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Abstract 

The use of mice as a model organism in biomedical research is widespread due to their similarities 

with humans in anatomy and physiology. However, the genetic isolation of inbred strains from 

natural populations raises concerns about the reliability of these models. Studies have shown 

differences in immune responses between wild and laboratory mice, and the use of exploratory 

tools for large datasets can help to analyze and interpret these differences. The aim statistical 

analysis of dataset can provide insights into the differences between variables and individuals and 

guide further investigations. The results showed that LDA provided clear separation between the 

different groups, and successfully differentiated between stimulation types and mouse strains, 

with distinct clustering of data points. The KNN algorithm performed best for smaller values of K. 

However, the selected gender characteristic did not possess strong discriminatory power in 

separation and further investigation into alternative features or methodologies may be necessary. 

In conclusion, the aim of providing comparative immunological analysis of wild and laboratory 

mice types is achieved. This study underscores the importance of careful statistical analysis, 

acknowledges the limitations of imputation methods, and highlights the potential of LDA and KNN 

algorithms in analyzing immune response data. As well, highlighting the need for improved 

models that are able to capture the complexities of immune responses and their relevance to 

human immunology.   
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Introduction 
Biomedical researchers have a long-lasting history of making use of Rodentia order to serve as an 

experimental animal model. Namely, it applies to mice, Mus musculus domesticus (Shek et al., 

2015). As an example of widespread application of mice, approximately 111.5 million rats and 

mice were used in 2017 in the United States alone. Moreover, these numbers comprise around 

99.3% of all laboratorian mammals (Carbone, 2021). Such extensive usability of mice occurs due 

to their anatomical and physiological similarities with human organism (Bryda, 2013). Therefore, 

comparative medicine is utilizing this aspect of resemblance, in order to model the human 

organism. However, Mus musculus domesticus species, which are used for scientific purpose, do 

not entirely resemble the wild populations of its own subspecies. It occurred due to the genetic 

isolation through generations of inbred strains (Viney et al., 2015). This leads to the raised 

concern about mice being too detached from natural conditions, hence, not a reliable reflection of 

the physiology of free-living mammals such as humans (Beura et al., 2016). For example, Rosshart 

et al. (2019) suggests incorporation of natural-world gut microbiota together with laboratory 

mice microbiota for better resembling human immunological response. To examine the difference 

between two types of the Mus musculus domesticus, one study provided a comprehensive 

comparison in serological, cellular and functional immune parameters (Abolins et al., 2017). It 

resulted in a variety of observations. For instance, wild mice appear to maintain a constant state 

of multi-tasking in their immune system while laboratory mice, exposed to a limited range of 

antigens, are able to direct a higher focus in their immune response.  

Analyzing results is an essential aspect of any study, particularly in experiments where data is 

collected. To gain a deeper understanding of the implications of these observations, it's crucial to 

interpret the findings. This is where exploratory tools for large, high-throughput datasets come in 

handy. The purpose of utilizing these tools is to determine the statistical significance of any 

observed differences between variables and individuals. These tests can help distinguish between 

differences that are due to chance and those that are biologically meaningful. The results of 

statistical tests can then guide further investigation and help support or disprove hypotheses in 

comparative studies. The first possible manipulation with dataset is handling missing values. The 

potential outcomes include deletion, domain knowledge and imputation. The first method refers 

to the simplest approach by removing any observations that contain absence of value and 

meaning. Second process suggests filling the absent datapoints based on the prior knowledge and 

information from available resources. Third technique implies replacing existing missing points 

with calculated substitute values (Tlamelo et al., 2021; Kang, 2013).  

The usefulness of imputation approach, as described Jakobsen (2017), is that it can help to 

maintain sample size and statistical power, and it can also help to reduce bias in estimates. In 

other words, in scientific research, missing data are prevalent, and their inappropriate handling 

can lead to biased results and reduced statistical power. There are several types of imputation 

methods that can be utilized depending on the characteristics of the dataset and the research 

question being investigated. One common imputation method is mean imputation, where missing 

values are replaced with the mean of the observed values for that variable (Jakobsen, 2017). This 

technique belongs to the single imputation type. As well as other techniques such as median 

imputation, cold/hot deck imputation (Little & Rubin, 2002). However, it leads to several 

significant disadvantages such as biased estimation and disregarding of variance. Therefore, the 

multiple imputation was proposed (Rubin, 1987). In order to account for missing data, multiple 

imputation generates several imputed datasets where each missing value has multiple estimates. 

These estimates are based on different possible proposed assumptions about the missing data, 

resulting in a different set of imputed values for each dataset. One such method is Bayesian 

hierarchical modeling, which uses a Bayesian framework to model the relationship between 
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missing data and observed data. As an example, it was used for analysis of Californian 

groundwater levels in terms of spatial and temporal status (Manago et al., 2018). The authors 

suggest that relying solely on observed data to create these maps can lead to artifacts in 

groundwater levels predictions. Introduction of multiple imputation, in this case the Bayesian 

Hierarchical Model, results in much smoother transitions and more realistic spatial patterns of 

groundwater levels. Hence, creating a more reliable and accurate approach compared to simply 

removing the entire records, which contain missing data. One of the most notable imputation 

techniques is MICE, which stands for Multivariate Imputation by Chained Equations. The basic 

idea behind MICE is to impute missing values in a dataset by using a series of regression models 

(van Buuren & Groothuis-Oudshoorn, 2011). Firstly, introduced in 2000 in form of the library of 

object-oriented programming language S (van Buuren & Oudshoorn, 2000). The further MICE 

development extended the imputation capabilities and was rewritten in R programming language. 

The "chained equations" in MICE refer to the iterative nature of the imputation process. In each 

iteration, the imputed values from the previous iteration are used as observed values, along with 

the other complete variables, to estimate the missing values in the current variable (van Buuren 

& Groothuis-Oudshoorn, 2011). 

The dataset, completed with the help of imputation or domain knowledge, is expected to undergo 

the statistical tests and analysis in order to further understand the implications of these 

observations. It is important to interpret the results. These tests would help to determine if the 

differences are due to chance or if they are genuine and biologically meaningful. The results of the 

statistical tests can then inform further investigation and help to support or disprove hypothesis 

(Kang, 2013). Multivariate statistics is a branch of statistics that deals with the analysis of data 

that involves multiple variables. It involves techniques and methods that enable the exploration, 

analysis, and interpretation of complex relationships among multiple variables simultaneously. In 
biological research, multivariate statistical analysis plays a vital role in understanding complex 

biological phenomena. Biological datasets often involve multiple variables, such as gene 

expression levels, physiological measurements, and environmental factors. It is a widely accepted 

and used tool, as an example, it was used to explore the daily statistics of countries impacted by 

the COVID-19 pandemic (Ramadan et al., 2020). The study was aimed at favoring multivariate 

analysis, instead of univariate method. Hence, it allowed to compare, contrast and look at whole 

situations in different countries. The used datasets, as in this example, are typically high-

dimensional and traditional statistical methods may not be adequate or too tedious to extract 

meaningful information from them. Multivariate statistical analysis provides a powerful set of 

tools to deal with such complex datasets and allows to identify plausible trends in the provided 

data. One common approach to multivariate statistical analysis is principal component analysis 

(PCA). PCA is used to reduce the complexity of a dataset with multiple variables. Instead of 

analyzing all the original variables, PCA combines them into a smaller set of variables called 

principal components (PCs). These PCs capture the majority of the variance in the original data, 

allowing researchers to better understand the key features and patterns within the dataset 

(Greenacre et al., 2022). PCA is particularly useful for datasets with high dimensionality, where 

traditional statistical methods may struggle to identify meaningful relationships between 

variables. By reducing the number of variables, PCA simplifies the data and makes it easier to 

visualize and interpret. Ideally, without compromising the original information in the large 

dataset.  

The usage of statistical techniques allows analysis of the cytokine and chemokine concentrations. 

Hence, it will provide insights into potential differences in immune responses, which could be 

related to the observed differences in gut microbiota composition. This difference has already 

been observed and reported in relevant studies. For example, Boysen et al. (2011) conducted a 

comparison study of natural killer (NK) cells in laboratory and wild mice. While the relative 
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number of NK cells in blood, spleen, and mesenteric lymph nodes were similar between the two 

groups; the proportions of natural killer cells were significantly greater in peripheral lymph nodes 

of wild mice. As well as the expression of activation markers (CD69, KLRG1 and Gzmb) was found 

to be higher in splenic NK cells of feral mice compared to lab mice. This suggests that feral mouse 

NK cells show a unique phenotype, resembling a prolonged upregulation following activation of 

NK cells in both mice and humans. Another notable observation is the greater expression of the 

NKp46 receptor in feral mice. Additionally, the feral mice had a skewed distribution of NK cell 

subsets towards a CD27+/CD11b- phenotype, which has been regarded as immature. The study 

suggests that frequent microbial activation due to the feral mice's lifestyle may explain this 

skewed distribution. 

Another important study that examined immunological differences in gut microbiota in two 

distinct mice groups was Beura et al. (2016). The authors aimed at measuring memory CD8 T cell 

distribution and differentiation between laboratory mouse, human organism and wild type 

mouse. The results showed that feral mice were enriched in antigen-experienced clusters of 

differentiation 8 (CD8) T cells and had higher differentiation markers compared to inbred specific 

pathogen free (SPF) laboratory mice. However, there were no differences in cell size, proliferation, 

and measures of recent antigen exposure between both mouse cohorts. The study also found that 

the density of CD8 T cells in pet store mice was up to 50 times higher than that observed in SPF 

laboratory mice. On the other hand, the T helper cells, CD4, were studied by Devalapalli et al. 

(2006). It aimed at comparing the levels of T helper cells 1 and T helper cells 2 associated 

antibodies in two types of Mus Musculus: wild mouse and laboratory mouse, namely in rodents. 

The levels of immunoglobulin (IgM, IgG, and IgE) in the serum of wild rats were higher compared 

to laboratory rats of similar weight. Wild rats also had a higher utilization of IgG1 compared to 

laboratory rats. These differences in subclass utilization suggest that wild rats and laboratory rats 
have different cytokine environments associated with their humoral responses.  Another possible 

explanation lies in the dissimilarity with regard to antigens exposure.  

The biological meaningfulness of the provided analysis lies in highlighting the impact of genetic 

isolation and inbreeding in laboratory mice, which may result in differences in their immune 

system compared to wild mice. The extensive use of laboratory mice in biomedical research, given 

their anatomical and physiological similarities to humans, assumes that they accurately reflect the 

immune responses of free-living mammals. However, it can be assumed, based on results, that 

laboratory mice exposed to a limited range of antigens direct a higher focus in their immune 

response, while wild mice maintain a constant state of multi-tasking in their immune system 

(Radaelli et al., 2018). This finding raises concerns about the reliability of laboratory mice as a 

reflection of the immune physiology in natural conditions, including that of humans. Another 

implication, such analysis would emphasize the role of gut microbiota composition in shaping 

immune responses. Previous research has shown that there are differences in gut microbiota 

between laboratory and wild mice. Incorporating natural-world gut microbiota into laboratory 

mice has been suggested to better resemble human immunological responses. By exploring the 

statistical significance of correlations between cytokines or chemokines, the insights can be 

gained into how specific microbial compositions may influence immune responses in different 

mouse populations. This knowledge can then be extrapolated to understand similar relationships 

in humans, aiding in the development of targeted therapies and interventions. 

This study is based on the dataset provided by the research of Abolins et al (2017) “The 

comparative immunology of wild and laboratory mice, Mus musculus domesticus”.  The research 

compares the immune systems of wild mice with those of laboratory mice. Authors have found 

that the cellular immune systems of wild mice are in a high activated state, likely due to high levels 

of pathogen exposure. Additionally, wild mice have a population of highly activated myeloid cells 
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compared to the laboratorian counterparts. However, the cytokine responses of wild mice to 

pathogen associated ligands appears to be significantly lower. The authors summarized that the 

immune system variations in wild and laboratory mice may alter the reaction to a specific antigen, 

either quantitatively or qualitatively. Therefore, caution must be exercised when extrapolating 

results obtained from laboratory mice to free-living mice and human organism in particular. 

Aim 
This study aims to provide a comprehensive analysis of cytokine and chemokine concentrations 

in wild and laboratory mice, and to contribute to the understanding of the immune system and its 

responses to various stimuli. As well as to examine the different methods of handling missing data 

and explore the use of multivariate statistical analysis in biological research.  

This study pursues the following objectives: Primarily, pre-process the dataset using the different 

methods to create viable source of information.  Secondly, performing the multivariate statistical 

analysis on the dataset. The final objective is to comparatively evaluate and visualize the produced 

results. 
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Materials and methods 

Data 
As mentioned in introduction, this study is based on the dataset provided in the supplementary 

data 4 of the article "The comparative immunology of wild and laboratory mice, Mus musculus 

domesticus" of Abolins et al. (2017). The dataset consists of the cytokine and chemokine 

concentrations in pg/mL for wild and laboratory mice, along with information on the mouse ID, 

site of origin, and type of stimulation.  According to the authors, the specified pathogen-free 

C57BL/6 mice were obtained from different laboratories and were housed in groups of five per 

cage, overall resulting 460 mice individuals. The wild mice were live trapped at various sites in 

the southern part of United Kingdom and were transferred to a conventional animal house for two 

to seven days post-capture. The mice were killed, and their spleens and blood were collected. The 

intestines and ectoparasite fauna of the wild mice were also examined. Genomic DNA was 

extracted from tail tips and genotyping was conducted on 167 wild mice and two C57BL/6 mice 

using the GoldenGate Mouse MD mouse chip. All of the provided results are derived with usage of 

R code and SPSS software. The used R scripts and code are found in the appendix with the 

corresponding file name. 

Pre-processing 
The original dataset contains two types of indefinite values. The first is out of range (OOR) values, 
denoted by “OOR <”. This means values that are fairly below the acceptable range or cannot be 

caught by the means of measurements. In this study, one of the implemented methods to handle 

values was proposed by the authors. It is described as substituting out of range values with the 

constant of 0.001 pg/mL concentration value. The reason behind is the purposes of quantitative 

analyses. Another implemented pre-processing method refers to the imputation of uncertain 

values. In this study, the imputation method used was the Multiple Imputation by Chained 

Equations (MICE) algorithm, implemented using the Mice package in R. According code for the 

heatmap visualization and imputation is found in supplementary appendix. The second type of 

indefinite values, which are estimated to be out of known standard curve limits, are marked with 

an asterisk (*). The implemented method of handling such values is utilize the data values without 

any further adjustment or modifications. The difference between two methods is recorded and 

compared with one sample t-test, which code is found in the appendix, the imputation 

comparison, one sample t-test file. The results of this t-test are recorded and reflected in the table 

1 as well as results of paired t-test. With a further analysis the comparison between two different 

missing values handling approaches, the paired t-test displayed the statistical significance of the 

selected stimulation. Namely, interleukin 1β pair from both approaches. Prior to the t-tests, the 

datasets underwent certain assumptions that needed to be checked. The key considered 

assumptions tests included independence, normality distribution and homogeneity of variance 

for the particular cyto or chemokine. The assumptions were addressed in the form of the R script. 

The paired t-test code itself in R is found as well in the appendix, the imputation comparison, 

paired t-test file. 

Statistical analysis 
The performed statistical analysis covered several multivariate tests. Primarily, the cytokines and 

chemokines concentrations were analyzed using principal component analysis (PCA) and linear 

discriminant analysis (LDA) in order to compare the differences between the groups of interest. 

The established groups included comparison between wild and laboratory mice stains, types of 

stimulations, male and female gender group. The results are reflected in terms of grouped scatter 

plot. R (version 4.2.2.) was used to compute the mentioned models. The first two linear 

discriminant scores were captured with the usage of R code and reflected on the table 2. 

Additionally, table 3 was created to display the group means of all cytokines and chemokines for 
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the seven different types of stimulation. Another used software, IBM SPSS statistics (version 26). 

Linear discriminant scores are derived from “Classify, Discriminant” analysis tool in SPSS. 

Predicted probabilities are produced and saved with usage of SPSS “Regression, Binary Logistic” 

analysis tool. The additional method, K-nearest neighbors (KNN) algorithm, was adopted with 

usage of respective knn() function from “class” package. The performance of the model is 

evaluated using the accuracy metric, which is the proportion of correctly classified instances over 

the total number of instances. 

Data visualization 
Visualization methods of performed statistical models were introduced in the respective code file 

for each of statistical analysis. Primarily, in models the ggplot() function initialized each of plots 

with addition of two sets of points from two different data frames. The aes() function was used to 

map the variables to aesthetics. The generated plots were saved and exported as a vector images. 

The code does not reflect the method of saving the graph plots, due to the built-in functions of 

Rstudio software (version 2023.03.0 Build 386), which allows manual export of images. The data 

visualization in SPSS are produced with the internal chart builder tool. The spreading of the data 

points in the predicted probabilities scatter plots is due to the manually added “.jitter” to the 

“point” in the “ELEMENT:” section from the chart builder “Paste” window. 
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Results 
The implemented method aimed to (i) preprocess and analyze the cytokine and chemokine 

concentration data from the dataset provided in the supplementary data 4 of the article "The 

comparative immunology of wild and laboratory mice, Mus musculus domesticus" of Abolins et 

al. (2017), and (ii) visualize and validate the results obtained from the statistical analysis. The 

results of each performed analysis are reflected in this chapter. 

Pre-processing 
The results for imputation of missing values for retrieved original dataset are reflected in the 

figure 1a and 1b. The continued process of Multiple Imputation by Chained Equations algorithm 

performed iterative series until the maximum plausible concurrence was achieved. The produced 

imputed values in the dataset are strikingly different from the values proposed by the authors. 

Leading to the deviations between insights of the relationship between cytokines and chemokines. 

While the overall trend in positive and negative correlations is similar, the remarkable 

dissimilarities can be observed in many positions: 

• Correlation between Interleukin 1 alpha and Interleukin 2 acquires the positive tendency 

in the imputed data matrix, while the originally proposed dataset suggests the negative 

correlation for this pair of cytokines. 

• Identified the pairs of variables that have the highest absolute difference in correlation 

coefficients between the imputed and original datasets. The top pair of variables is MIP.2α 

and IL.2. 

• Another difference refers to the hierarchical clustering trees. The dendrogram suggests 

several significant distinctions for the particular cytokines and chemokines. Although, the 

provided classification remains similar between both matrix. The dissimilarities are 

heavily reflected on the protein Interleukin 18 (IL. 18). While the imputed correlation 

matrix suggests the clustering paired with the Interleukin 9 (IL. 9), the original correlation 

matrix implies hierarchy paired with the macrophage colony-stimulating factor (MCSF). 

Heatmap produced the clear clusters shared between both datasets. However, these clusters are 

represented by different cytokines and chemokines concentration values. For instance, one 

central cluster of negative correlation consists of 9 cyto- and chemokines in imputed matrix is also 

appear in the original matrix. 

The paired t-test was performed after the passed assumption with regard to independence, 

normality and homogeneity, on the cytokine Interleukin 1 beta (IL.1β) column in both files and 

the results are reflected in the terminal output. The output indicates that the paired t-test on the 

cytokine IL.1β  column produced a t-value of -11.005 with 261 degrees of freedom and a p-value 

of less than 2.2e-16. The results for both one-sample t-test and paired t-test are reflected in the 

table 1. The p-value is much smaller than the typical threshold of 0.05, indicating strong evidence 

against the null hypothesis that there is no difference between the two groups.  

Based on the provided findings the null hypothesis is rejected and it can be concluded that the 

imputed file exhibits statistical superiority over the original file for this particular cytokine. The 

p-value served as an indicator of the likelihood of observing such extreme results if there were no 

real difference between the two groups. In this particular case, the exceedingly small p-value 

suggests that the observed difference in IL.1β is highly unlikely to be a result of chance. The 95 

percent confidence interval for the true mean difference between the two groups is -18.44747 to 

-12.84809, which does not contain zero. This further supports the conclusion that the imputed file 

is better than the original file for this column. The sample mean difference is -15.64778, indicating 

that the imputed file has a higher mean value than the original file for this column. 
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Figure 1a. The results of producing heatmap correlation based on the original provided values for the 

missing data points. Figure 1b. The results of producing heatmap correlation based on the MICE imputation 

values for the missing data points. Both heatmaps correlations are retrieved by RStudio integrated 

development environment. 

 t-value Degree of freedom p-value Confidence 
Intervals 

One-Sample t-
test 

-11.05 261 2.2E-16 -18.44747  
-12.84809 

Paired t-test 2.6469  31 0.01265 3.082614  
23.785200 

Table 1. The computed results of one sample t-test and paired t-test for the IL.1β cytokine concentration in 

imputed dataset and originally proposed dataset. The results are produced by the R code. 

Statistical analysis 

Linear Discriminant Analysis 

LDA produced linear discriminant functions that can be used to classify new observations into one 

of the pre-defined groups. Each discriminant function provided a weighted combination of the 

cytokine concentrations that best separate the groups. As the defined groups were: wild type and 

laboratory type of mice, male and female mice gender, type of in vitro stimulation.  

The most notable result was the linear discriminant analysis of stimuli types: CD3CD28, CPG, 

FLAG, LPS, PG, PIC, RPMI. The graph visualization is reflected on the figure 2, which is represented 

by scatter plot in two dimensions. The LDA was performed on two subsets of the data, and the 

prior probabilities of the groups are displayed for each subset in the output. The LDA results 

indicate that there are differences in the cytokine and chemokine responses among the 

stimulation groups. The x-axis represents the first LDA score (LD1), and the y-axis represents the 

second LDA score (LD2). The plot shows that there is a clear separation for the two particular 
groups based on their LDA scores. Namely, visually, it appears that the stimulation group "PG" is 
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located on the positive x and y axis side of the graph, while the "CPG" group is spread out in both 

the positive and negative x axis quadrants on the negative y axis. The remaining stimulation 

groups ("CD3C28", "FLAG", "LPS", "PIC", "RPMI") are clustered on negative x axis, with some 

variation in their vertical position. 

 

Figure 2. Results of the performed linear discriminant analysis on the seven different stimuli. The graph 

plot is visualized by two linear discriminant scores. Each of the data categories is color coded. The graphical 

illustration is retrieved by RStudio integrated development environment. 

Additionally, Linear Discriminant Analysis provided value of Linear Discriminant scores. The 

result values are reflected in the table 2. The LDA scores output provides information on the group 

means for each cytokine and chemokine response, allowing for interpretation of the differences 

observed in the scatter plot. For example, the group mean for the cytokine response IL-1α is 

highest for the peptidoglycan group, which may explain why this group is located on the first 

quadrant of the graph plot. Conversely, the group mean for IL-1α is lowest for the flagellin group, 

which may explain why this group is clustered on the negative abscissa axis of the graph. The 

group means of cytokines and chemokines for the types of stimulation are reflected in the table 3. 

 

 Linear Discriminant 
score 1 

Linear Discriminant 
score 2 

IL.1α 0.60795645   0.05867546   

IL.1β -0.88687334   0.35639238 

IL.2 -0.37530618   0.67996357   

IL.3 -2.61765178 -1.57523578   

IL.4 -1.28032726   0.84780909 

IL.5 0.24655559 -0.51198448 

IL.6 -0.09010735 -0.03294422   

IL.9 -0.21489001 -0.11822819   

IL.10 -0.87158118   1.60658081 

IL.12p40 0.19893095 -0.53392615   

IL.12p70 -0.70786721 -1.23295248 

IL.13 1.58107888 -0.18401095 

IL.17a 0.58348720 -0.10372756 
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Eotaxin -0.02384025 -0.06487792 

GCSF 0.17402731   0.47878328 

GMCSF 0.40557177 -0.18635375  

IFN.γ -0.42219934   0.13972386 

KC 0.38936235   0.17326940 

MCP.1 1.00755441 -0.28807606   

MIP.1a 1.00973143 -1.07137481   

MIP.1b 0.18648785  0.54054919   

RANTES -0.38217902 0.16465337 

TNFα -0.38073987 0.31981435 

IL.15 1.40664021   0.93625777 

IL.18 -0.29940180 -0.18312749   

Basic.FGF -0.27429134   0.19554935 

LIF 0.23918934   0.43300318 

MCSF -0.03009783 -0.43190436   

MIG -0.05049816   0.24203557   

MIP.2α -0.11210775   0.38896726 

PDGF.BB 2.69800988   0.44301246   

VEGF -0.30702367 -0.37157224   

Table 2. The table represents Linear Discriminant scores 1 and 2 for 32 cytokines and chemokines, 

produced from Linear Discriminant Analysis classification. The results are derived by the R code console 

output from the file in the Appendix, Linear Discriminant Analysis file for Stimuli group.  

 

 

 CD3CD28 CPG Flag LPS PG PIC 

IL.1α -0.1198 0.1640   -0.9017 -0.0588 1.3952  -0.4454 

IL.1β -0.2408   0.67546 -0.7065 -0.2343 0.8631 -0.4415 

IL.2 1.7334   -0.2713   -0.3522 -0.3503 -0.3438  -0.3490 

IL.3 0.0533   0.2163 -0.6138 -0.3519 1.3252 -0.4797 

IL.4 1.5436   -0.2438 -0.3800 -0.3299 -0.1933 -0.3363 

Table 3. The snippet of the resulted group means produced through Linear Discriminant analysis for 32 

cytokines and chemokines. Results, as well as the full set of values, are retrieved by the R code console 

output from the file in the Appendix, Linear Discriminant Analysis file for Stimuli group. 

 

The results of the linear discriminant analysis revealed significant differences between wild mice 

and lab mice, highlighting the distinctive characteristics and group separation of these two strains. 

Figure 3 depicts a grouped scatter plot that visually represents the separation of these groups 

based on a linear combination of features. With respect to resulting graph, it is evident that 

although there is some overlap at the central site, the majority of data points from the wild mice 

group are distinctly separate from those of the lab mice group. The plot effectively captures the 

clear distinction between the two groups, emphasizing the discriminatory power of the selected 

features. This visualization vividly showcases the ability of linear discriminant analysis to 

maximize the separation between the wild and lab mice groups, enabling researchers to 

distinguish between them with a high degree of accuracy.  
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Another visual result concerns the grouped scatter plot illustrating the predicted probability by 

strain site, specifically for the wild and lab mice groups on figure 4. The visualization provides 

insights into the classification accuracy of the model based on different predicted probability 

cutoff values. It is apparent that a cutoff value of 0.4 would yield the optimal threshold for 

distinguishing between the two strains. 

 

Figure 3. Scatter plot of linear discriminant analysis performed for the strain site category. This category 

describes the cytokines and chemokines concentrations with regard to the locality, wild or laboratory. The 

graph is plotted by implementing two linear discriminant scores of concentrations on each axis. The plot is 

derived from IBM SPSS statistics software. 

 

Figure 4. Grouped scatter plot performed for the strain site category to describe the differences between 

wild and laboratory mice groups. The graphical illustration displays the predicted probability for this group. 

The predicted probability suggests different cutoff values for the classification accuracy. This plot is derived 

from IBM SPSS statistics software. 

 

The grouped 3D scatter plot represents the outcomes of the Linear Discriminant Analysis (LDA) 

conducted for the classification of male and female mice. The results are reflected on figure 5. The 

visualization aims to showcase the separation or distinction between these two groups based on 

the selected gender characteristic. However, it is evident that the scatter plot does not exhibit a 

clear separation between the female and male mice. The data points from both groups appear to 

be intermingled and lack distinct clustering or grouping patterns. This visual indication suggests 
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that the selected features might not possess strong discriminatory power in distinguishing 

between the genders. 

 

Figure 5. The visual results of performing linear discriminant analysis on the mice gender category. The 

graph plot is displayed as a three-dimension plot by three linear discriminant scores on each axis. The mice 

groups are color-coded accordingly. The plot is derived from IBM SPSS statistics software. 

 

K-nearest neighbors’ algorithm 

The obtained results and graph show the performance of the K-nearest neighbors (KNN) 

algorithm for different values of K. The KNN algorithm is a type of supervised learning algorithm 

that can be used for classification and regression tasks. The results reflect the defined range of K 
values (1, 5, 10, 15, 20), hence the evaluation the performance of the KNN algorithm. The 

performance of the model is evaluated using the accuracy metric, which is the proportion of 

correctly classified instances over the total number of instances. The first plot shows the test data 

with the predicted class for each value of K on figure 6. The plot shows the distribution of the test 

data points and how the KNN algorithm has classified them. The color of each point indicates the 

predicted class.  

The second plot, figure 7, shows the accuracy of the KNN algorithm for each value of K. The plot 

has a title indicating that it shows the accuracy vs K values. The x-axis represents the K values, 

and the y-axis represents the accuracy of the KNN algorithm. Each point on the plot corresponds 

to a value of K and its associated accuracy. A line connects the points to show how the accuracy 

varies as K changes. Based on the results and the plot, it is clear that the KNN algorithm performs 

best for smaller values of K. In this case, K values of 1 and 3 give the highest accuracy scores. As K 

increases beyond 3, the accuracy starts to decrease. This pattern suggests that the KNN algorithm 

is better suited for local patterns in the data and is less effective when considering larger numbers 

of data points.  



 

Page: 13 
 

 

Figure 6. Graph plot that shows the classification performance of the K-nearest neighbors (KNN) algorithm 

for different values of K. It visualizes the test data with the predicted class for each value of K, where the 

color of each point indicates the predicted class. The graphical illustration is retrieved by RStudio integrated 

development environment. 

 

 

Figure 7. The results of accuracy of the K-nearest neighbors (KNN) algorithm for different values of K. The 

x-axis represents the K values, and the y-axis represents the accuracy of the KNN algorithm. The plot shows 

a line connecting the accuracy values for each value of K. It is evident from the plot that the KNN algorithm's 

accuracy is highest for smaller values of K, with K values of 1 and 3 giving the highest accuracy scores. The 

graphical illustration is retrieved by RStudio integrated development environment. 

 

Principal Component Analysis 

The principal component analysis (PCA) resulted a dataset comparing two group strains of mice: 

wild and laboratory. The resulting scatter plot, figure 8, visualized the principal component scores, 

with Principal Component 1 (PC1) represented on the x-axis and Principal Component 2 (PC2) on 

the y-axis. It can be observed that the majority of data points were visually located in the region 

with low principal component scores for both PC1 and PC2. This indicates that there is no distinct 

separation or clear clustering between the wild and lab groups based on the measured and plotted 

principal component scores 1 and 2. The lack of a noticeable distinction in the scatter plot suggests 

that the variables included in the analysis did not exhibit significant differences between the two 

groups. Consequently, the data points from the wild and lab groups appear to overlap 

considerably in the low principal component score region. 
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Figure 8. The results of a Principal Component Analysis in comparison of two groups of mice: wild and 

laboratory (lab) strains. The plot visualizes the principal component scores, where PC1 is represented on 

the x-axis and PC2 on the y-axis. The majority of the data points are located in the region with low principal 

component scores for both PC1 and PC2. The graphical illustration is retrieved by RStudio integrated 

development environment. 

 

The closer look at possible group distinction involves the grouped scatter plot, which displays the 

predicted probability by strain site. Specifically, the results are plotted in Figure 9. This 

visualization provides accuracy of the model, based on various predicted probability cutoff values. 

The data points appear to be scattered around the predicted probability value of 0.8, indicating a 

relatively concentrated distribution for both the wild and laboratory mice groups. Unlike the 

previous linear discriminant analysis, it appears that there is no clear cutoff value that effectively 

distinguishes between the two strains. This finding suggests that the model's classification 

performance is not highly dependent on the predicted probability values in this case. Both groups 

exhibit overlapping patterns, making it challenging to establish a definitive threshold for 

differentiation. 

 

Figure 9. The results display of  a grouped scatter plot that shows the predicted probability by strain site, 

providing a closer look at possible group distinction. The plot represents the accuracy of the model based 

on various predicted probability cutoff values. The data points are scattered around the predicted 

probability value of 0.8, indicating a relatively concentrated distribution.  The plot is derived from IBM SPSS 

statistics software.   
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Discussion 
The results of the implemented method for preprocessing and analyzing the cytokine and 

chemokine concentration data have provided valuable insights into immunological relationship 

between wild and laboratory mice types. In this section the results, during this chapter, are 

examined and reviewed in order to be aligned with the theoretical background. The results of the 

discussion are utilized with respect to clarification of the research question and conclusion. 

 

Data pre-processing 
One of the key findings from the pre-processing stage was the striking difference between the 

imputed values and the values proposed by the authors. This discrepancy led to deviations in the 

insights gained from the relationship between cytokines and chemokines. While the overall trend 

in positive and negative correlations remained similar, there were notable dissimilarities at 

various positions in the correlation matrix. For instance, the correlation between Interleukin 1 

alpha and Interleukin 2 exhibited a positive tendency in the imputed data matrix as reflected 

figure 1b, contrary to the originally proposed dataset that suggested a negative correlation for this 

cytokine pair on the figure 1a. In a biological manner, IL-1 and IL-2 in a cooperation are able to 

induce B cell proliferation and differentiation in rodents organism (Collins & Oldham, 1994). IL-

1, in particular, has been shown to act as a growth factor for certain types of activated murine B 

cells. It can promote the growth and differentiation of single hapten-specific B cells. However, in 

the human, organism resting or activated B cells do not proliferate in response to IL-1 alone. As 

well as interleukin-1 is able to provide a growth, differentiation signal for B cells jointly with 

interleukin-2. This suggests that the combination of IL-1 and IL-2 can induce the differentiation of 

human B cells into immunoglobulin-secreting cells. Another fact to be noted is that the 

interactions between cytokines are dynamic and complex, involving both positive and negative 

feedback loops (Wijaya et al., 2022) (Greenhalgh & Hilton, 2001). Hence, these findings could lead 

to several assumptions. One concerns complex regulatory mechanisms as reported in previous 

studies. Due to the diverse and intricate roles in immune regulation of interleukin-1 and 

interleukin-2; The positive correlation suggested by the MICE imputation method could indicate 

that IL-1 and IL-2 act in cooperation in the induction of the B cell proliferation and differentiation. 
This cooperative effect might involve complex signaling pathways or feedback loops that are not 

captured by the originally proposed values. Another assumption concerns the species-specific 

physiology. As the different correlations observed in mice and humans might possibly reflect such 

species-specific differences in the regulation of B cell responses. While IL-1 alone does not induce 

B cell proliferation in humans, the combination of IL-1 and IL-2 can drive differentiation into 

immunoglobulin-secreting cells (Collins & Oldham, 1995). In addition to the IL-1 and IL-2 

correlations, the analysis identified the pair of variables with the highest absolute difference in 

correlation coefficients between the imputed and original datasets, namely MIP.2α and IL.2. Such 

deviations in the correlation matrix could possibly imply complex signaling pathways that were 

not adequately captured by the original dataset. However, the further accuracy and reliability test 

implies that the imputation process more likely have introduced biases or inaccuracies in 

capturing the true relationship between MIP.2α and IL-2.  

Furthermore, the hierarchical clustering trees showed several significant distinctions for 

particular cytokines and chemokines. While the provided classification remained similar between 

both matrices, the dissimilarities were prominently reflected in the protein Interleukin 18. The 

imputed correlation matrix suggested clustering paired with Interleukin 9 (IL.9), whereas the 

original correlation matrix implied hierarchy paired with the macrophage colony-stimulating 

factor. These results imply that caution should be exercised when using imputed data in the 

analysis of cytokine and chemokine relationships, as the imputed dataset may not accurately 
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reflect the original dataset. These results are further backed up by the results of heatmap. The 

heatmap analysis successfully revealed clear clusters shared between both datasets, but with 

different cytokine and chemokine concentration values. Notably, a central cluster of negative 

correlation consisting of nine cyto- and chemokines in the imputed matrix also appeared in the 

original matrix. The paired t-test performed on the cytokine Interleukin 1 beta column in both 

provided further notable observations. The results indicated a statistically significant difference 

between the imputed and original files for this cytokine. The rejection of the null hypothesis and 

the calculation of the 95 percent confidence interval for the true mean difference supported the 

conclusion that the imputed file exhibited a higher mean value than the original file for this 

column. The notable differences observed between the imputed and original datasets raise 

concerns about the accuracy and reliability of the imputation process. The deviation in correlation 

values and clustering patterns suggests potential biases introduced during the imputation. The 

related work, the article by Zhang et al. (2018) evaluates and compares 11 imputation methods, 

including MICE, with iterative expectation-maximization algorithm. The conducted study aimed 

to evaluate the efficacy of such algorithm approach using datasets containing 25%, 50%, and 75% 

missing values for a test dataset. Results demonstrated superior performance compared to 

alternative techniques, with respect to imputation and downstream task performance. Leading to 

the fact that for the further studies it is important to take cautious and pre-considerations for 

missing values imputation and the existing possibility that the provided method for dealing with 

missing data points could be inferior compared to the setting up the constant value for such cases. 

All in all, these assumptions are fairly questionable due to the  raised concerns about the accuracy 

and reliability of the imputation process, provided by the t-test comparison. 

 

Statistical analysis 

Linear Discriminant Analysis 

The employed Linear Discriminant Analysis classified new observations into pre-defined groups 

based on cytokine concentrations. The discriminant functions derived from LDA provided 

weighted combinations of cytokine concentrations that effectively separated the groups. Analysis 

focused on providing clear separation between wild type and laboratory type of mice, male and 

female mice gender, and the type of in vitro stimulation. The results revealed distinct differences 

in cytokine and chemokine responses among the stimulation groups, as well as between wild type 

and laboratory type mice. One of the most notable findings of this study was the successful 

differentiation of stimulation types using LDA. The scatter plot visualization from the figure 2 

demonstrated a clear separation only of the particular stimulation groups based on the calculated 

LDA scores. More precisely, the "PG" group exhibited higher scores along both the x and y axes, 

while the "CPG" group displayed variation across both positive and negative x axes and a negative 

y axis. The remaining stimulation groups ("CD3CD28", "FLAG", "LPS", "PIC", "RPMI") clustered 

together on the negative x axis with slight variation in their vertical position. This result suggests 

that different stimulation types elicit distinct cytokine and chemokine responses, contributing to 

their separation in the scatter plot. Hence, it is implied that cytokine and chemokines 

concentrations can serve as reliable markers to differentiate between different biological groups 

due to their different immunology. Furthermore, the LDA scores provided valuable information 

regarding the group means for each cytokine and chemokine response. By examining these means, 

the observed differences in the scatter plot could be interpreted. For instance, the peptidoglycan 

(PG) group exhibited the highest mean cytokine response for IL-1α, which explains why this group 

was located in the first quadrant of the scatter plot. Conversely, the flagellin (FLAG) group had the 

lowest mean cytokine response for IL-1α, leading to its clustering on the negative x axis. This 

demonstrates how LDA scores and group means can enhance understanding of the separation 
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observed in the scatter plot. Such finding has a notable implication, in the terms of biological sense, 

for the study of immune responses, as the results implies, that the different types of stimuli may 

activate different pathways in the immune system. The successful differentiation of stimulation 

types using LDA highlights the potential of this technique to identify biomarkers for different 

immune responses. Moreover, the identification of differences in cytokine and chemokine 

responses between wild type and laboratory type mice emphasizes the importance of careful 

selection of experimental models in immunological studies. 

Another pre-defined group of wild type and laboratory type mice, demonstrated clear group 

separation during linear discriminant analysis. The grouped scatter plot on the figure 3 displayed 

the distinct clustering of data points, emphasizing the discriminatory power of the selected 

features. Although some overlap was observed at the central site, the majority of data points were 

distinctly separate. This suggests that the selected cytokine and chemokine features were effective 

in differentiating between these two strains with a high degree of accuracy. Additionally, the 

visualization of predicted probabilities by strain site provided insights into the classification 

accuracy of the model. The results are reflected on the figure 4. The optimal threshold for 

distinguishing between wild type and laboratory type mice was found to be a cutoff value of 0.4. 

This implies the appropriate probability threshold for accurately classifying new observations in 

the pre-defined group of wild and laboratory mice strains. These results align with the previous 

studies on the different group of rodents. One of the studies, by Bakhvalova et al. (2017), 

conducted an experiment to compare the cytokine differences between wild mice (red-backed 

voles and field mice) and laboratory mice when infected with tick-borne encephalitis virus. It 

suggested that there are differences in the cytokine responses and viral loads between wild mice 

and laboratory mice after infection. Such as Laboratory mice reached a maximum viral load of 

2.5×105 tick-borne encephalitis virus genomes per 1 ml of blood 2-4 days after infection, which 
gradually decreased to 100 RNA copies per ml by the 16th day of infection. In contrast, wild 

rodents had significantly higher viral loads, ranging from up to 5.7×109 genome equivalents per 

1 ml of blood after 2 days of infection to 100 to 3.1×107 genome equivalents per 1 ml during 4 

months of experimental infection, without showing signs of disease. Another study analyzed 

serum cytokine levels of immunodeficient and immunocompetent mice in different strains and 

compared them to wild type mice (Briesmeister et al., 2012). The study analyzed serum cytokine 

levels in different groups of mice kept under three different environments: a specific pathogen-

free breeding barrier with open cages, an experimental unit with individually ventilated cages, 

and an experimental semi-barrier with open cages. However, the results showed that this 

hypothesis could not be sustained under specific pathogen-free conditions. For the immunological 

aspect, the study observed elevated serum cytokine levels, primarily for IL-1a and IL-5, in 

laboratory mice with a targeted mutation compared to wild type. This findings suggested an 

altered baseline inflammatory responsiveness in the laboratory mice carrying targeted mutations 

compared to the wild type mice. 

On the other hand, the examination of gender classification using LDA, encountered a statistical 

limitation. The grouped 3D scatter plot, figure 5, failed to exhibit a clear separation between 

female and male mice groups. The data points from both groups appeared to be intermingled 

without distinct clustering or grouping patterns. This suggests that the selected gender 

characteristic may not possess strong discriminatory power in distinguishing between the 

genders. Further investigation into alternative features or methodologies may be necessary to 

improve gender classification accuracy. However, the gender-specific immune response was 

previously studied and reported (Lopez-Griego et al., 2015). The authors assume that the 

observed alterations in cytokine expression could explain the behavioral disruptions seen in 

infected mice, as cytokines play a role in mediating brain-specific control of neurotransmission. 

The results suggested specific examples of how cytokines, such as serotonin, IL-1β, IL-6, IFN-γ, 
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and TNF-α, impact neurotransmission and neuronal activity in the brain. For instance, serotonin 

could modulate the production of IL-6 and TNF-α, while IL-1β and IL-6 have been shown to affect 

GABA and glutamate neurotransmission, respectively. Such findings propose the conclusion that 

there is in fact gender-specific difference in mice strains. However, it is important to be noted that 

the study by Lopez-Griego et al. derive and observe cytokine expression from the brain regions, 

hippocampus in particular, compared to the cytokines and chemokines dataset by Abolins et al., 

that is based upon gut microbiota. The immune response and cytokine expression can vary across 

different tissues and organs (Hu & Passare, 2013). Differences in the statistical methods used for 

data analysis can also contribute to different outcomes. LDA is a classification technique that 

attempts to find linear combinations of features that maximize separation between groups. The 

study of Lopez-Griego, on the other hand, adopted the Tukey test, a post-hoc test commonly used 

in statistical analysis to compare multiple groups and determine significant differences between 

them. Such factors collectively could contribute to the overall interpretation of the results. 

One of the previous studies conducted linear discriminant analysis to investigate the effects of 

isoorientin on Alzheimer's disease related markers and the oral and gut microbiota in mice. 

(Zhang et al., 2022). The isoorientin was administered orally to transgenic mice and analyzed 

Alzheimer’s disease-related markers in the brain, serum, colon, and liver. Linear discriminant 

analysis in particular was used to analyze the effects of ISO treatment, as well as to further identify 

specific microbial features associated with different groups. This analysis successfully identified 

microbial taxa that were significantly different between the groups, with LDA scores greater than 

3.0 and p-values below 0.05. These findings suggest that isoorientin treatment had a significant 

impact on the composition of the oral and gut microbiota in laboratory mice. The LDA analysis 

helped identify specific microbial features that were associated with each group, providing 

insights into how ISO treatment influenced the microbial community structures. As a statistical 
analysis, LDA was successful in this study in terms of providing a systematic approach to analyze 

and interpret the complex microbial data. It allowed researchers to identify microbial features 

that were significantly associated with different groups and provided a quantitative measure, LDA 

scores, to assess the discriminatory power of these features. The success of LDA depended on 

several factors, including the quality and representativeness of the data, appropriate feature 

selection, and the underlying assumptions of the analysis. 

The successful differentiation of stimulation types using LDA suggests that different immune 

responses can be activated by different stimuli. This implies that the immune system may respond 

differently to various stimuli mechanisms of immune activation. Moreover, the identification of 

differences in cytokine and chemokine responses between wild type and laboratory type mice 

highlights the importance of careful selection of experimental models in immunological studies. 

Therefore, the possible impact of genetic immunological differences between mouse strains must 

be considered during experiment and interpreting the results. 

 

K-nearest neighbors algorithm 

The evaluation of the KNN algorithm using the accuracy metric allowed to determine how well 

the algorithm classified instances correctly compared to the total number of instances. The first 

plot on figure 6 presented the test data along with the predicted class for each value of K. This 

visualization provided a clear representation of the distribution of the test data points and how 

the KNN algorithm classified them. The color-coded points indicated the predicted class, giving a 

visual understanding of the algorithm's performance. The second plot on figure 7 depicted the 

accuracy of the KNN algorithm for different K values. It demonstrated a clear relationship between 

the accuracy and the chosen value of K. From the results of the plot, it is evident that the KNN 

algorithm performs best for smaller values of K. In particular, K values of 1 and 3 yielded the 



 

Page: 19 
 

highest accuracy scores in this study. However, as the value of K increased beyond 3, the accuracy 

of the algorithm started to decrease. This observation suggests that the KNN algorithm is more 

effective at capturing local patterns within the data and becomes less accurate when considering 

larger numbers of data points.  

 

Principal component analysis 

The principal component analysis PCA was conducted to compare two groups of mice strains, 

namely wild and laboratory mice. The resulting scatter plot, figure 8, of the principal component 

scores revealed that the majority of data points were located in the region with low scores for 

both Principal Component 1 and Principal Component 2. This lack of distinct separation or clear 

clustering between the two groups suggests that the measured variables did not exhibit significant 

differences. Consequently, the data points from the wild and laboratory groups overlapped 

considerably in the low principal component score region. These findings indicate that the 

variables included in the analysis may not be effective in differentiating between wild and 

laboratory mice strains. It is possible that the selected variables do not capture the key 

characteristics or factors that distinguish the two groups. Alternatively, there may be other 

unmeasured variables that play a more crucial role in distinguishing between the strains. 

To further investigate the potential group distinction, a grouped scatter plot was utilized to 

display the predicted probabilities by strain site. This plot, shown in figure 9, provided an 

evaluation of the model's accuracy based on various predicted probability cutoff values. The data 

points in the plot appeared to be scattered around the predicted probability value of 0.8, 

indicating a relatively concentrated distribution for both the wild and laboratory mice groups. 

Unlike the previous linear discriminant analysis, the grouped scatter plot did not reveal a clear 

cutoff value that effectively distinguished between the two strains. This suggests that the model's 

classification performance is not highly dependent on the predicted probability values in this case. 

Both groups exhibited overlapping patterns, making it challenging to establish a definitive 

threshold for differentiation. 

From a biological perspective, the implications of the PCA and grouped scatter plot analysis 

suggest that there may be no significant immunological differences between wild and laboratory 

mice strains based on the cytokines and chemokines concentrations. This lack of differentiation 

could imply the insignificant differences between this group. According to the theoretical 

background, the use of laboratory mice as models is widespread in biomedical research, and the 

assumption is that these models accurately represent the biological systems being studied. 

However, if there are no significant differences between wild and laboratory mice strains, this 

assumption may not hold. In this case, it may be necessary to reconsider the use of laboratory 

mice as models for certain biological phenomena and explore alternative models that more 

accurately represent the biological systems being studied. This assumption would be held as a 

conclusion. However, the results of other statistical analysis emphasize the importance of 

carefully selecting appropriate multivariate analysis for experimental studies and considering 

potential confounding factors that may affect the interpretation of results. 

The altered immunology between laboratory and wild type mice are discussed by Yeung et al. 

(2020). As the composition of leukocyte subsets and transcriptional responses to microbial 
challenges vary between these two groups. Another finding of this study proposed rewilding of 

laboratory mice in an outdoor enclosure resulted in order to produce changes in immune system 

maturation that resembled exposure to life-threatening pathogens, including increased 

differentiation of memory T cells and granulocytes. These changes were associated with altered 

microbiota composition, including increased intestinal fungi. The expansion of granulocytes was 
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particularly notable, as granulocytes are scarce in laboratory mice but abundant in humans. The 

findings as well suggested that exposure to natural environments, including fungi and other 

microorganisms, may play an important role in the maturation and function of the immune 

system. Another previous study from 2004 by Ideraabdullah et al., presented a comparative 

immunology study between wild and laboratory mice. The level of genetic diversity presented in 

the genome of twenty inbred strains of Mus musculus was estimated. Hence, it was found to be 

approximately two orders of magnitude higher than the level of sequence diversity observed in 

the human population. The observed diversity of strain distribution patterns is due to the number 

of strains, the analysis of multiple loci scattered across the genome, and the mosaic nature of the 

genome in hybrid and classical strains. 

The very first study that conducted comparative study on the immunology of the group of wild 

and laboratory mice strains revealed the differences to be noted. With adequate sample size and 

several different rodent species, the results showed primary immune responsiveness, measured 

in plaque-forming cells per spleen, varied greatly among the wild species with regard to 

laboratory mice strain. The study also found considerable intraspecific variation in immune 

responses within species, with wild populations showing more variation compared to laboratory 

mice. The researchers acknowledged in the conclusion that the diverse life histories and 

environmental differences of the studied species might contribute to the differences in immune 

responsiveness. Another significant conclusion is that the provided article is dated in 1991. It 

might be reasonable to assume that the immunological disparities between wild and laboratory 

mice strains have become even more pronounced. As understanding of the human immune 

system has deepened, it has become increasingly clear that relying solely on laboratory mice, that 

is assumed to be detached from the real-life immunological exposure, as a model for human 

immunology may not fully capture the intricacies and complexities of immune responses. 

Ethical considerations. The study making an attempt to follow the principles stated in Ethical 

Guidelines for Statistical Practice, in order to maintain the integrity of the retrieved results (ASA, 

2022). It is important to acknowledge the source of the data and any relevant individuals or 

organizations that contributed to the collection of the data. Furthermore, the results of the study 

may contribute to a better understanding of the immune system and its responses to various 

stimuli, which could lead to improved treatment and welfare for animals. Hence, it is important to 

ensure that the data is handled with responsibility, to the same degree as accurate and free of 

errors. Such as, this study raises concerns about the accuracy and reliability of the imputation 

process used to fill in missing values. It is crucial to ensure that the imputation method employed 

maintains the integrity and accuracy of the data. If the imputation process introduces biases or 

inaccuracies, it can lead to misleading or incorrect results. As well as this includes accurately 

representing the results, avoiding selective reporting of findings, and clearly stating any 

limitations or uncertainties associated with the study. 

 

 

Improvements 

There are several improvements that could be made to enhance the methodology and analysis of 

this study. First of all. imputation method improvements. Given the observed discrepancies 
between the imputed and original datasets, it is crucial to re-evaluate the imputation method used. 

Alternative imputation techniques, such Single Center Imputation from Multiple Chained 

Equation (SICE) approach could be considered to improve the accuracy and reliability of the 

imputed values. SICE method is an extension of MICE imputation, namely the numerical type 

(Khan & Hoque, 2020). Robust validation and sensitivity analyses should be conducted to assess 
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the impact of different imputation methods on the results. Other improvements could be applied 

to data quality assessment. Hence, it implies evaluating the missing data patterns, exploring 

potential biases or sources of errors, and investigating the assumptions underlying the imputation 

method. Secondly, in the case of the LDA and KNN algorithms, further model selection and 

validation steps could be incorporated to ensure optimal performance. This could involve 

conducting cross-validation or using additional evaluation metrics. 

 

Conclusion 
The findings of highlight the importance of carefully selecting appropriate statistical analyses and 

considering potential confounding factors in experimental studies. The observed immunological 

differences between wild and laboratory mice strains have significant implications for the 

interpretation and generalizability of research findings. While the imputation process allowed for 
a more complete dataset, the observed discrepancies raise concerns about the accuracy and 

reliability of the imputed values. The analysis also demonstrated the effectiveness of Linear 

Discriminant Analysis in classifying different stimulation groups and distinguishing between wild 

type and laboratory type mice. The evaluation of the K-nearest neighbors algorithm highlighted 

its ability to capture local patterns in the data, with smaller values of K yielding higher accuracy. 

However, it is important to consider the assumptions and requirements of the data and methods 

used. The principal component analysis did not reveal significant differences between wild and 

laboratory mice strains, indicating that the selected variables may not effectively differentiate 

between the groups. Further research and exploration are needed to identify more accurate 

models that better reflect real-life immunological exposure and enable a more comprehensive 

understanding of immune responses. Due to the reported conclusion that relying solely on 

laboratory mice as models may not fully capture the complexities of immune responses and their 

relevance to human immunology.  
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Appendix - Code 
This appendix includes all the executed code in R script. The scripts are mentioned in the order of 

execution. Original.csv file represents the  Comma-Separated Values derived from the 

Supplementary data 4 in the article The comparative immunology of wild and laboratory mice, 

Mus musculus domesticus (Abolins et al., 2017).  

The MICE imputations file.  
library(mice) 

 

data <- read.csv("original.csv", header = TRUE, sep = ";") 

 

imputed_data <- mice(data) 

completed_data <- complete(imputed_data) 

 

write.csv(completed_data, "H:\\Desktop\\imputed.csv", row.names = 

FALSE) 

 

Imputation comparison, one sample t-test file. 
original_data <- read.csv("original.csv", header = TRUE, sep = ";") 

imputed_data <- read.csv("imputed_R.csv", header = TRUE) 

 

zero_data <- original_data 

zero_data[is.na(zero_data)] <- 0.001 

 

mean_imputed <- apply(imputed_data, 2, mean) 

mean_zero <- apply(zero_data, 2, mean) 

 

diff_means <- mean_imputed - mean_zero 

t_test <- t.test(diff_means) 

print(t_test) 

 

Imputation comparison, paired t-test file. 
original_data <- read.csv("original.csv", header=TRUE) 

imputed_data <- read.csv("imputed_R.csv", header=TRUE) 

original_norm <- shapiro.test(original_data$IL.1β) 

imputed_norm <- shapiro.test(imputed_data$IL.1β) 

vairance_test <- leveneTest(original_data$IL.1β, imputed_data$IL.1β, 

center = mean) 

qqplot(original_data$IL.1β, main = "QQplot") 

qqplot(imputed_data$IL.1β, main = "QQplot") 

result <- t.test(original_data$IL.1β, imputed_data$IL.1β, 

paired=TRUE) 

print(result) 

 

Correlation comparison file. 
original_data <- read.csv("original.csv", header = TRUE, sep = ";") 

imputed_data <- read.csv("imputed_R.csv", header = TRUE) 

cor_original <- cor(original_data, use = "complete.obs") 

 

 

cor_imputed <- cor(imputed_data) 
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cor_diff <- cor_original - cor_imputed 

print(cor_diff) 

 

Correlation matrix file 
data_imputed <- read.csv("imputed_R.csv", header = TRUE) 

correlation_matrix_imputed <- cor(data_imputed) 

 

heatmap(correlation_matrix_imputed,  

        col = colorRampPalette(c("blue", "white", "red"))(100),  

        symm = TRUE,  

        margins = c(6, 6), 

        cexRow = 0.3,  

        cexCol = 0.3)  

 

data_original <- read.csv("original.csv", header = TRUE) 

correlation_matrix_original <- cor(data_original) 

 

heatmap(correlation_matrix_original,  

        col = colorRampPalette(c("blue", "white", "red"))(100),  

        symm = TRUE,  

        margins = c(6, 6), 

        cexRow = 0.3,  

        cexCol = 0.3)  

 

 

data_imputed <- read.csv("imputed_R.csv", header = TRUE) 

correlation_matrix_imputed <- cor(data_imputed) 

 

data_original <- read.csv("original.csv", header = TRUE) 

correlation_matrix_original <- cor(data_original) 

diff_matrix <- abs(correlation_matrix_imputed - 

correlation_matrix_original) 

N <- 2 

max_diff_indices <- which(diff_matrix == sort(diff_matrix, decreasing 

= TRUE)[N], arr.ind = TRUE) 

for (i in 1:N) { 

  row_index <- max_diff_indices[i, 1] 

  col_index <- max_diff_indices[i, 2] 

  var1 <- colnames(data_imputed)[row_index] 

  var2 <- colnames(data_imputed)[col_index] 

  print(paste("Variables with highest difference:", var1, "and", 

var2)) 

} 

 

 

 

 

Linear Discriminant Analysis file for Stimuli group 
library(readxl) 

library(caret) 
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library(MASS) 

library(ggplot2) 

library(caTools) 

 

data_file <- " original.xlsx" 

raw_data <- read_excel(data_file) 

merged_data <- data.frame(rbind(raw_data)) 

 

merged_data[] <- lapply(merged_data, function(col) { 

  if (is.numeric(col)) { 

    ifelse(is.infinite(col), 0, col) 

  } else { 

    col 

  } 

}) 

 

merged_data[] <- lapply(merged_data, function(col) { 

  if (is.numeric(col)) { 

    ifelse(is.na(col), 0, col) 

  } else { 

    col 

  } 

}) 

 

subset_data1 <- merged_data[1:198, ] 

subset_data2 <- merged_data[199:262, ] 

subset_data1[, 5:36] <- scale(subset_data1[, 5:36]) 

subset_data2[, 5:36] <- scale(subset_data2[, 5:36]) 

x1 <- subset(subset_data1[, 5:36]) 

y1 <- subset_data1$Stimulation 

y1 <- factor(y1) 

dfc1 <- data.frame(cbind(y1, x1)) 

x2 <- subset(subset_data2[, 5:36]) 

y2 <- subset_data2$Stimulation 

y2 <- factor(y2) 

dfc2 <- data.frame(cbind(y2, x2)) 

female_subset1 <- subset(subset_data1, subset_data1[, 3] == "F") 

male_subset1 <- subset(subset_data1, subset_data1[, 3] == "M") 

female_subset2 <- subset(subset_data2, subset_data2[, 3] == "F") 

male_subset2 <- subset(subset_data2, subset_data2[, 3] == "M") 

lda_model1 <- lda(y1 ~ ., data = dfc1) 

lda_results1 <- predict(lda_model1, x1) 

lda_data1 <- data.frame(lda_results1$x, y1) 

lda_model2 <- lda(y2 ~ ., data = dfc2) 

lda_results2 <- predict(lda_model2, x2) 

lda_data2 <- data.frame(lda_results2$x, y2) 

print(lda_model1) 

print(lda_model2) 

ggplot() + 

  geom_point(data = lda_data1, aes(x = LD1, y = LD2, color = y1)) + 

  geom_point(data = lda_data2, aes(x = LD1, y = LD2, color = y2)) + 

  xlab("LD1") + ylab("LD2") + 

  ggtitle("LDA Results") 
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K-Nearest Neighbor analysis file alongside with accuracy metrics 
library(readxl) 

library(caret) 

library(MASS) 

library(ggplot2) 

library(caTools) 

 

data_file <- "original.xlsx" 

data <- read_excel(data_file) 

 

df <- data.frame(rbind(data)) 

 

df[] <- lapply(df, function(column) { 

  if (is.numeric(column)) { 

    ifelse(is.infinite(column), 0, column) 

  } else { 

    column 

  } 

}) 

 

df[] <- lapply(df, function(column) { 

  if (is.numeric(column)) { 

    ifelse(is.na(column), 0, column) 

  } else { 

    column 

  } 

}) 

 

df1 <- df[1:198, ] 

df1[, 5:36] <- scale(df1[, 5:36]) 

x1 <- subset(df1[, 5:36]) 

y1 <- df1$Stimulation 

y1 <- factor(y1) 

dfc1 <- data.frame(cbind(y1, x1)) 

 

df2 <- df[199:262, ] 

df2[, 5:36] <- scale(df2[, 5:36]) 

x2 <- subset(df2[, 5:36]) 

y2 <- df2$Stimulation 

y2 <- factor(y2) 

dfc2 <- data.frame(cbind(y2, x2)) 

 

defemale1 <- subset(df1, df1[, 3] == "F") 

dmale1 <- subset(df1, df1[, 3] == "M") 

defemale2 <- subset(df2, df2[, 3] == "F") 

dmale2 <- subset(df2, df2[, 3] == "M") 

 

split_ratio <- 0.8 

split <- sample.split(df1, SplitRatio = split_ratio) 

split 

xt1 <- subset(scale(df1[, 5:36]), split == "TRUE") 

w1 <- subset(scale(df1[, 5:36]), split == "FALSE") 

yt1 <- subset(df1$Stimulation, split == "TRUE") 

yt1 <- factor(yt1) 

zt1 <- subset(df1$Stimulation, split == "FALSE") 
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zt1 <- factor(zt1) 

dfratio1 <- data.frame(cbind(yt1, xt1)) 

test1 <- data.frame(cbind(zt1, w1)) 

 

library(class) 

library(ggplot2) 

 

k <- 2 

pred <- knn(xt1, w1, yt1, k) 

 

cm <- table(pred, zt1) 

print(cm) 

 

accuracy <- sum(diag(cm)) / sum(cm) 

print(paste("Accuracy:", accuracy)) 

 

test1$pred <- pred 

ggplot(test1, aes(x = w1[, 1], y = w1[, 2], color = pred)) + 

geom_point() 

 

library(class) 

library(ggplot2) 

 

K_values <- c(1, 5, 10, 15, 20) 

accuracy_scores <- list() 

 

for (k in K_values) { 

  pred <- knn(xt1, w1, yt1, k) 

  cm <- table(pred, zt1) 

  acc <- sum(diag(cm)) / sum(cm) 

  accuracy_scores[[as.character(k)]] <- acc 

  test1$pred <- pred 

  ggplot(test1, aes(x = w1[, 1], y = w1[, 2], color = pred)) + 

    geom_point() + 

    ggtitle(paste0("K = ", k)) 

} 

accuracy_df <- data.frame(K = K_values, Accuracy = 

unlist(accuracy_scores)) 

ggplot(accuracy_df, aes(x = K, y = Accuracy))  + geom_line() + 

ggtitle("Accuracy vs K values") 

 

 

Principal Component Analysis of stimulation group 
library(readxl) 

library(caret) 

library(MASS) 

library(ggplot2) 

library(caTools) 

library(FactoMineR) 

 

data <- read_excel("original.xlsx") 

df <- data.frame(rbind(data)) 

 

df[] <- lapply(df, function(column) { 
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  if (is.numeric(column)) { 

    ifelse(is.infinite(column), 0, column) 

  } else { 

    column 

  } 

}) 

 

df[] <- lapply(df, function(column) { 

  if (is.numeric(column)) { 

    ifelse(is.na(column), 0, column) 

  } else { 

    column 

  } 

}) 

 

df1 <- df[1:198,] 

df2 <- df[199:262,] 

df1[,5:36] <- scale(df1[,5:36]) 

df2[,5:36] <- scale(df2[,5:36]) 

x1 <- subset(df1[, 5:36]) 

y1 <- factor(df1$Strainsite) 

dfc1 <- data.frame(cbind(y1,x1)) 

x2 <- subset(df2[, 5:36]) 

y2 <- factor(df2$Strainsite) 

dfc2 <- data.frame(cbind(y2,x2)) 

pca1 <- PCA(x1, scale.unit = TRUE, graph = FALSE) 

pca2 <- PCA(x2, scale.unit = TRUE, graph = FALSE) 

print(pca1) 

print(pca2) 

pca1_scores <- as.data.frame(pca1$ind$coord[, 1:2]) 

pca2_scores <- as.data.frame(pca2$ind$coord[, 1:2]) 

pca1_data <- cbind(pca1_scores, y1 = as.factor(y1)) 

pca2_data <- cbind(pca2_scores, y2 = as.factor(y2)) 

ggplot() + 

  geom_point(data = pca1_data, aes(x = Dim.1, y = Dim.2, color = y1), 

alpha = 0.7) + 

  geom_point(data = pca2_data, aes(x = Dim.1, y = Dim.2, color = y2), 

alpha = 0.7) + 

  labs(x = "PC1", y = "PC2", color = "Strain Site") + 

  ggtitle("Scatter plot of first two PCA scores") 

 

 


