) and unselected set (white) for the eight different scenarios. By dividing the different 

scenarios this way, we hope to find specific rules related to the specific proportions and numbers of 

machines. 

 

Figure 4: FPM selected and unselected set of solutions. 

While the rules generated separately from these different cases can give insights into optimal task 

allocations for each case, it is interesting to note that the combined case can generate more general rules 

that apply invariantly to the system, no matter the number of machines or the proportion used. The three 

cases for the different number of machines will generate rules describing the optimal task allocation for a 

specific number of machines, regardless of the proportion. Finally, the four cases for the different 

proportions will generate rules relating to the optimal task allocation for a particular proportion, irrespective 

of the number of machines. 

To generate the rules, we ran the FPM procedure with a minimum allowed significance of 90% to find 

only rules that accurately describe the selected set. Then the rules were filtered using the sliders to the right 

of the graph-interface to find the single rule-interaction with the highest ratio between the significance and 

unselected significance values. In this way, the rules accurately describe the difference between the selected 

and unselected sets. The resulting rules from each case can be found in Table 1. In this table, the "T" 

represents tasks from part 1 while "P" represents tasks from part 2. 

 

We used the openly available decision support software KDO-Mimer to generate the results. A snapshot 

from KDO-Mimer showing the graph-interface for filtering FPM rules can be found in Figure 5. The upper 

Table 1: Resulting Rules. 
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part of  Figure 5 shows the selection from Figure 4 (d), and the bottom part shows the selection from Figure 

4 (f). The graph-interface in KDO-Mimer offers the decision-makers a holistic overview of the rules and 

allows them to more easily compare the results compared to solely presenting the rules in a table. 

 

 

Figure 5: KDO-Mimer interface for filtering FPM rules. 

4.1 Knowledge Discussion  

In this study, we aimed to use data mining in twelve MOO datasets of an RMS to discover knowledge that 

could lead to a better understanding of the systems and therefore be applied in future scenarios. Looking at 

the general rules in Table 1, we can appreciate that all found rules have more conditions applied to part 1 

than part 2. This fact can be explained due to part 1 having more tasks to be performed than part 2 or due 

to the nature of the precedence tree being more restrictive and leaving less freedom when assigning tasks 

to WSs.  This implies that engineers could prioritize assigning the tasks of part 1 over part 2 when studying 

new scenarios. However, as expected, we can see that the higher number of part 2 tasks involved in a rule 

would be when producing 20% of part 1 and 80% of part 2. However, even for such an extreme scenario, 

we can see a higher involvement of tasks of part 1 than part 2.  

One aspect not considered in the data mining but important to focus on when discussing the rules is the 

arrangement of the machines in the reconfigurable WSs. The machines configuration was another aspect 
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included with task allocation as input variables in all optimization scenarios. The optimal configurations 

obtained in the reconfigurable WSs starting from 80/20 to the opposite proportion were: 1-2-4; 1-2-4;  2-1-

4;  2-2-3 for seven machines; 1-2-5;  1-2-5; 2-2-4;  2-3-3 for eight machines; and 2-2-5;  2-2-5;  2-2-5;  2-

3-4 for nine machines. Having this information, we can observe the implication of the rules on the different 

configurations due to the dependency between the number of tasks assigned to each WSs and the number 

of machines in it. One example is the number of tasks assigned to the first reconfigurable WS (tasks equal 

to 1 in the rules). There are either 2, 1, or 0 tasks assigned to the first reconfigurable WS in all found rules. 

However, two machines were placed in the first reconfigurable WS in all the scenarios where nine machines 

were employed. Consequently, the greatest number of tasks possible found in the rules (two tasks) were 

assigned there. 

Another interesting aspect extracted from this method is the importance of some tasks. It can be 

observed in Table 1 that most of the tasks included in the extracted rules are often found in many of the 

rules implying the relevance of these tasks for the overall system. In other words, decision-makers can use 

these rules to understand which tasks are more critical to the overall performance of the RMS.  

5 CONCLUSIONS AND FUTURE WORK 

Due to the nature of today's manufacturing industry, where enterprises are subjected to frequent changes 

and volatile markets, RMS are becoming crucial and more sophisticated. Consequently, the optimization 

of RMS generates an ever-increasing amount of output data, making knowledge capturing a challenging 

task for engineers and decision-makers. Thus, knowledge discovery and data mining techniques have 

become important for RMS applications. Therefore, this study used the MOO datasets from an industrial-

inspired application to apply data mining methods and discover how the tasks assigned to WSs constitute 

reasonable solutions for a scalable RMS that need to be analyzed under different production volume 

scenarios. The use of SMO to optimize RMS explores the search space seeking feasible solutions to find 

the optimal system configuration avoiding a manual and time-consuming trial and error process. The 

presented method showed how data mining and FPM could be applied to the generated data sets and support 

a better understanding of the behaviors of the RMS and its variables under different scenarios providing the 

decision-makers with critical factors to improve and understand the system. Using this method in an MPFL 

identified which product to prioritize when deciding on the tasks allocation and which tasks are more critical 

to the overall performance of the system when optimizing THP and LT. The applicability of the presented 

method is not limited to RMS; it should nevertheless be beneficial to be applied to many other applications 

where MOO generates large data sets regarding changing scenarios. The extracted knowledge can be 

applied to future scenarios and save time and effort by reducing the search space of the optimization. 

Therefore, the authors propose using the gained knowledge in future related optimization scenarios as future 

work. Such a process of utilizing the extracted knowledge within SMO in future optimization is known as 

off-line KDO. By expanding this study and applying off-line KDO, it is interesting to further investigate 

how the performance of the MOO algorithms can be boosted in RMS applications.  
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Abstract: In today’s uncertain and competitive market, where manufacturing enterprises are sub-
jected to increasingly shortened product lifecycles and frequent volume changes, reconfigurable
manufacturing system (RMS) applications play significant roles in the success of the manufacturing
industry. Despite the advantages offered by RMSs, achieving high efficiency constitutes a challenging
task for stakeholders and decision makers when they face the trade-off decisions inherent in these
complex systems. This study addresses work task and resource allocations to workstations together
with buffer capacity allocation in an RMS. The aim is to simultaneously maximize throughput and to
minimize total buffer capacity under fluctuating production volumes and capacity changes while
considering the stochastic behavior of the system. An enhanced simulation-based multi-objective
optimization (SMO) approach with customized simulation and optimization components is proposed
to address the abovementioned challenges. Apart from presenting the optimal solutions subject to
volume and capacity changes, the proposed approach supports decision makers with knowledge
discovery to further understand RMS design. In particular, this study presents a customized SMO
approach combined with a novel flexible pattern mining method for optimizing an RMS and conducts
post-optimal analyses. To this extent, this study demonstrates the benefits of applying SMO and
knowledge discovery methods for fast decision support and production planning of an RMS.

Keywords: reconfigurable manufacturing system; simulation; multi-objective optimization;
knowledge discovery

MSC: 37M05

1. Introduction

In today’s volatile market, manufacturing enterprises are often challenged by ever-
shortening product lifecycles together with unpredictable demands and fluctuating pro-
duction volumes [1]. Therefore, the ability of a manufacturing system to react and adjust
its capacities and equipment to cope with suddenly arising challenging variations en-
compasses a crucial consideration for production organizations [2,3]. The concept of a
reconfigurable manufacturing system (RMS) was introduced to cope with challenges gener-
ated by a dynamic market wherein variations in demand need to be addressed [4]. RMSs
are responsive production systems that, through reconfigurations, can efficiently add, re-
move, or relocate resources and equipment in response to market shifts [5,6]. Specifically,
RMSs are essential to achieve cost efficiency, high flexibility, and to provide better scala-
bility and responsiveness than traditional production systems. Many recent studies have
highlighted that RMS research is a mainstream topic and a major drive towards the future
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of the manufacturing industry because companies need to avoid significant investment
loss caused by non-utilized equipment when facing dynamic market demands [7–9].

An RMS consists of several workstations (WSs) that contain several parallel and
identical resources [10]. When a single-product type is produced, the RMS is classified as a
single-part flow line (SPFL), and when several product types are produced, it is classified
as a multi-part flow line (MPFL) [11,12]. In the automotive industry, where several product
types are produced in the same system, the adoption of MPFL is increasingly common [2].
There are only a few studies that have focused on resource and task assignments of MPFL-
RMSs and the buffer allocation problem has been overlooked.

As a consequence of successfully modeling and analyzing production systems, simulation
methods have been widely employed within the manufacturing industry [13]. In an era of
digitalization, simulation models are essential to better understand and to assess the complex
nature inherent in the dynamic scenarios found in manufacturing systems [14]. Simulation
modeling, particularly discrete-event simulation (DES), is considered to be an effective tool for
handling the uncertain and changing scenarios of manufacturing systems [15,16]. Additionally,
optimization techniques have been used to solve the NP-hard combinatorial problems found
in RMSs. However, despite the success shown by simulation and optimization techniques,
researchers have shown their shortcomings when employed separately. On the one hand, as
the complexity of a system and its decision variables increase, simulation techniques become
impractical [17,18]. On the other hand, most RMS optimization studies have simplified
the problem by disregarding the variability and stochasticity of the systems. Against this
backdrop, simulation-based optimization (SBO) has emerged as a combination of simulation
and optimization that can provide solutions to large-scale problems. SBO investigates an
extensive decision space, searching for the optimal or near-optimal combination of input
variables [19]. Simulation-based multi-objective optimization (SMO) is employed when
several conflicting objectives exist. Although prior studies have applied optimization to deal
with the challenges of RMS configuration, the use of SMO has been very sporadic. Researchers
have identified opportunities for using SMO to tackle RMS NP-hard problems [8,20]. Exact and
heuristic methods have been used for these combinatorial problems, whereas metaheuristic
methods, in particular, genetic algorithms (GAs) for single-objective and non-dominated
sorting genetic algorithm II (NSGA-II) [21] for multi-objective problems, have proven to
perform better in achieving near-optimal solutions in the RMS field [22–24].

For an RMS where many scenarios are involved, SMO generates complex and large
datasets that are difficult to analyze. Knowledge-driven optimization (KDO) is a recent
research area where data mining methods are used on the resulting SMO datasets to expose
underlying knowledge regarding what constitutes the preferred solutions in accordance
with the generated Pareto-optimal front. Decision makers can benefit from using data
mining methods to extract the patterns that support a better understanding of the problems
under different circumstances (e.g., production volumes) [25].

Considering that the preferences of the decision maker are unknown in many real-
world RMS problems, and therefore, they cannot be solved effectively with scalar weighted
functions, this study aims at addressing an RMS system configuration with resource and
work task allocations within a truly multi-objective optimization context. This study aims
at contributing to the RMS research domain as follows:

1. For an MPFL-RMS, a customized NSGA-II is proposed with an encoding and decoding
strategy specifically designed to optimize system configuration subjected to scalable
capacities and fluctuating production volumes by simultaneously addressing the task
assignments to WSs and the buffer allocation problem for maximum throughput
(THP) and minimum total buffer capacity (TBC). With this contribution, this study
does not aim to compare the performance of the customized NSGA-II with other
optimization methods or algorithms but to extend the performance of the NSGA-II
and to show the benefits gained by customizing the genetic representation.

2. To overcome inaccurate results and to cope with the dynamic and stochastic behavior
of an RMS (e.g., resource failures, variability of task times, and inter-station buffers)
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while simultaneously dealing with multiple objectives, the customized NSGA-II is
incorporated with DES to render an SMO approach that takes the dynamic nature of
the RMS into account.

3. This study enhances the proposed SMO approach with a data mining methodology
for a post-optimal analysis on multi-dimensional and multi-objective optimization
datasets by employing a novel flexible pattern mining algorithm in an industrial R&D
RMS application. Knowledge is extracted and represented as decision rules to discover
the underlying patterns that constitute the preferred solutions for a scalable RMS un-
der different production volumes. This contribution exploits the multi-objectiveness
nature of the approach to analyze the trade-off solutions found in the Pareto front and
gain knowledge from it.

The remainder of this article is structured as follows: Section 2 provides a frame
of reference for the RMS challenges, the related work, and an understanding of SMO
combined with multi-criteria decision making and knowledge discovery. In Section 3, we
mathematically formulate the RMS required information. The proposed approach and
the RMS-customized procedures are presented in Section 4. Section 5 introduces the case
application and its multiple instances, and Section 6 shows the results and the discovered
knowledge. Finally, the conclusions are presented in Section 7

2. Frame of Reference
2.1. Reconfigurable Manufacturing System Challenges and Related Work

According to Koren et al., the three main challenging areas that an RMS needs to
address are the configuration of the system, the process planning, and the components of
the system [6]. The system configuration involves the physical arrangement of resources
(e.g., equipment, machines, and operators). The arrangement of the resources impact
aspects such as the scalability, productivity, and functionality of the RMS [5,26]. Most
previous research has focused on the assignment of machines to WSs. The process planning
area addresses balancing the work tasks and assignments throughout the system, affecting
the reconfiguration efficiency to cope with production changes (e.g., scalable capacities and
volume changes) [27,28]. Research within process planning gravitates around work task
assignment optimization. Lastly, the components of a system deal with the required type
and amount of resources, such as machines, operators, buffers, and material handling, to
achieve the desired capacity [6]. This area is crucial for scaling an RMS, and most of the ex-
isting research has merely focused on optimizing the number of resources [1]. Accordingly,
for an RMS to accommodate changes in production during its lifecycle, reconfigurations in
these areas are required. Generally, prior research has targeted one or more of the areas
mentioned above by reallocating, adding, and removing resources, as well as rebalancing
the tasks in the system [3,29]. However, although these areas are studied, they are rarely
addressed simultaneously. Some of the most relevant studies are reviewed below.

2.1.1. Single-Part Flow Lines

Concerning SPFLs, Shabaka and Elmaraghy presented a GA-based method for the
process plan generation of an RMS with cost as an objective [30]. Doe et al. presented
two studies [31,32], in which they introduced two GA approaches for optimizing the
RMS configuration with capital cost as an objective. A single-objective GA approach
aiming at either maximizing THP or minimizing the number of machines employed in
the system was presented in [29]. This study reconfigured a system without buffers, and
tasks were rebalanced to meet specific production capacities. In a subsequent study, the
authors presented five principles for designing a scalable RMS and extended their previous
approach to include three cases in which the inter-station buffers had the same constant
capacity [3]. Moghaddam et al. introduced an integer linear programming model to select
the optimal configuration based on cost [33]. Deif and ElMaraghy also presented a GA
optimization study where cost was utilized as an objective, and the authors investigated
managing the capacity scalability in the RMS [34]. Borisovsky et al. and Makssoud et al.
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presented two different single-objective approaches, a GA approach and a mixed integer
linear programming approach, which were utilized to find the best task allocations to
minimize capital costs and the number of machines, respectively [35,36].

Contrary to single-objective studies, Goyal et al. presented a MOO NSGA-II-based
approach for obtaining the optimal configuration regarding convertibility, cost, and resource
utilization [12]. In a subsequent study, Goyal and Jain extended their previous research
by proposing a particle swarm optimization that searched for an optimal set of SPFL
configurations with the same optimization objectives as before: cost, resource utilization,
and convertibility [37]. A MOO approach for finding the optimal RMS configuration, in this
case, based on a simulations, was proposed by Diaz et al., wherein NSGA-II was employed
for production rate, buffer capacity, and lead time optimization [5]. Targeting the process
plan area, Khezri et al. optimized cost, production time, and sustainability using three
different approaches: a posteriori augmented ε-constraint and two evolutionary approaches,
i.e., NSGA-II and the strength Pareto evolutionary algorithms [38]. Touzout and Benyoucef
employed exact and evolutionary methods to target the process plan area by optimizing
cost, time, and energy consumption during the utilization of machines [39,40].

2.1.2. Multi-Part Flow Lines

In the context of MPFLs, a cost-oriented study considering the availability of the
machines was formulated by Youssef and ElMaraghy to address the RMS configuration
problem using GA and Tabu search [41]. The RMS configuration problem was approached
again by J. Dou et al. using a GA [11]. A mathematical approach to minimize the cost of
the RMS configuration design was developed by Saxena and Jain [42]. Cost was also the
objective in an integer linear programming approach to find the optimal configuration
design in a hypothetical part family proposed by Moghaddam et al. [43]. The RMS resource
selection was approached by Bensmaine et al. using a simulation-based NSGA-II with
completion time as the objective [44]. Bensmaine et al. proposed a new heuristic approach
that was focused on the process plan of a MPFL with the makespan as the objective [45].

From a multi-objective optimization (MOO) perspective, Musharavati and Hamouda
employed a simulated annealing algorithm to address generating a process plan, optimizing
cost, and the THP [46]. Chaube et al. also targeted the process plan area using the conventional
NSGA-II with cost and time as objectives [47]. Doe et al. targeted the flow line design of a
MPFL using NSGA-II with cost and tardiness as objectives [48]. The same objectives were
optimized by Doe et al., introducing, this time, a particle swarm optimization approach [2].

2.2. Simulation-Based Multi-Objective Optimization and Multi-Criteria Decision Making

Multiple conflicting objectives offer many challenges for decision makers in practical
MOO scenarios. Not only do several objectives have to be optimized simultaneously to
find a representative set of the Pareto-optimal front of solutions, but decision makers
also need to select the final trade-off solution to be implemented. Neither one is a trivial
task. A decision maker may have certain preferences about the solutions to a MOO
problem [49,50]. When these preferences are known ahead of the optimization process,
the decision maker may employ a priori methods to focus the search on certain preferred
regions. When the preferences are unknown beforehand, a posteriori methods are used to
find a representation of the entire Pareto-optimal front before the decision maker begins to
analyze the solutions and find a preferred region. Assuming no preference, multi-objective
evolutionary algorithms (MOEAs) are a proficient tool for finding solutions that both
converge close to the true Pareto-optimal front while also having a good spread over the
front. For the decision maker to perform an adequate a posteriori analysis of the solutions, a
MOEA needs to live up to both requirements of convergence and diversity on the Pareto-
optimal front [51]. SMO is the process of combining MOO and simulation. Combining
these two techniques brings advantages to both fields [52]. The general representation
of an SMO problem is defined by several conflicting objectives included in the objective
functions and possibly subjected to several equality and inequality constraints. The use of
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simulation allows the decision maker to optimize a real-world system with much higher
fidelity without the need to simplify the MOOP problem and lose intricate details and
relationships that might exist in the system. Additionally, using MOEAs to solve SMO
problems will discover and explore many more solutions than manual processes [53].

2.3. Knowledge Discovery and Flexible Pattern Mining

Once the optimization process has ended, the decision maker faces many trade-off
solutions to analyze. Much of the literature has focused solely on analyzing the objective
space while disregarding the role the decision space plays in a decision maker’s preferred
solutions. It can be argued that more knowledge about both the objective space and the
decision space and how they relate, generated with data mining and machine learning
methods, will lead to more informed decision making [25,54].

Flexible pattern mining (FPM) [55] is a recent rule-mining method developed explicitly
for knowledge discovery in MOO. FPM is based on the Apriori algorithm [56] and generates
decision rules that describe a decision maker’s preferences regarding selected and unselected
sets of solutions. Typically, the decision maker chooses the selected set as the preferred
non-dominated solutions and the unselected set as the remaining solutions found in the
search. Then, the FPM procedure extracts rules that discriminate the selected set from the
unselected set, on the forms x < c1, x > c2 and x = c3, for a decision variable x and constant
values c1, c2, and c3. Each FPM rule also has an associated significance and insignificance
where the significance indicates the fraction of solutions in the selected set that lives up
to the rule (the support of the rule in the selected set), and the insignificance indicates
the fraction of solutions in the unselected set that corresponds to the rule (the support in
the unselected set). A meaningful and descriptive rule would have high significance while
having low insignificance, thereby describing more solutions in the selected set. Additionally,
using frequent itemset mining, single rules can be combined to find rule interactions and
their significance and insignifiacnce. Consider the following example of a three-level rule
interaction: {x1 < 0.2∧ x2 > 0.3∧ x3 = 4} with significance equal to 90% and insignificance
equal to 5%, it indicates that the combination of these three rules covers 90% of the preferred
solutions, while only capturing 5% of the remaining (unpreferred) solutions.

2.4. Concluding Remarks

To the best of our knowledge, most of the prior studies have neglected real-world
uncertainty and consideration of buffers. Most of the optimization studies have adopted
metaheuristic algorithms. However, the use of MOO is sporadic, and the challenging areas
of an RMS are rarely tackled simultaneously. The limited use of SBO has usually focused on
small single-objective cases and mostly targeted one main area. Nearly all prior work that
has combined simulation and optimization required a manual data transfer from one to
the other [15]. This constitutes an evident research gap in the use of SMO to combine task
and resource assignments of a scalable MPFL-RMS while considering the buffer allocation
problem as an additional decision variable and the unreliability of the resources.

Knowledge discovery methods have been applied to extract patterns from manufactur-
ing systems. Studies have shown that decision rules extracted from applying data mining
and knowledge discovery methods to historical datasets can boost the effectiveness of
production development and constitutes a challenging area for the future of manufactur-
ing systems [57,58]. Although RMSs constitute one of the critical enablers that impacts
significantly on today’s so-needed changeable manufacturing systems, the knowledge-
capturing and decision-making process is very complex due to their intrinsic complexity
and stochastic nature [1,59,60]. Accordingly, considering that the optimization of an RMS
involves a large number of decision variables and that setting-up changeable optimization
scenarios is a time-consuming task, the applicability of knowledge discovery methods to
RMS applications becomes even more crucial. It indicates a research opportunity in order
to support decision makers [6,59].
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Thus, in this article, we aim to mitigate the abovementioned gaps by optimizing the
tasks and resource assignments of a scalable MPFL-RMS while considering the buffer
allocation problem by developing a customized SMO approach enhanced with a novel
FPM method for conducting post-optimal analyses.

3. A MOO Problem Formulation for RMS

This study originated from the challenges that manufacturing enterprises face when
adjusting production resources so that MPFL-RMSs can efficiently address volume and
capacity changes. Many factors must be considered, including work task and resource
reconfigurations to maximize THP and minimize TBC. As the parts mix and volumes
change, the RMS evolves accordingly. Therefore, because decision makers’ preferences are
not incorporated, this study uses a multi-objective problem formulation to analyze how
the throughput is affected by different buffer capacities. The problem assumptions are as
follows:

• An MPFL-RMS that consists of one or several WSs manufactures several products
under different production volumes.

• Resources within the RMS are subjected to maintenance, breakdown, setup times, and
variability of the task times.

• All resources within a WS are identical and perform the same sequence of tasks.
• There are reserved places for adding or relocating resources in the WSs.
• There are inter-station buffers with variable capacity.
• Tasks are subjected to precedence relationship and technological requirements that

ensure a feasibility sequence is performed in specific WSs.

The following notations and their definitions are used while dealing with formulating
and optimizing the MPFL-RMS.

Notations Definition

Indices:
i, r task index
j WS index

m resources index
v variant index

Parameters:
NS number of WS
NV number of variants
NTv number of tasks for variant v (v = 1, . . . , NV)
TNM total number of resources in RMS

NMWSmax maximum number of resources per WS
NMWSmin minimum number of resources per WS

NB number of buffers (NS − 1)
Bmin minimum safety buffer
Bmax maximum buffer capacity
Bunit buffer incremental unit

PRirv
precedence relationships for variant v; 1 if task i is the
predecessor of task r; otherwise 0

TRjiv
technological requirement for variant v; 1 if task i can be
assigned to WS j; otherwise 0

THP throughput per hour
TBC total buffer capacity

Decision variables:
xijv 1 if task i is assigned to WS j for variant v; 0 otherwise
ymj 1 if resource m is assigned to to WS j; 0 otherwise
Bj in-between buffer capacity for WS j and j + 1
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The problem formulation is presented below. The following two conflicting optimiza-
tion objectives are defined:

Maximize f 1 = THP= #products/(simulation horizon− warmup) (1)

Minimize f 2 = TBC = ∑NS
j=2 Bj−1 (2)

The following constraints must be satisfied when optimizing the MPFL-RMS.
Task assignment: For each variant v, each task must only be assigned to one WS, i.e.,

∑NS
j=1 xijv = 1, ∀v, ∀i = 1, 2, . . . , NTv. (3)

Precedence relationships: For each variant v, each task can only be assigned to a WS
only if all its predecessors are assigned to the same WS or earlier, i.e.,

∑NS
j=1 j×

(
xrjv − xijv

)
≤ 0, ∀v, ∀(r, i) = 1, 2, . . . , NTv ∈ {PRirv| PRirv = 1}. (4)

Resource assignment: Each resource must be assigned to a WS, i.e.,

∑NS
j=1 ymj = 1, ∀m = 1, 2, . . . , TNM. (5)

Technological requirement: For each variant v, each task can only be assigned to a WS
if it has the required machinery to perform the task, i.e.,

xijv ≤ TRjiv; ∀v = 1, . . . , NV, ∀i = 1, 2, . . . , NTv, ∀j = 1, 2, . . . , NS. (6)

Minimum WS equipment: At least NMWSmin should be assigned to each WS, i.e.,

∑TNM
m=1 ymj ≥ NMWSmin, ∀j = 1, 2, . . . , NS. (7)

Maximum WS equipment: WSs cannot have more than a certain number of resources, i.e.,

∑TNM
m=1 ymj ≤ NMWSmax, ∀j = 1, 2, . . . , NS. (8)

Buffer capacity: The inter-station buffers should not be less than the minimum safety
buffer (Bmin) and not exceed the maximum buffer capacity (Bmax), i.e.,

Bmin ≤ Bj−1 ≤ Bmax j = 2, . . . , NS. (9)

Because the considered MPFL-RMS belongs to NP-hard optimization problems, the
next section proposes an SMO approach to address it.

4. A Simulation-Based Multi-Objective Optimization Approach

The SMO approach proposed in this paper consists of two major components, i.e.,
simulation and optimization. The simulation component consists of a DES software named
FACTS Analyzer [61] in which the RMS and the studied scenarios are modeled and simu-
lated. The optimization component is implemented in the well-known platform MATLAB
where the assignment of tasks and resources to WS is performed. The tight integration of
the simulation and optimization components allows an accurate representation of a realistic
RMS, including many types of system variables regardless of their nature (e.g., failures,
mean time to repair, availability, process time of resources, etc.) while avoiding simplifying
the RMS as seen in other optimization studies.

The process starts in the optimization component, in which a population of size NP
of priority-based RMS solutions is generated. Then, custom-made RMS-specific encoding
and decoding mechanisms are used to generate feasible RMS solutions. Subsequently,
the generated population of feasible solutions is mapped to the simulation component in
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which the RMS configurations are generated based on the received combination of input
parameters from the optimization. Then, the DES engine runs several replications and
uses the simulation function to evaluate the produced number of products considering
the system’s stochastic nature. After these solutions are simulated, the results of the
simulation-based fitness function evaluation in terms of multiple objectives are fed back
to the optimization component. Next, by using a random solutions selection mechanism,
the population of solutions goes through the crossover and the mutation operators, based
on specific probabilities cp and mp, respectively, generate a new population of offspring.
The above iterative process is repeated until the integrated optimization and simulation
components converge to a set of Pareto-optimal solutions or the stopping criteria, i.e., a
prespecified number of generations (Gmax), is reached. The main structure of the proposed
SMO approach is illustrated in Figure 1.

Figure 1. SMO approach.

In the context of optimization, metaheuristic algorithms have proven to be promising
approaches for any combinatorial optimization problem. Among metaheuristics, GAs have
been extensively employed to optimize manufacturing systems [62]. When dealing with
two conflicting objectives, the NSGA-II is known to be one of the most effective MOEA,
endowing a proper convergence and spread of solutions [22]. Three main factors drive
the outstanding performance of NSGA-II: the fast non-dominated sorting approach that
decreases the computational complexity; the elitism mechanism storing the non-dominated
solutions; and the crowding distance calculation that ensures a diverse population by
comparing and selecting solutions after the non-dominated sorting [63]. In this study, by
incorporating simulation components into the fitness function evaluation of NSGA-II, a
customized SMO-NSGA-II for RMS is developed, as described below.

4.1. SMO-NSGA-II for RMS

The NSGA-II sorts the solutions into different fronts based on their dominance re-
lationship (dominated and non-dominated). The dominance relationship is established
between each pair of solutions by comparing the objectives set by the objective functions.
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The crowding distance ensures a good spread of solutions by determining the density in the
region, impacting the selection of the solutions that will be preserved for future generations.
Once the fast non-dominated sorting is completed, the crowding distance calculation ranks
the solutions in each individual front. The above features of NSGA-II promote the selection
of dispersed solutions on the fronts. The proposed SMO-NSGA-II for RMS is summarized
in Algorithm 1.

Algorithm 1: SMO-NSGA-II

1 Algorithm inputs : Gmax, NP, cp , mp
RMS inputs : TRj,iv, PRirv, NS, NTv, TNM, NMWSmin, NMWSmaxn, NB, Bmin, Bmax, Bunit

2 Using Section 4.1.1, create a population of priority-based representation vectors
3 While g ≤ Gmax
4 Using the proposed encoding and decoding mechanisms in Section 4.1.2 to ensure a
population of RMS feasible solutions
5 Using the simulation component in Section 4.1.3, evaluate the fitness function for
each solution
6 Rank the solutions using the fast non-dominated sorting mechanism
7 Calculate the crowding distance of each solution in each individual front
8 Select parents for crossover using tournament selection
9 Using crossover and mutation operators in Section 4.1.4, generate a new set of offspring
10 Using the elitism mechanism to preserve the best individuals
11 Increment g
12 End
13 Output: The Pareto-optimal solutions for RMS

The components of the SMO-NSGA-II for RMS are described below.

4.1.1. Solution Representation

The NSGA-II starts with an initial population of individual solutions in which each row
represents a string of real numbers (σ) where the elements are randomly generated between
(0,1). The length of a solution string is equal to the number of WSs (NS) plus the number of
tasks for all the variants (∑v∈NV NTv) plus the number of inter-station buffers (NB = NS − 1).
The bit content at the ind-th index, called σind (ind = 1, . . . , NS + ∑v∈NV NTv + NB), contains
the random number showing the relative priority of WSs, tasks, and buffers depending on
where the i index relies, as depicted in Figure 2. As the figure shows, the first NS columns
relate to the WSs priority, meaning that the higher the priority, the more resources will be
assigned to the WS. The same priority rule applies to the buffers in the last NB columns of
the string. The random keys from column NS + 1 to NS + ∑v∈NV NTv relate to the priority
of the tasks, indicating that a task with a higher relative priority value is ranked higher
to be assigned to the WSs. Figure 2 illustrates the solution representation for an example
with two WSs, one inter-station buffer, and two parts to be produced with two and three
tasks, respectively.

Figure 2. Solution representation.

4.1.2. Encoding and Decoding

The encoding and decoding procedures aim at generating a feasible solution for each
solution string in the population.
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For each string, the encoding attempts to find feasible settings for the RMS con-
figuration by assigning resources to the WSs, deciding on the assignment order of the
tasks to WSs, and assigning inter-station buffer capacities. The number of resources
per WS is calculated using NMWSmin + σind × (NMWSmaxn − NMWSmin), where σind
(ind = 1, . . . , NS) refers to the WSs priorities and [ ] is the lowest bigger integer number.
If the total number of resources per WS is not equal to TNM, they are updated until their
sum equals TNM. The assignment order of the tasks to WSs for each variant v is decided
by the flexibilities of the tasks, based on TRjiv, and the proprieties of the tasks based on
σind (ind = NS + 1, . . . , NS + ∑v∈NV NTv), in ascending and descending orders, respec-
tively. The inter-station buffer capacity is calculated using Bmin + σind × (Bmax − Bmin),
where σind (ind = NS + ∑v∈NV NTv + 1, . . . , NS + ∑v∈NV NTv + NB) refers to the prior-
ities of the buffers. If the summation of the inter-station buffer capacities is less than
Bmin × NB or larger than Bmax × NB, then they are updated until they fall in the range
above. The encoding procedure is shown in Algorithm 2.

Algorithm 2: Encoding

1 Input: σ, TRjiv, NS, NTv, TNM, NMWSmin, NMWSmaxn, NB, Bmin, Bmax, Bunit
2 For ind = 1 to end
3 If ind = 1 to NS
4 Calculate the number of assigned resources per WS based on σind, NMWSmin,
and NMWSmaxn
5 If the total number of assigned resources > TNM
6 Sort WSs in terms of their σind in descending order
7 While the total number of assigned resources > TNM
8 Decrease one resource from the sorted WSs in line 6
9 End
10 Elseif the total number of assigned resources < TNM
11 Sort WSs in terms of their σind in ascending order
12 While the total number of assigned resources < TNM
13 Increase one resource to the sorted WSs in line 11
14 End
15 End
16 Elseif ind = NS + 1 to NS + ∑v∈NV NTv
17 For v = 1 to NV
18 Sort the tasks of variant v in terms of their flexibility (based on TRjiv) and priority
(based on σind) in ascending and descending orders, respectively
19 End
20 Elseif ind = NS + ∑v∈NV NTv + 1 to end
21 Calculate the allocated in-between WSs buffer capacity based on σind, NB,
Bmin, and Bmax
22 If the total allocated buffers capacity > Bmax × NB
23 Sort in-between buffers in terms of their σind in descending order
24 While the total number of in-between buffers capacity > Bmax × NB
25 Decrease one Bunit from the sorted in-between buffers in line 23
26 End
27 Elseif the total allocated buffers capacity < Bmax × NB
28 Sort in-between buffers in terms of their σind in ascending order
29 While the total number of in-between buffers capacity < Bmin × NB
30 Increase one Bunit to the sorted in-between buffers in line 28
31 End
32 End
33 End
34 End
35 Output: number of resources per WS, vectors of sorted tasks based on flexibility and priority
per variant, in-between buffers capacity
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For each setting obtained via the encoding procedure, the decoding aims to generate
a feasible solution for the RMS by assigning tasks to WSs, considering the vectors of the
sorted tasks based on the flexibility and the priority for each variant. This is performed
by selecting each task of variant v based on the related vector of sorted tasks, and then
positioning the task within the eligible range of WSs considering the cumulative normalized
vector of TRjiv and their priorities σ. The decoding procedure is shown in Algorithm 3.

Algorithm 3: Decoding

1 Input : PRi rv, TRjiv, NS, NTv, vectors of sorted tasks based on flexibility and priority per
variant
2 For v = 1 to NV
3 For i = 1 to NTv
4 task = set the selected task as the ith index in the sorted tasks vector for variant v
5 Normalize the TRjiv matrix by TR2jiv = TRjiv/ ∑j∈NS TRjiv

6 Calculate the accumulative sum for TR2jiv by TR3jiv = ∑
j2
j=1 TR2jiv where j2 = 1 to NS

7 Station= min
j

f ind
{

TR3j task v ≥ σtask

}
; set the selected station by finding the next index

where TR3j task v is bigger than σtask for variant v
8 Update TRjiv after the current task has been assigned to WS for variant v including all
its predecessors and successors in PRi rv
9 End
10 End
11 Calculate the total task time per variant per WS
12 Output: A feasible solution for RMS includes the number of resources per WS (encoding),
assignment of tasks to WSs (decoding), the total task time per variant per WS (decoding), and
in-between buffers capacity (encoding)

4.1.3. SMO-Based Fitness Function Evaluation of the RMS Solution

To guide the optimization and enable NSGA-II to perform the non-dominated ranking,
the simulation measures and provides the fitness function of the solutions. To this end, each
RMS solution is mapped to the simulation component, where a simulation scenario is built
according to the information received from the optimization. These sets of scenarios are
simulated, including the production variabilities in terms of availability of resources,
failures, setup times, and production proportions. For each scenario, the simulation
component calculates the value of the objective functions in terms of THP and TBC before
they are fetched back to the optimization component.

4.1.4. Genetic Operators (Crossover/Mutation)

To preserve diversity between generations, the genetic operator takes place randomly
in each generation, as inspired by biological processes. To ensure that the best solutions are
more likely to get more copies, tournament selection is used to select the best solutions to be
preserved based on the SMO-based fitness function evaluation. Then, they go through the
crossover and the mutation operators to generate a new diverse population. The crossover
and mutation probabilities (cp and mp) of the genetic operators indicate the percentage of
the population that will go through these processes.

A two-points-based weight mapping crossover is implemented. This crossover opera-
tor can be explained in four steps. The first step randomly chooses two intervals on the
chromosomes of two selected solutions (parents). In the second step, the bits included in
the crossover interval are ranked in ascending order based on their priority values. A lower
ranking value indicates a bit with a higher priority. In the third step, the ranks between
the chosen intervals are swapped between the parents, and the priorities are rearranged
based on the new ranks. Therefore, the offspring are generated according to the newly
mapped priorities in the four steps. The upper part of Figure 3 illustrates the implemented
crossover steps.
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Figure 3. Genetic operators.

The implemented mutation operator swaps the values of two randomly selected bits.
The bits that are not selected are preserved from the parent. The bottom part of Figure 3
illustrates the mutation operator, where the darker bits represent those that are swapped.

The applicability of the proposed SMO-NSGA-II is demonstrated using an application
case and its multiple instances described in the next section.

5. An Application Case with Multiple Instances

The case is based on an MPFL at a R&D facility of a truck manufacturer in Sweden,
where the manufacturer tests and evaluates future concepts. The system manufactures
two product families. The company has invested in three reconfigurable WSs in which
the resources can be added, removed, or reallocated to a different WS if required due to
production changes. Each WS has space for up to five resources (e.g., operators). Figure 4
represents an example of the MPFL in which there are seven operators configured in a 3-2-2
setting, meaning three operators in the first WS, and two operators in each of the remaining
WSs. It can be observed that there are two, three, and three extra spaces remaining for
resources in the first, second, and third WS, respectively. Furthermore, the WSs of this
MPFL are subjected to uncertainty and variability, and they consider a specific availability
and mean time to repair (MTTR). The availability is considered to be 85% with a 10-minute
MTTR. There are two inter-station buffers with a minimum safety capacity of Bmin = 1
and a maximum buffer capacity of Bmax = 40. Additionally, the buffers require 5 s for
loading/unloading as the material handling times.
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Figure 4. MPFL layout.

In the studied case, the two product families must be produced at specific volumes
to meet customers’ demands. As the customers’ demands vary over time, the MPFL
configuration, the components of the system, and the process plan evolve accordingly to
meet the new requirements. Changes in the line involve the total number of resources
needed, the layout configurations in the WSs, as well as the assignment of the tasks to the
resources. Moreover, a configuration change is required to accommodate a new demand
requirement, which also implies changes in buffer capacity. The manufacturing company
was interested in finding out the production capacity of the MPFL with an initial investment
of seven operators for different production proportions, i.e., 70/30 (70% part 1 and 30% part
2) and 30/70. In addition, the company also requested information regarding the capacity
that could be gained if one and two operators were added to the system, including where
they needed to be placed according to the desired production proportion and the new
optimized tasks assignment of both parts. This study simultaneously strives for maximum
THP and minimum TBC as the optimization objectives, while deciding on the capacity of
the buffers in the line and the allocation of resources and tasks to WSs according to the
desired scenarios.

The total task time of Part 1 is 336.38 s, divided into 29 tasks, while the total processing
time of Part 2 is 293.38 s, divided into 24 tasks. Figure 5 shows the precedence relationship
of the tasks for both parts.

Figure 5. Precedence graphs.
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6. Experimental Results and Knowledge Discovery

The SMO-NSGA-II approach is implemented in MATLAB VERSION 2022a and Facts
Analyzer version 3.1.7. The experiments include six different scenarios that investigate the
above-explained RMS under variable production proportions utilizing a scalable number
of operators. A baseline simulation model of the RMS was developed in the mentioned
DES software to be used in the proposed SMO approach. Every scenario was optimized
using 500 generations and a population size of 50.

Figure 6 illustrates the objective space of the non-dominated solutions found by the
proposed SMO-NSGA-II for the RMS regarding the studied scenarios. According to this
figure and as it was expected, the more operators used, the higher the THP of the system.

Figure 6. Objective space of non-dominated solutions.

To better explain the results in Figure 6, the obtained ranges for the THP, the capacities
of the inter-station buffers (Bu1 and Bu2), and the TBC (sum of Bu1 and Bu2) for each
scenario are shown in Table 1. Each scenario in the table is characterized by the number
of operators used (NO) and the production proportion. Considering the maximum THP
obtained as the results of different scenarios shown in Table 1, one can observe that the
optimized average THP increases that can be gained from every operator added to the
considered RMS are approximately 9.64 JPH (jobs per hour) for the 30/70 proportion and
8.11 JPH for the 70/30 proportion. This is important for engineers to consider when scaling
up (or down) the system to adjust the production volume required.

Table 1. Throughput and buffers capacity ranges.

NO Proportion THP Bu1 Bu2 TBC

7 30/70
70/30

66.76–68.90
62.86–65.48

2–13
2–6

2–14
2–21

4–27
4–27

8 30/70
70/30

79.31–79.82
78.27–79.81

3–7
2–16

4–28
2–24

7–35
4–40

9 30/70
70/30

83.86–88.18
82.16–84.69

2–5
2–5

3–33
2–7

5–38
4–12

Table 2 presents how the results presented in Table 1 are attained in terms of the
system configuration (operators per WS) and the task allocations per WS. Under columns
WS1, WS2, and WS3, the number of parallel operators employed in Workstations 1, 2, and
3 are presented, respectively. The last column shows the number of tasks performed at
each WS (i.e., no. tasks allocated to WS1/no. tasks allocated to WS3/no. tasks allocated
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to WS3). Note that the more operators at a WS, the more tasks assigned to the WS. Ad-
ditionally, it is shown that, in most cases, the number of tasks per WS ranges among the
non-dominated solutions.

Table 2. Configurations and work task allocations.

NO Proportion WS1 WS2 WS3 Tasks

7 30/70
70/30

1
1

2
2

4
4

9/14–15/29–30
8/11–12/33–34

8 30/70
70/30

2
3

3
2

3
3

13–16/17–20/19–20
19–20/12–14/20–21

9 30/70
70/30

2
2

3
3

4
4

13–14/12–14/26–28
15–16/13–15/23–24

An overview of a core tenant of this approach, the assignment of tasks to WSs, and
the related pattern in the non-dominated solutions are presented in Figure 7. In this figure,
each row represents one solution, and each column illustrates one task for either Part 1 or 2.
Moreover, the color of the cells indicates the WS where the related task (A indicates tasks
from Part 1 and E indicates tasks from Part 2) of each part has been assigned. The figure
shows how most non-dominated solutions for each scenario share common task allocations.
Nonetheless, all solutions shown in Figure 7 are distinct in terms of the allocation of the
inter-station buffers.

Figure 7. Task assignment in the non-dominated solutions for the RMS scenarios.

6.1. Approach Comparison

In this subsection, the proposed SMO-NSGA-II is compared to the standard SMO
approach presented by [1] for RMS, in which both optimization and simulations are run
on the standard SMO approach. This comparison aims to explore whether the proposed
SMO approach with customized procedures improves the resulting RMS solutions. To
this end, the same scenarios were implemented and optimized using the standard SMO
approach and the same algorithm settings for the considered RMS application and its
multiple instances. The abovementioned study proved that the standard SMO approach
was effective for an industrial RMS application. However, the total number of decision
variables was much lower, mainly due to the total number of tasks of the produced
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products, which was 25 tasks compared to the 53 tasks involved in the current RMS. The
standard SMO approach uses a commercial NSGA-II embedded in the software that does
not allow customization of specific procedures such as encoding and decoding, leading to
a repair mechanism.

A comparison of the convergence rates of the standard SMO and the proposed SMO
approaches is shown in Figure 8 by plotting the hypervolume (HV) [64] of the optimization
algorithms at each generation. The higher the HV, the better the quality of the obtained solu-
tions. According to this figure, one can observe that the proposed SMO approach has better
convergence than the standard SMO approach in finding Pareto-optimal RMS solutions.

Figure 8. Convergence rate plots of the standard and proposed SMO approaches for the scenarios
with 7 operators (left-hand side), 8 operators (center), and 9 operators (right-hand side).

Furthermore, the HV of the non-dominated solutions obtained by the optimization
approaches for different scenarios, including the number of operators (NO) and the pro-
duction proportions, are shown in Table 3. The comparison of results in Table 3 indicates
that, in all considered scenarios, a considerable improvement in HV was achieved when
the proposed SMO approach was applied. These improvements can be explained by
the customization of NSGA-II performed in the proposed SMO approach, enabling the
optimization algorithm to deal with larger and more complex RMS applications.

Table 3. Quantitative HV comparison.

NO Proportion Proposed SMO Standard SMO

7
30/70 1.066 × 100 3.277 × 10−1

70/30 1.055 × 100 3.516 × 10−1

8
30/70 1.031 × 100 2.981 × 10−1

70/30 1.159 × 100 1927 × 10−1

9
30/70 1.070 × 100 3.512 × 10−1

70/30 9.341 × 10−1 3.072 × 10−1

To further validate that the proposed SMO approach outperforms the standard SMO
approach, not just when increasing the number of operators used, we increased the number
of WSs in the system. In this case, a new set of optimization scenarios was designed for the
system using nine operators but distributed in four and five WSs with the same production
proportions considered above.

The convergence rate plots, presented in Figure 9, for the system with four and five
WSs also confirm a better convergence for the proposed SMO approach when finding
the Pareto-optimal front. Similarly, the HV obtained from both approaches for the non-
dominated solutions indicates significant improvements for the four new scenarios tested,
as shown in Table 4.
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Figure 9. Convergence rate plots of the standard and proposed SMO approaches for the 9 operators
scenario distributed in 4 and 5 WSs.

Table 4. Quantitative HV comparison for the 9 operators scenario distributed in 4 and 5 WSs.

WS Proportion Proposed SMO Standard SMO

4
30/70 1.103 × 100 2.233 × 10−1

70/30 1.021 × 100 2.422 × 10−1

5
30/70 1.074 × 100 2.980 × 10−1

70/30 9.153 × 10−1 2.840 × 10−1

A better convergence rate and HV performance can also be observed when plotting
the solutions in the objective space. Figure 10 presents all solutions for the proposed SMO
(blue points) and the standard SMO (red points) approaches for three, four, and five WSs.
The three upper graphs in the figure refer to the 30/70 proportion scenarios, while the
three lower graphs refer to the 70/30 proportion scenarios. As expected, the figure shows
that, regardless of the number of WSs used in the system, the proposed SMO approach still
outperforms the standard SMO approach, reaching significantly better solutions regarding
the conflicting objectives.

Figure 10. Solution point comparison for the 9 operators scenario distributed in 3, 4, and 5 WSs.

6.2. Knowledge Discovery from SMO

This subsection presents the knowledge discovered by applying FPM to datasets
generated by the proposed optimization approach. Due to the ability of an RMS to increase
and decrease the number of resources to address, among other challenges, fluctuating
production volumes, in this study, we focused on discovering generalized knowledge
regarding the different numbers of operators employed and the production proportions for
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the two products in the considered RMS application and its multiple instances. Therefore,
to run the FPM procedure, the scenarios were merged into five groups in terms of the
different numbers of operators and production proportions. FPM generates knowledge
in the form of decision rules, and we focused on generating knowledge for both task
allocations per WS and buffer allocations.

For each group, we ran FPM with the non-dominated solutions from the involved
scenarios as the selected set while keeping the remaining solutions (dominated and non-
dominated) as the unselected set. In this way, general knowledge was discovered between
the scenarios. Because of the high number of decision variables involved that impacted
the run time of the FPM procedure, the maximum level of rule interactions was limited
to five, and the minimum required significance of the rules that described the selected set
was set to 90%. The openly available decision support tool Mimer (https://assar.his.se/
mimer/html/, accessed on 15 January 2023) was employed to generate the results. Mimer
enables the interactive knowledge discovery framework for MOO proposed in [65]. The
rule interactions found by using FPM regarding task allocations are presented in Table 5,
where “A” and “E” refer to the related tasks for Part 1 and Part 2, respectively. The value of
the variable represents in which WS the task was assigned. As an example, the first rule of
the table, for the case with seven operators, states that in 100% of the solutions found in the
Pareto-front, for Part 1, Task 10 was set to WS 2, whereas for Part 2, Task 5 was set to WS 2,
Task 23 was set to WS 1, Task 4 was not set to WS 3, and Task 6 was not set to WS 1.

Table 5. Decision rules regarding work task allocations.

Scenario
NO Proportion Rule-Interaction Sig. Unsig.

7 A10 = 2 ∧ E4 6= 3 ∧ E5 = 2 ∧ E6 6= 1 ∧ E23 = 1 100% 10.49%
8 A10 = 1 ∧ A14 6= 1 ∧ A17 = 2 ∧ E7 = 1 ∧ E16 = 2 100% 15.44%
9 A23 = 2 ∧ A26 = 1 ∧ E6 6= 1 ∧ E9 6= 1 ∧ E23 = 1 90.00% 11.91%

30/70 A2 6= 3 ∧ A14 = 3 ∧ E3 = 1 ∧ E10 6= 1 ∧ E23 6= 3 97.06% 29.98%
70/30 A3 = 1 ∧ E3 6= 3 ∧ E11 6= 2 ∧ E13 6= 1 ∧ E23 = 1 100% 23.97%

Looking at the rules presented in Table 5, we can see that the scenario with seven
operators has the highest ratio significance of 100% and unselected significance of 10.49%,
meaning that all non-dominated solutions support the rules found while only 10.49%
of the unselected set of solutions support the rule interaction. This implies that the non-
dominated solutions in this scenario are perhaps easier to distinguish than the rest. Another
highlighted aspect from the rules of the seven operators scenario is a higher involvement
of tasks for Part 2 than for Part 1. This could indicate that Part 2 needs to be prioritized
over Part 1 when seven operators are employed regardless of the production proportion.
Additionally, it can also be seen that the scenarios focused on the number of operators have
a lower unselected significance than those focused on the production proportion. Therefore,
more general knowledge is extracted regarding the number of operators employed in the
system than the production proportion.

Decision makers can use the results presented in the table to identify which tasks to
prioritize when a new scenario needs to be optimized. Another interesting aspect extracted
is the importance of some tasks. When looking at the table, it can be seen that Task E23 (Task
23 of Part 2) is repeated in almost all the rules, suggesting the relevance of this task for the
overall RMS. Furthermore, as can be interpreted from the rules, E23 does not take the value
3; in fact, in all the cases, one is equal to 1, meaning that this specific task should, instead,
be allocated at the beginning of the RMS and never in the last WS. Furthermore, Table 5
shows that, regarding the decision rules extracted for all studied scenarios, except for the
scenario with eight operators, there is a higher involvement of Part 2 than that of Part 1.
This suggests that decision makers could prioritize the assignment of the tasks for Part 2
over Part 1, even in cases where the production of Part 1 is greater such as 70% of Part 1 and
30% of Part 2 production volumes. Consequently, with this information, decision makers

https://assar.his.se/mimer/html/
https://assar.his.se/mimer/html/
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can better understand which decision variables are more critical and how they impact the
overall performance of the system. It is important to note that the rules in the table best
distinguish the selected set from the unselected set. A rule would not be interesting if
it has both a high significance and a high unselected significance; only the rules unique
to the non-dominated solutions in each group of scenarios distinguish the selected and
unselected sets.

Table 6 presents the decision rules extracted regarding WSs and buffer allocation. Sim-
ilar to the rules describing task allocations presented in Table 5, the unselected significance
of the results in Table 6 confirms that it is more difficult to generalize knowledge regarding
production proportion compared to the number of operators used. Additionally, we can
see that the unselected significance results for the rules in Table 6 are higher than in Table 5,
meaning it is more difficult to distinguish the scenarios based on the workstation and buffer
allocation. This is, however, expected since the number of variables considered in Table 5 is
much greater (53) than the number of variables considered in Table 6 (5). Furthermore, the
rules presented in Table 6 provide information regarding operators’ load per WS, hinting
at which WSs need a higher or lower number of operators. Likewise, interesting aspects
can be extracted from the rules regarding the inter-station buffers, for example, the rules
display information regarding each buffer’s maximum capacity, which decision makers
can use when deciding on new scenarios. This analysis shows that the FPM procedure can
provide decision makers with a better knowledge of the system and consequently save
time and cost.

Table 6. Decision rules regarding workstations and buffer allocations.

Scenario
NO Proportion Rule-Interaction Sig. Unsig.

7 WS1 = 1 ∧WS2 = 2 ∧ Bu1 < 7 ∧ Bu2 < 22 90.63% 20.51%
8 WS3 = 3 ∧WS1 6= 1 ∧ Bu1 < 17 ∧ Bu1 > 2 92.86% 26.15%
9 WS2 = 3 ∧WS3 = 4 ∧ Bu1 < 7 ∧ Bu2 < 34 100% 24.80%

30/70 WS1 < 3 ∧WS2 6= 1 ∧ Bu1 < 15 ∧ Bu2 > 2 94.12% 71.01%
70/30 WS2 6= 1 ∧WS3 > 2 ∧ Bu1 < 17 ∧ Bu2 < 25 100% 83.81%

The employed FPM methods and knowledge discovery can also be used to compare
the performances of the SMO approaches. The significance of the rules indicates their
quality in achieving better results. For comparison purposes, we ran FPM regarding work
task allocations using the datasets generated by the standard SMO approach. Table 7
displays the decision rules. The results presented in this table are particularly different
from the rules presented in Table 5, implying that the standard SMO approach did not
converge to optimal solutions.

Table 7. Decision rules of the standard SMO approach regarding work task allocations.

Scenario
NO Proportion Rule-Interaction Sig. Unsig.

7 A16 6= 1 ∧ A18 = 3 ∧ E5 6= 1 ∧ E19 6= 2 ∧ E21 = 2 92.86% 16.48%
8 A5 6= 2 ∧ A11 = 2 ∧ A13 6= 2 ∧ A28 6= 2 ∧ E19 6= 2 90.48% 23.00%
9 A4 = 3 ∧ A12 = 2 ∧ A18 6= 1 ∧ E4 6= 2 ∧ E19 6= 3 100% 6.83%

30/70 A5 6= 3 ∧ E4 6= 3 ∧ E5 6= 1 ∧ E11 6= 2 ∧ E16 6= 1 96.00% 15.57%
70/30 A13 6= 2 ∧ A16 = 2 ∧ A21 6= 1 ∧ A28 6= 1 ∧ E18 6= 1 91.30% 29.21%

In addition, the significance/insignificance relationship of the rules, displayed in
Table 7, indicates they are less relevant to achieve better results when compared to those
displayed in Table 5. This is further exposed for the seven machines scenario, as shown
in Figure 11. This figure presents both datasets, where a circle indicates solutions from
the proposed SMO approach and a square indicates a solution from the standard SMO
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approach. The solutions that match the rules for seven machines extracted through the
proposed SMO are highlighted in blue, and the solutions that match the rules extracted
from the standard SMO approach are highlighted in red in both datasets. On the one hand,
the number of solutions that match the rules extracted from the proposed SMO approach
is significantly smaller than those matching the rules from the standard SMO approach.
Since almost no blue points were found in the standard SMO dataset, this demonstrates the
uniqueness and quality of the rules extracted from the proposed SMO approach dataset. On
the other hand, many solutions match the rules extracted from the standard SMO approach
regardless of the dataset. This proves that the rules extracted from the standard SMO dataset
are not unique and do not represent the optimal solutions. Many of the solutions in the
proposed SMO dataset match the rules extracted from the standard SMO dataset; however,
as shown in Figure 11, they do not provide the best performance. Consequently, evaluating
the quality of the rules extracted using FPM supports the statement from Section 6.1, where
the proposed SMO approach outperforms the standard SMO approach.

Figure 11. Rules quality comparison for the 7 machines scenario.

7. Conclusions

In the current uncertainty and competitiveness of the market, RMS applications play a
significant role in the success of manufacturing industries. However, prior SMO research
that has considered the variability of RMS applications is scarce and neglects knowledge
discovery to support decision makers. This study introduced a novel SMO approach to
concurrently address the main challenging areas by combining task and resource assign-
ments with the configuration of a system in a scalable MPFL, while considering the buffer
allocation dilemma as an additional decision variable and the unreliability of the system. A
customized SMO-NSGA-II approach was developed with specifically designed solution
representation, encoding, and decoding mechanisms combined with a simulation compo-
nent where the RMS solutions could be evaluated in terms of conflicting objectives, namely,
the THP and TBC. The performance of the proposed SMO approach was tested against the
standard SMO approach in the studied application with its multiple instances. The experi-
mental results show the proposed SMO approach is promising in finding Pareto-optimal
solutions compared to the standard SMO approach. It should be emphasized that instead of
comparing the performance of the customized NSGA-II with other optimization algorithms,
the current study focuses on showing how the performance of an ordinary SMO algorithm,
such as NSGA-II, can be significantly enhanced by the problem-customized genetic repre-
sentation. Furthermore, due to the ever-increasing amount of data generated by the MOO
of an RMS, which is required to address frequent market changes, this study demonstrates
how knowledge discovery and data mining methods can be used for extracting decision
rules from RMS problem instances.
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Essentially, the proposed enhanced SMO approach provides fast decision support for
RMS production planning, especially when facing fluctuating production volumes. To this
extent, the proposed approach supports decision makers with key information to enable
an RMS with the capability to provide the required production capacity when needed.
Specifically, this approach reveals underlying information that facilitates understanding the
RMS and how the decision variable affects the performance of the system. This study used
the FPM procedure to generate significant knowledge in the form of decision rules that
describe the tasks and resource allocations to workstations and buffer capacity allocations
for all considered scenarios.

Future research will use the generated knowledge to achieve faster optimization of addi-
tional scenarios using a process known as knowledge-driven optimization (KDO) [25]. Since
FPM generates knowledge in the form of explicit decision rules, it would be straightforward
for an optimizer to incorporate rules describing a general scenario into a future optimization
run by applying the rules as constraints in the decision space. Future work may also consider
additional RMS aspects, such as sustainability and reconfiguration frequency.
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Abstract: Current market requirements force manufacturing companies to face production changes
more often than ever before. Reconfigurable manufacturing systems (RMS) are considered a key
enabler in today’s manufacturing industry to cope with such dynamic and volatile markets. The
literature confirms that the use of simulation-based multi-objective optimization offers a promising
approach that leads to improvements in RMS. However, due to the dynamic behavior of real-world
RMS, applying conventional optimization approaches can be very time-consuming, specifically when
there is no general knowledge about the quality of solutions. Meanwhile, Pareto-optimal solutions
may share some common design principles that can be discovered with data mining and machine
learning methods and exploited by the optimization. In this study, the authors investigate a novel
knowledge-driven optimization (KDO) approach to speed up the convergence in RMS applications.
This approach generates generalized knowledge from previous scenarios, which is then applied
to improve the efficiency of the optimization of new scenarios. This study applied the proposed
approach to a multi-part flow line RMS that considers scalable capacities while addressing the tasks
assignment to workstations and the buffer allocation problems. The results demonstrate how a KDO
approach leads to convergence rate improvements in a real-world RMS case.

Keywords: multi-objective optimization; knowledge discovery; reconfigurable manufacturing system;
simulation

1. Introduction

Current trends in the manufacturing industry are challenging companies to cope
with demand variations and fluctuating production volumes. Companies are required to
rapidly adjust the functionalities of their manufacturing systems to critically manage the
needs of this dynamic market to stay competitive [1]. By implementing Reconfigurable
Manufacturing Systems (RMSs), companies can efficiently meet the requirements of the
competitive market [2]. RMSs enable cost-effective means to meet dynamic market de-
mands by reconfiguring, among other aspects, their resources (e.g., machines, operators,
buffers, etc.) and the process plan of the manufacturing system [3].

Today’s manufacturing industry is affected by disruptions and shortages of com-
ponents caused by extraordinary situations such as a global pandemic or war. These
disruptions, combined with an increasingly shortened product life-cycle trend, mean that
manufacturing organizations are required to ramp up and down products more frequently
by modifying their production volumes more often than ever before [4]. Therefore, find-
ings regarding how dynamic market demands of today can be addressed more efficiently
constitutes a crucial research area in the RMS community.

Although an RMS may be able to meet the dynamic requirements in the market,
designing and configuring the RMS is no trivial task. Simulation techniques, particularly
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discrete event simulation, have proven to be a powerful tool for the manufacturing industry
to assess the capabilities of their production systems [5,6]. Often, several conflicting
objectives are used to simultaneously measure the quality of the system. Combining
simulation techniques with Multi-Objective Optimization (MOO), i.e., Simulation-based
Multi-objective Optimization (SMO), has been a successful approach for optimizing RMSs
in the literature [4,7,8]. A general Multi-Objective Optimization Problem (MOOP) can be
defined as:

Minimize: F(x) = [ f1(x), . . . , fM(x)]T

Subject to: x ∈ S

for M number of objective functions, in the constrained and feasible search space S, where
x = [x1, . . . , xN ]

T is a vector of N decision variables. Due to the structure of MOOPs, a
MOOP solution can be seen to inhabit two distinct spaces: the decision space and the objec-
tive space, and the objective functions can be seen as a mapping from the decision space to
the objective space. The goal of MOO is to find a set of solutions that together represent the
so-called Pareto-optimal front—the set of solutions that outperform or dominate all other
solutions to the MOOP in S.

Due to complex aspects, such as the stochastic failures of resources and equipment
that can be modeled using simulation techniques, exact methods are often omitted from
consideration when optimizing SMO problems; instead, evolutionary algorithms are used.
Multi-Objective Evolutionary Algorithms (MOEAs) are optimization techniques that are
developed to mimic fundamental principles of evolution found in nature such as the well-
known algorithm Non-dominated Sorting Genetic Algorithm II (NSGA-II) [9], which is
inspired by Darwinian survival of the fittest and evolves a population of solutions over a
number of generations to converge on the Pareto-optimal front.

Although MOEAs are a powerful tool to solve all kinds of MOOPs, they generate many
non-optimal solutions during the optimization process. Since these are largely eliminated
during optimization and rarely considered in the decision-making process, one can see the
wasted computational effort in evaluating them, specifically given the very time-consuming
simulations in SMO. After the observation that most of the analysis of MOOP solutions is
focused solely on the objective space, and mostly disregarding the dominated solutions,
the authors of [10] present Knowledge Driven Optimization (KDO), which is the idea to
employ knowledge discovery methods to describe decision-makers (DMs) preferences in
the objective space, in terms of knowledge about the solutions in the decision space, and
then use this knowledge to drive the search towards faster convergence on more optimal
solutions. This can be achieved in two ways, either offline where knowledge is generated
related to a previous scenario or case, and used to improve the convergence in a future
scenario, or online where knowledge discovery is integrated into the optimization process
as part of the MOEA itself to drive the search towards better convergence in the current
scenario. In this paper, we investigate an offline KDO approach.

In this work, we employ a knowledge-driven NSGA-II for a real-world Multi-Part
Flow Line (MPFL) to optimize the RMS configuration by considering scalable capacities
and fluctuating production volumes. The MOOP formulation addresses task allocation
to workstations as well as buffer allocation while maximizing throughput (THP) and
minimizing total buffer capacity (TBC). In Section 5, we show how the new approach is
able to speed up the convergence towards non-dominated solutions for new scenarios by
utilizing knowledge discovered from initial scenarios. The scope of the paper is limited
to proposing and showcasing this knowledge-driven approach and comparing the effects
of utilizing knowledge in the form of decision rules discovered from one variant of the
considered RMS, to speed up the convergence rate of another variant of the same RMS.

2. Background

Simulation and optimization techniques have successfully been used in the context of
manufacturing in the literature. However, the analysis of solutions is often limited to manual
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methods and mostly focus on the objective space. This section offers a background of simula-
tion and optimization, knowledge discovery in MOO, and knowledge-driven optimization.

2.1. Simulation and Optimization in Manufacturing Systems

Regardless of the benefits of RMS compared to traditional manufacturing systems
in achieving demand and capacity fluctuations, the design and management of these
systems are considered a complex combinatorial NP-hard problem which therefore can
be handled by the employment of simulation and optimization tools [7,11,12]. When it
comes to RMS problems, meta-heuristic methods such as genetic algorithms have become
very popular in the literature because they have shown better performance in generating
near-optimal solutions [7]. In addition, simulation has been a satisfactory tool to support
the modeling and analysis of manufacturing systems for many years [13]. Because of
the complexity and dynamism inherent in manufacturing systems, engineers and DMs
supported by simulation tools can perform better analysis and, therefore, obtain a better
understanding of the real-world systems [14]. Concerning RMS, simulation has been
identified in the literature as a supportive technique to handle the uncertainty found
in these types of dynamic, evolving systems [15]. Still, considering that the complexity
of today’s manufacturing systems is growing and that they need to consider a range of
possible scenarios with a large number of variables to model and analyze, the use of
simulation tools becomes nonfunctional. Alternatively, optimization methods could be
employed to solve larger-scale NP-hard problems [7]. However, the majority of prior
studies that applied optimization methods to RMS reduced the problem by excluding
variability and stochasticity (e.g., machine failures) and therefore providing imprecise
solutions. Therefore, studies that employed simulation and optimization separately have
shown some of the above-mentioned shortcomings. Against these drawbacks, simulation-
based optimization combines the benefits of simulation and optimization. In the literature,
simulation-based optimization has successfully led to improvements in manufacturing
systems. Consequently, SMO could lead to improvements in current RMSs [11,13].

RMSs need to address three main challenges, namely: (i) the system configuration,
(ii) the process planning, and (iii) the components of the system [3]. The system configura-
tion targets the physical arrangement of the resources (e.g., operators, machines, etc.) in
the system [2]. This challenge is usually addressed by optimizing the resource assignment
to workstations (WSs). The process planning targets the task allocation and balancing
throughout the WSs [16]. This challenge is usually addressed by optimizing the work
tasks allocation. Lastly, the components of the system address the appropriate number
and type of components (e.g., buffers, operators, machines, etc.) in the system to reach
the established capacity goal [13]. This challenge is usually addressed by optimizing the
number of resources to perform the tasks. Although simulation-based optimization has
been employed to address RMS problems previously in the literature, the use of SMO to
address several or all of these challenges simultaneously is sporadic.

2.2. Knowledge Discovery in MOO

Methods for knowledge discovery in the decision space of MOO solutions are not
conventional in the multi-criteria decision-making literature, which mostly focus on manual
methods for analyzing the solutions in the objective space. However, Ref. [10] offers
a survey of data mining and machine learning methods that have been employed for
knowledge discovery to support decision-making in MOO. The process of innovization [17]
was developed as a way of finding innovative design principles to describe the Pareto-
optimal front. Innovization was initially described as a manual process of formulating
relationships between correlated regions of the objective space using appropriate regression
models; however, it has since been automated using genetic programming [18]. Simulation
Based Innovization (SBI) is another method for knowledge discovery in MOO [19,20].
SBI trains a decision tree with the distance to a user-defined reference point (a point
describing a DMs aspiration) in the objective space as the regression target. The DM then
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chooses a threshold for the distance to the reference point to find rules that describe the
decision space for the solutions within this threshold. A further application of knowledge
discovery methods used in the analysis of solutions is offered by [21] where the authors
used clustering in both the objective and decision spaces, as well as association rule analysis
in cantilever design optimization problems.

Flexible Pattern Mining

Although previous approaches have successfully utilized common data mining and
machine learning methods for knowledge discovery, these methods were not developed
specifically for the indented use in MOO, and may not fully be able to manage the typical
characteristics of MOOP solutions, such as different variable types (continuous, discrete
and ordinal, and nominal) [10]. However, a method that has been specifically developed for
knowledge discovery in MOO is Flexible Pattern Mining (FPM) [22]. FPM was developed to
extend sequential pattern mining [23] using the a priori algorithm [24] for finding decision
rules. While sequential pattern mining finds rules of the form {xi = c} for a variable xi
and constant value c, FPM is further able to find rules on the forms {xi 6= c}, {xi < c},
{xi ≤ c}, {xi > c} and {xi ≥ c}. To run FPM, the DM is required to supply a selected
and an unselected set of solutions, and these selections are made in the objective space.
With these selections as input, FPM then generates rules that separate the selected set from
the unselected set in terms of the variables in the decision space. Typically, the DM may
choose the non-dominated solutions as the selected set and the remaining solutions as
the unselected set. Each rule generated by FPM has an associated significance or sig value,
which is the fraction of solutions in the selected set that are covered by the rule, and a
similar unselected significance or unsig for the fraction of solutions in the unselected set. An
interesting and meaningful FPM-rule would have a high sig while having a low unsig, and
thereby be describing only the solutions in the selected set. Rule interactions can also be
considered by combining several FPM-rules and evaluating their combined sig and unsig.
The three individual rules {x1 < c1}, {x2 > c2} and {x3 = c3} can be combined into the
three-level rule interaction {x1 < c1 ∧ x2 > c2 ∧ x3 = c3}.

2.3. Knowledge-Driven Optimization

Knowledge discovery methods can be a powerful tool in decision-making; however,
in this manner, the knowledge is only used by the DMs. The term Knowledge-Driven
Optimization (KDO) is used when knowledge discovered from good or preferred MOOP
solutions is fed back into the optimization algorithm to affect the convergence behaviour, or
used to update the MOOP formulation itself to make the search more efficient. The former
is called online KDO, while the latter refers to offline KDO [10].

A key difference between online and offline KDO is that, since the knowledge used for
the former is discovered during the search process from the best-so-far solutions, it does
not necessarily describe the optimal solutions to the MOOP. On the other hand, with the
assumption that an optimizer converges close to the Pareto-optimal front, offline KDO has
access to “pure” knowledge directly describing the optimal (or preferred) solutions.

2.3.1. Online KDO

Online KDO in a MOEA involves a specific knowledge discovery step to generate
knowledge from previous or current solutions, and is able to use this knowledge to affect
the convergence behaviour and more effectively generate better or preferred solutions.
Online KDO algorithms have been implemented to involve an additional step after the
ordinary evolutionary process that finds knowledge for feeding into the evolutionary
operators for the next generation. An example of an approach like this is shown in [25,26],
where FPM rules are generated to build a distribution over the preferred solutions close to
the reference point in preference-based MOO. This distribution is then sampled in a new
mutation operator for the next generation of solutions. Another approach using FPM rules
is presented in [27], where the rules are used as constraints in the decision space.
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Approaches that train a classifier between good and bad solutions have also been
proposed. In [28], a classifier was trained online to differentiate between dominated
and non-dominated solutions, and in [29], a classifier is trained online to find constraint
violating solutions. In both papers, the classifier was used before the solutions were
evaluated, in order to save time by not evaluating poor solutions. Recently, approaches
that use innovization online have also been proposed [30,31].

2.3.2. Offline KDO

Offline KDO refers to when knowledge about MOOP solutions is generated offline,
after an optimization run has finished and is used to benefit future optimizations of the
same or similar cases, or to give insights that can lead to an updated MOOP formulation.
Only when DMs fully understand the MOOP and its solutions are they able to make an
informed decision.

In [32], SBI was used to find decision rules about solutions close to a user-defined
reference point, and then used as constraints in a second optimization run, to generate more
non-dominated solutions. This method served both as a way to discover more preferred
solutions, but also to validate the method and show that it generates actionable knowledge.
Previously, it has also been found that leveraging domain knowledge can also greatly
benefit the optimization [33,34]. This type of knowledge is not generated from previous
optimizations, but from the experience and intuitions of veteran DMs. In [35], domain
knowledge was used to develop specialized design heuristics to speed up the convergence
of a multi-objective satellite design system problem.

Offline KDO is similar to the concept of transfer learning in the machine learning
literature [36], where a model able to perform a specific task is also able to perform or
jump-start the learning process of another related task. In this paper, we focus on using
offline KDO in order to generate knowledge from an initial scenario that can be applied to
benefit the search in a new scenario. In the next section, we present an illustration of how
offline KDO can be implemented.

3. Illustration of Offline KDO

Knowledge generated from MOOP solutions obtained in one scenario may be ben-
eficial for future scenarios of similar MOOPs. Preferred solutions in the objective space
may have a certain structure in the decision space that can be exploited to ensure a faster
convergence towards the Pareto-optimal front or a greater density of preferred solutions.
In this paper, we consider the knowledge generated through the FPM procedure [22] and
the openly available implementation in the web-based decision support system Mimer
(Mimer: https://assar.his.se/mimer/, accessed on 6 October 2022).

In this section, we want to showcase an example of how simple knowledge about
non-dominated solutions can help to speed up the convergence and generate even more
non-dominated solutions. We show how knowledge in the form of FPM-rules can be
applied as constraints in the decision space to focus the search for non-dominated solutions
in different parts of the Pareto-front.

Illustrative Example

We showcase an example of offline KDO on the RE3-5-4 problem from the RE suite of
real-world (inspired) test-problems [37]. We show how it is possible to use FPM to generate
rules that describe non-dominated solutions, and then use these rules as box-constraints
for the decision variables of the MOOP for a different optimization run. Without first
generating knowledge about an initial solution set, this approach would not be possible.
We also compare this offline approach with simply constraining the decision space to focus
the search without relying on any knowledge.

The RE3-5-4 is a three-objective engineering problem with a mathematical formulation,
based on the vehicle crash-worthiness design problem described in [38]. The objectives
to RE3-5-4 are: ( f0) minimize the weight of the vehicle, ( f1) minimize the acceleration

https://assar.his.se/mimer/
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characteristics in the crash, and ( f2) minimize the toe-board intrusion during the crash,
while the variables (x0–x4) each relate to the thickness of a different support member in the
frontal structure in the vehicle.

Figure 1 shows non-dominated solutions generated from a single run on the RE3-5-4
problem with a budget of 6000 function evaluations, which resulted in 2344 non-dominated
solutions. The structure of the objective space clearly shows three distinct, disconnected
clusters of solutions. A DM would not only be interested in what causes solutions to end
up in these different clusters in terms of the decision space, but also how to focus the search
to further saturate these regions with more trade-off solutions. We can use FPM for each of
the clusters, to find knowledge for the respective solutions in terms of the decision space.
The FPM procedure requires a selected and an unselected set of solutions. We run FPM
three times using Mimer, each time with the non-dominated solutions from one of the
clusters as the selected set and the remaining solutions from the entire solution set as the
unselected set, thus finding rules that describe the non-dominated solutions in each cluster.
The resulting FPM rules are shown in Table 1.

6
8

10

1,660

1,680

0.1

0.2

f0f1

f 2

Cluster 1
Cluster 2
Cluster 3

Figure 1. Non-dominated solutions from RE3-5-4.

Table 1. Rule interactions found by using FPM for each of the clusters shown in Figure 1.

Cluster Rule Interaction Sig Unsig

1 x2 > 2.01∧ x3 < 1.06∧ x0 < 1.08∧ x1 > 2.63 100% 10.91%
2 x2 < 1.03∧ x3 < 1.49∧ x0 < 1.93 100% 22.68%
3 x1 > 2.99∧ x4 > 2.78∧ x2 < 1.02∧ x0 > 1.02∧ x3 < 2.53 100% 5.12%

FPM was run with a minimum significance of 100% in each case, meaning that all
discovered rules completely covered the selected set, and the results still show that the rules
discriminate between the selected and unselected set, given the low unselected significance.
However, the rule interaction found for cluster 2 had an unsig of 22.68%. This means that
the rule interaction also describes 22.68% of the solutions in the unselected set, which
would lead to a lower search pressure towards the non-dominated solutions within this
cluster when used for offline KDO.

With this knowledge about the different clusters in hand, we run additional optimiza-
tions, focusing on each of these clusters separately. We used the rule interactions found
using FPM as bounds to constrain the decision space, and ran an optimization with a total
of 2000 function evaluations for each respective rule interaction. These three solution sets
where then combined, and the non-dominated solutions from these combined runs are
shown in Figure 2. This offline approach resulted in 3070 non-dominated solutions, with
the same total function evaluations (6000) as the original run.
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Figure 2. Non-dominated solutions from RE3-5-4 using offline KDO.

We also compare this offline KDO approach with the crude method of simply con-
straining the objective space to focus the search on the three clusters. The clusters can be
classified by the objective space bounds shown in Table 2. To be fair against the offline
KDO approach, we gave this crude method a budget of 4000 function evaluations for each
cluster since the offline KDO approach was able to utilize knowledge from an initial 6000
solutions. We combined the final solutions sets from each cluster into one. This approach
resulted in 2858 total non-dominated solutions, which are shown in Figure 3.

Table 2. Objective space bounds for each of the clusters as shown in Figure 1.

Cluster Bounds

1 f2 > 0.13
2 f2 < 0.13∧ f0 < 1680
3 f2 < 0.13∧ f0 > 1680

6
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1,660
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0.2

f0f1

f 2

Cluster 1
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Cluster 3

Figure 3. Non-dominated solutions from RE3-5-4 using bounded objective space.

We compare the baseline run with the offline KDO approach and the bounded ob-
jective space approach, by using the hypervolume metric (HV) [39] and by counting the
contribution of each run to the composite front produced by combining the solutions from
the three approaches. The composite front is shown in Figure 4 and the resulting HV and
contribution to the composite front is shown in Table 3. The offline KDO approach resulted
in a slightly greater HV and a greater contribution to the composite front, meaning that
this approach gives superior performance over the other approaches.
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Figure 4. Composite front of the solutions from Figures 1–3.

Table 3. HV score and contribution to composite front of the three approaches.

Approach HV Contribution (n) Contribution (%)

Baseline 1.034324 1134 20.38
Offline KDO 1.037663 2542 45.68

Bounded objective space 1.037533 1889 33.94

Since the offline KDO approach is utilizing knowledge discovered from a previous
run, it is expected to have a higher performance. However, this example demonstrates that
simply adding knowledge as box constraints in the decision space is enough to greatly
improve the performance of an optimization run. This example also highlighted that
applying a similar approach, by constraining the objective space, is not as effective as
this offline KDO approach. This example shows the potential of incorporating offline
knowledge into a MOO pipeline by spending a portion of the function evaluation budget
on generating solutions, then finding knowledge about high performing solutions, and
then utilizing this knowledge offline, for the remaining function evaluation budget, to
reach a faster convergence on more preferred solutions.

4. Real-World RMS Problem

The considered RMS comes from a MPFL setup implemented in a truck manufacturer
in Sweden. The case is based on a pedal car production, where two product families are
manufactured. The MPFL is composed of three reconfigurable WSs able to add, relocate,
or remove operators from them in order to cope with production changes (e.g., volumes
or capacity changes). Both products need to be produced at specific volumes. As the
total production capacity or the production volumes fluctuate, the system configuration,
the process plan, and the components of the systems change to meet the new scenario.
The changes include the number of operators employed, the assignments of operators to
the WSs, the tasks’ assignments to WSs, and the buffers’ capacities. The company was
interested in different scenarios. Initially, they wanted to investigate the system’s capacity
with seven operators for the specific production volumes, 70/30 and 30/70. These different
proportions of production volumes determine the total proportion to be produced of the
two product parts. For example, a proportion of 70/30 refers to the fact that 70% of the
total parts produced should be of part A, and the remaining 30% should be of part B.
Furthermore, the company also wanted to investigate how much capacity could be gained
by adding one and two extra operators to the system, including the information regarding
how to reconfigure the system, how to re-balance the tasks, and a re-assessment of the
capacities of the buffers. Therefore, as the proportion and volume changes, the RMS evolve
accordingly. The assumptions of the RMS are:

• A MPFL consisting of several WSs produce several products under different volumes;
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• The resources of the RMS are subjected to disturbances, such as breakdowns, setup
times, and variability of the tasks;

• Each WS has a number of parallel and identical resources that execute the same
sequence of tasks;

• Each WS has reserved space for adding or reallocating resources;
• There are buffers with variable capacity in-between the WSs;
• The manufacturing tasks of the considered products are subjected to a precedence rela-

tionship and technological constraints that ensure a feasible sequence to be performed
in each WS.

The mathematical problem formulation for the considered MPFL-RMS is detailed
in [40].

In this paper, we consider an SMO problem using Throughput (THP) and Total Buffer
Capacity (TBC) as objectives while striving for the optimal buffer and tasks allocation for
the different scenarios. The total manufacturing time for the production is 336.38 s for part
A and 293.38 s for part B divided into 29 and 24 tasks, respectively. The tasks precedence
relations for both products are shown in Figure 5. Note that each task can be assigned to
only one WS.
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7 9 17 18
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1

2 3 5
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8 16 19 20 22

24

21

23
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Part B

Figure 5. Precedence relation of the tasks for both products.

SMO Approach

The architecture of the SMO approach used can be divided into two major compo-
nents: the simulation engine and the optimization engine, which are tightly integrated.
For the simulation engine, the discrete event simulation software FACTS Analyzer [41]
was employed for modeling the production system and simulating the studied scenarios.
The optimization engine was implemented in the well-known platform MATLAB. The
integration between the simulation and optimization engines allows an accurate represen-
tation of a realistic production line involving many types of model variables regardless of
their nature (e.g., failure, availability, mean time to repair, process time) while avoiding the
simplification found in other production line optimization studies. The process begins in
the optimization engine where custom-made encoding and decoding mechanisms generate
feasible RMS solutions to, later on, be automatically mapped to the simulation engine.
The simulation engine then uses the received combination of input variables to run the
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simulation on the model. The results from the simulation experiments are fed back to the
optimization engine in order to be evaluated by the optimization algorithm in terms of the
designated conflicting objectives. This process in which the optimization engine evaluates
the output of the optimization for instructing a new combination of input parameters to be
simulated is repeated until the results converge to a set of optimal solutions or the stopping
criterion is reached (i.e., a predefined number of generations).

Due to the outstanding performance in handling up to three conflicting objectives
and being known as an effective MOEA when handling complex combinatorial problems,
a customized NSGA-II with specific encoding and decoding mechanisms for RMS was
implemented within the optimization engine to generate feasible solutions [4,12]. There
are three main factors behind the success of NSGA-II, the fast non-dominated sorting
which establishes a dominance relationship between each pair of solutions, the elitism
mechanism to keep the best solutions, and the crowding distance calculation that ensures
that ranks the solutions of each individual front maintaining diversity. The general steps of
the customized NSGA-II for RMS are shown in Algorithm 1.

Algorithm 1 Enhanced SMO-NSGA-II

Require: Generation limit Gmax; Population size; Precedence relation; RMS inputs regard-
ing WSs, buffers, resources and constraints

1: Create a population of priority-based representation vectors
2: Initialize generation counter g
3: while g ≤ Gmax do
4: Using the custom-made encoding and decoding mechanisms, ensure a population of

RMS feasible solutions
5: Use the simulation engine to evaluate the fitness functions for all solutions
6: Rank the solutions using fast non-dominated sorting
7: Calculate the crowding distance of each solution in each individual front
8: Select parents for crossover using tournament selection
9: Using crossover and mutation operators, generate a new set of offspring

10: Using elitist replacement mechanism, preserve best individuals
11: Increment g
12: end while
13: return The Pareto-optimal solutions for RMS

Due to the differences in how the considered RMS is encoded from a standard MOOP
solved by NSGA-II, the variables for the number of WSs, and task- and buffer assignment
are encoded as random keys in the enhanced algorithm, and on Line 4, they are decoded as
feasible input for the simulation model. On Line 5, these decoded solutions are sent to and
evaluated by the simulation engine, and the objective values are sent back to the algorithm.
A complete description of the enhanced algorithm is provided in [40].

5. Experimental Results

In this section, we present the results from the initial optimizations, the knowledge
we were able to discover from the solutions to these optimizations, and new results from
an offline KDO study using this discovered knowledge. We investigate the improvement
in convergence towards the Pareto-optimal front by applying FPM rules as constraints in
the decision space. All optimizations refer to the real-world RMS problem described in
Section 4. All knowledge discovery was performed using the openly available web-based
decision-support system Mimer, enabling the knowledge discovery framework described
in [42].

5.1. Optimization Results

We ran six optimizations initially, one scenario for each pair of number of operators (7,
8, 9) and proportion (70/30, 30/70). Each optimization run had a budget of 500 generations
and a population size of 50. The resulting non-dominated solutions from these runs are
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shown in terms of their task allocation in Figure 6, where each row represents one solution
and each column represents one task for either product A or B, and the color of the cell
shows the WS it was assigned to. In total, 72 non-dominated solutions were found in these
scenarios altogether.
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Figure 6. Task allocations from the non-dominated solutions from all scenarios in the initial optimizations.

From the figure, it is clear that most of the non-dominated solutions in each scenario
share common task allocations. However, all solutions shown in Figure 6 are distinct and
have varying buffer allocations which are not shown here.

The number of non-dominated solutions from each scenario is shown in Table 4, where
we can see that the number of non-dominated solutions in each scenario varies from 10–19,
except for the scenario of nine operators with a proportion of 70/30 where only one non-
dominated solution was found. The objective space of the non-dominated solutions from
all scenarios is also shown in Figure 7, where it is very clear how increasing the number of
operators, as expected, has a definite impact on the throughput.

Table 4. Number of non-dominated solutions found for each scenario in the initial optimizations.

NO Proportion Solutions (n)

7 30/70 13
7 70/30 19
8 30/70 10
8 70/30 18
9 30/70 11
9 70/30 1

5.2. Knowledge Discovery

Due to the ability of the system to both increase and decrease the number of operators
and to change the proportion between the two parts, in this paper, we are interested in
finding generalized knowledge about each of the different number of operators and the
different proportions. In other words, if we can generate knowledge from the previous
scenarios with seven operators that can be generalized to improve the optimization process
for future scenarios with seven operators but new proportions, and if we can generate
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knowledge from the scenarios with a proportion of 30/70 and use it in future scenarios
with different numbers of operators, and so on for each group of scenarios.
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9 Operators

70/30
30/70

Figure 7. Objective space of the non-dominated solutions from all scenarios in the initial optimizations.

We generate knowledge in the form of decision rules using the FPM procedure. From
the initial results, we are interested in five groups of scenarios to generate knowledge
from. The scenarios wherein the numbers of operators equal 7, 8, and 9, and where the
proportions equal 30/70 and 70/30. In order to run FPM, we merged the solutions from
all optimization scenarios into one combined dataset so that the different scenarios can
take all cases into account. For each group, we ran FPM with the non-dominated solutions
from the scenarios in the group as the selected set, and all remaining solutions (dominated
and non-dominated) from all scenarios as the unselected set. In this way, the generated
knowledge is general between scenarios in the MOOP.

For this knowledge discovery, we only focus on the task allocation. Even so, the num-
ber of decision variables is high (53) which affects the run-time of the FPM procedure. For
this reason, the maximum level of rule interactions was limited to 4, i.e., only interactions of
four FPM-rules are considered. As we can see in Figure 6, many non-dominated solutions
in one scenario share the same task allocations for many tasks. Therefore, FPM is expected
to find many rules with high significance. However, it is the rules that have a high signifi-
cance while simultaneously having a low unselected significance, which are descriptive,
since these rules more accurately distinguish between the selected and unselected sets
of solutions.

Table 5 shows the FPM rules discovered for each scenario, indicating the tasks that
distinguish the non-dominated solutions in the groups of scenarios more from the other
solutions. For all groups, the parameter for the minimum required significance was kept
constant at 90% when running the FPM procedure. For the scenarios with seven operators,
a rule interaction was found with a significance of 100% and an unselected significance of
10.13%, meaning that all non-dominated solutions in the scenarios support the rules, while
only 10.13% of the solutions in the unselected set support the rules. The rule interaction
with the highest ratio between significance and unselected significance was found in the
scenarios with nine operators, perhaps indicating that the non-dominated solutions in these
scenarios are easier to distinguish from the rest. The scenarios with the lowest ratio are
where the proportion is 30/70, perhaps indicating that the non-dominated solutions in
these scenarios are more difficult to distinguish.
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Table 5. Rule interactions found by using FPM for each of the scenarios from the initial optimization.

Group Rule Interaction Sig UnsigNO Proportion

7 A10 = 2∧ B4 6= 3∧ B5 = 2∧ B23 = 1 100% 10.13%
8 A17 = 2∧ A27 6= 3∧ B7 = 1∧ B16 = 2 96.43% 12.89%
9 A28 = 1∧ B7 = 1∧ B8 = 3∧ B9 6= 1 91.67% 4.89%

30/70 A14 = 3∧ B3 = 1∧ B10 6= 1∧ B23 6= 3 97.06% 29.23%
70/30 A14 = 2∧ A17 = 2∧ B4 6= 3∧ B11 6= 2 92.11% 10.89%

5.3. Offline Knowledge-Driven Optimization

The rules for the different groups were applied to ten new scenarios, using the propor-
tions of 40/60 and 60/40 between parts A and B for 7, 8, and 9 operators, and using 6 and
10 operators with the proportions of 30/70 and 70/30. We compare standard optimization
runs for the new scenarios versus runs using the offline KDO approach of applying the rules
presented in Table 5 as constraints in the decision space. Due to the high computational
cost involved in the evaluation of each solution, each scenario was given an evaluation
budget of 2500 solutions (50 generations with a population size of 50).

We compare the rate of convergence of the standard MOO approach and the offline
KDO approach in each separate scenario by plotting the Hypervolume (HV) [39] contribu-
tion at each generation. Figure 8 shows the convergence plots for all scenarios. We also
consider the Area Under the Curve (AUC) of the convergence plots as a quantitative score
for the convergence rate. The AUC scores for all scenarios are shown in Table 6.
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Figure 8. Convergence plots of the scenarios with 7 operators (top left), 8 operators (top center),
9 operators (top right), 6 operators (lower left), and 10 operators (lower right).

The results show that the offline KDO approach leads to faster convergence in all
scenarios with operators equal to 7, 8, and 9 and the new proportions of 40/60 and 60/40
compared with the standard approach, and most of the scenarios using the proportions
of 30/70 and 70/30 and the new numbers of operators of 6 and 10. In fact, only in the
scenario with 10 operators and a proportion of 30/70 did the offline KDO approach not lead
to faster convergence. However, the convergence plots for six operators are very similar
for both approaches. This indicates that the offline KDO approach leads to an improved
convergence rate for the current RMS MOOP when considering new proportions for the
initial assignment of 7, 8, or 9 operators, but may be slightly less fruitful for scenarios with
new numbers of operators and the original proportions.
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Table 6. Area Under the Curve (AUC) of the convergence plots shown in Figure 8 for the different
cases of Number of Operators (NO), proportion, and optimization approach.

NO Proportion Standard Offline KDO

7 40/60 5.649 × 101 5.804× 101

60/40 5.688 × 101 5.802× 101

8 40/60 5.650 × 101 5.836× 101

60/40 5.644 × 101 5.883× 101

9 40/60 5.580 × 101 5.776× 101

60/40 5.507 × 101 5.772× 101

6 30/70 5.759 × 101 5.781× 101

70/30 5.617 × 101 5.750× 101

10 30/70 5.729× 101 5.474 × 101

70/30 5.727 × 101 5.786× 101

Bold values indicate higher AUC scores.

6. Discussion

The initial results provided solutions found for six different scenarios from the same
real-world RMS MOOP involving task allocation. The approach presented in this paper
demonstrates the use of a knowledge discovery method to generate decision rules which
are applied in future, different scenarios to help the optimization algorithm reach faster
convergence on non-dominated solutions. We grouped scenarios where the numbers
of operators were the same and proportions were different, in order to find if there is
generalized knowledge that can be applied across scenarios with the same number of
operators as well as the same for scenarios with the same proportions and different numbers
of operators.

Although the initial optimization runs had a very high evaluation budget, they did
not produce many non-dominated solutions in each scenario. In the scenario with nine
operators and a proportion of 70/30, only a single non-dominated solution was found.
This means that the optimization did not find a diverse set of solutions for this scenario,
which might in turn means that the knowledge generated is not general enough. However,
despite this, as shown in Figure 8 and Table 6, the offline KDO approach did result in faster
convergence compared to the standard approach for both scenarios with nine operators.

To generate knowledge about the different scenarios, we used Flexible Pattern Mining
(FPM) to find decision rules. However, the number of aspects in terms of decision variables
considered by this study increases the complexity of the SMO and its knowledge discovery
post-optimal analysis exponentially. For this reason, the number of rule interactions
considered in each scenario was limited to four. Nonetheless, the rules extracted reveal
knowledge regarding which tasks are more important and therefore need to be prioritized
for finding competitive solutions with respect to different criteria. However, finding more
complex rule interactions could potentially lead to more precise knowledge which might
be of further benefit.

FPM is expected to identify the rules that are the most interesting to the decision-maker.
Considering the rules discovered by FPM and shown in Table 5, we can see that, out of all
groups of scenarios, some tasks are repeated in the rule interactions, namely A14, A17, B4,
B7 and B23. Indicating that these tasks have higher importance for more general scenarios,
however, since no rules are common in all scenario groups, likely no rule describes a
completely general scenario for the considered RMS MOOP. Only half of these tasks (A17,
B4, B7) have the same rule in the different scenario groups.

In the presented offline KDO approach, we applied the discovered rule as hard
constraints in the decision space by limiting the values that the corresponding variables
could take on. Although this approach did result in faster convergence in most cases, it
does not guarantee that the solutions found are Pareto-optimal since it limits the search
space. Secondly, the significance of the rule interactions used might also impact the quality
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of the final non-dominated solutions found. This point is driven further by the possibility
that the solutions found in the initial optimization runs did not convergence close to the
true Pareto-optimal front. However, in the case of SMO where each evaluation can take a
very long time, decision-makers are more interested in finding good enough solutions fast
rather than finding the true Pareto-optimal solutions.

We used knowledge found from six initial scenarios to drive the search for faster
convergence in 10 new scenarios. The results show a bigger increase in the convergence
rate in the scenarios with the initial numbers of operators and different proportions than
the scenarios with the initial proportions and different numbers of operators, when using
the offline KDO approach. This indicates that, for the considered MOOP, more general
knowledge may be derived for the scenarios grouped by considering the different numbers
of operators. The rule interactions also confirm this for the scenarios grouped by the
proportion of 30/70, where the unselected significance is high compared to the rest of the
scenario groups. This implies that it was more difficult to find rules that distinguish this
group. One possible explanation for why the offline KDO approach did not lead to more of
an improvement in a convergence rate for these scenarios is that no simple rule interaction
is able to capture the distinguishing features regarding the proportions in the initial results.
Tasks that are more important for changes in the proportion may be overshadowed by tasks
more important for differences in the number of operators.

In this paper, we only considered the variables related for task allocation in the
knowledge discovery and offline KDO approach. However, it would also be interesting
to investigate the possible convergence rate improvement by generating knowledge also
about the operators’ assignments to WSs and the capacities of the inter-station buffers.

7. Conclusions

In this paper, we propose the use of an offline KDO approach for increased convergence
rates in a real-world reconfigurable manufacturing system simulation-based multi-objective
optimization problem. We first showcase an offline KDO approach for populating non-
dominated solutions in the real-world inspired test problem RE3-5-4, by dividing found
solutions into different clusters and finding specific knowledge for each cluster. This
knowledge was then used to constrain the decision space to guide the optimization to
converge on more non-dominated solutions. This approach was also shown to outperform a
crude approach of constraining the objective space. We use a similar offline KDO approach
on the real-world RMS problem.

RMSs are considered a key enabler for manufacturing systems to produce the required
capacity and volume when needed. However, prior research in real-scale industrial appli-
cations is sporadic and seemingly ignores the importance of post-optimal analysis on the
combined decision-objective space for supporting decision-making about the requirements
of the future system. The use of offline KDO on SMO data sets of RMS is a novel area
that can support the RMS research community, and accordingly, this paper illustrates an
example of how it can be achieved.

In this paper, we considered knowledge discovery through the FPM procedure to
generate if-then decision rules about the decision variables in relation to selections made
in the objective space of the solutions. We considered variables related to task assignment
in workstations. The results show how the offline KDO approach was able to lead the
optimization to faster convergence in the majority of tested scenarios of new proportions
and numbers of operators; however, for the considered MOOP, the offline KDO approach
leads to a greater improvement in scenarios based on new proportions.

In additional to offline KDO, rules discovered through the FPM procedure can also be
used to inform the decision-maker about various aspects about the MOOP and the solutions.
Actionable insights from a post-optimal analysis using FPM for knowledge discovery may
lead to improvements in the MOOP formulation and be a tool in decision-making.

For the future work, we would like to further investigate how the qualities of the
generated rules correlate with the convergence when using offline KDO on more real-world
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applications. In this study, only knowledge in the form of FPM-rules was considered for
offline KDO. Future work should also be focused on finding other appropriate knowledge
representations for RMS applications.
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In this dissertation, Carlos explores the benefits of employing 

simulation-based multi-objective optimization (SMO) toward 
reconfigurable manufacturing systems (RMSs). In today ’s 

global and aggressive market system, for manufacturing compa-

nies to remain competitive, they must produce high-quality 
products that can be made at a low cost and respond efficiently 

to customers’ predictable and unpredictable needs and demand 

variations. To cope with such a challenge, production systems ’ 
setup needs to shift toward RMSs, making production capable 

of rapidly and economically changing its functionality and ca-

pacity to cope with uncertainties such as unforeseen market var-
iations and product changes. This dissertation also investigated 

how to enhance the benefits of applying SMO to RMSs by com-

bining it with knowledge discovery and knowledge-driven opti-

mization (KDO). 
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