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A comprehensive mechanistic model of adipocyte signaling
with layers of confidence
William Lövfors 1,2,3✉, Rasmus Magnusson 4, Cecilia Jönsson 1,5, Mika Gustafsson 6, Charlotta S. Olofsson7,
Gunnar Cedersund1,3,8,9✉ and Elin Nyman 1,9✉

Adipocyte signaling, normally and in type 2 diabetes, is far from fully understood. We have earlier developed detailed dynamic
mathematical models for several well-studied, partially overlapping, signaling pathways in adipocytes. Still, these models only cover
a fraction of the total cellular response. For a broader coverage of the response, large-scale phosphoproteomic data and systems
level knowledge on protein interactions are key. However, methods to combine detailed dynamic models with large-scale data,
using information about the confidence of included interactions, are lacking. We have developed a method to first establish a core
model by connecting existing models of adipocyte cellular signaling for: (1) lipolysis and fatty acid release, (2) glucose uptake, and
(3) the release of adiponectin. Next, we use publicly available phosphoproteome data for the insulin response in adipocytes
together with prior knowledge on protein interactions, to identify phosphosites downstream of the core model. In a parallel
pairwise approach with low computation time, we test whether identified phosphosites can be added to the model. We iteratively
collect accepted additions into layers and continue the search for phosphosites downstream of these added layers. For the first 30
layers with the highest confidence (311 added phosphosites), the model predicts independent data well (70–90% correct), and the
predictive capability gradually decreases when we add layers of decreasing confidence. In total, 57 layers (3059 phosphosites) can
be added to the model with predictive ability kept. Finally, our large-scale, layered model enables dynamic simulations of systems-
wide alterations in adipocytes in type 2 diabetes.

npj Systems Biology and Applications            (2023) 9:24 ; https://doi.org/10.1038/s41540-023-00282-9

INTRODUCTION
A major challenge within biomedical research, from clinical studies
to drug development, is how to handle and make optimal use of
the increasing availability of omics data, e.g., proteomics,
phosphoproteomics and transcriptomics. The analysis of large-
scale biological data is today often done within the field of
bioinformatics using methods to construct biological networks.
These networks are often constructed using prior knowledge that
can be found in databases, where the interactions in the
databases often are classified with a level of confidence1–4. These
constructed biological networks can typically not be used to
simulate dynamic time-resolved scenarios, e.g., to predict the
clinical effect of a treatment or the change in signaling inside cells
in response to new drugs. Such predictions are instead the
strength of systems biology models based on ordinary differential
equations (ODEs).
Systems biology ODE-based models are built on mechanistic

details known about the system at study, such as intracellular
signaling pathways. Furthermore, ODE-based modeling is the
most common framework to model biological systems when time-
resolved data is available5. This is evident in e.g., the BioModels
database6 which contains over 1000 manually curated models,
where over 80% of the models are ODE-based. Also, there exists
ODE-based models for most biological systems, which are often
partially overlapping and not interconnected.

The ODE-based models are often constructed using a set of
kinetic rate equations, and these rate equations need to be fed
with numerical values for the corresponding kinetic rate
determining constants. These rate constants are model para-
meters that are usually unknown since they are often impossible
to measure explicitly, and must instead be estimated based on
indirect time-resolved measurements (e.g., measurements of the
level of a protein). A central challenge with large ODE-based
models is thus how to handle the large number of unknown
parameters and how to estimate the parameter values.
This parameter identification challenge has been approached

using adjoint sensitivities7 which improves the scaling of the
parameter estimation problem with the number of parameters,
together with the use of a sparse linear solver. The authors speed
up the optimization process ~40,000 times for a model with ~4000
free parameters7. This development is important to go from
smaller to larger ODE-based models. However, methods devel-
oped to estimate parameters for large ODE-based models still
cannot handle the whole omics scale.
Other methods to handle semi-large protein data using ODE-

based models have been developed8–11. These approaches use
information-rich multi-perturbation data to create data-driven
ODE-based models. These methods have been used to predict the
response of new drug candidates and rank their ability to
overcome drug resistance. Even though these methods can
handle a large number of parameters, for all possible interactions
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between states, they are limited to ~200 proteins since all possible
interactions are tested. Also, the information-rich perturbation
data used in these methods is rare and costly to obtain
experimentally.
One approach to avoid the estimation problem is to use

parameter-free Boolean logical models instead of ODE-based
models. Such models have been used to study large protein-
activity datasets12,13. Parameter-free Boolean logical models are
useful in the search for biologically relevant interactions between
proteins and can thus be used for hypothesis generation when it
comes to new interactions. However, parameter-free Boolean
logical models are typically not used to explain behaviors seen in
times series data, to predict time resolved effects of new drugs/
perturbations or to simulate scenarios, which are important
aspects in biomedical research. However, there are other more
advanced approaches to Boolean modeling, which uses contin-
uous time simulations and transition rates described by real
numbers14,15.
Another solution to the large parameter estimation problem is

to divide the problem into smaller sub-problems, adding a single
protein/gene (and corresponding data) at a time, preferably
starting from an established core model. The additions of new
proteins/genes can then be done in parallel, substantially
reducing the computation time. We have earlier developed a
method to do such a model expansion16. However, this method
does not take the confidence of included interactions into account
and can only add a single layer of new interactions, ignoring the
chain-like nature of signaling pathways.
One final approach is to develop smaller, partially overlapping,

models and to interconnect them to yield a large model. In this
way, the development of each submodel corresponds to a
manageable parameter estimation problem, each resulting in a
submodel of high confidence. Unfortunately, this process is time-
consuming and there is no guarantee that the submodels can be
combined.
In summary, it is an increasingly common situation to have

large-scale omics data that need to be analyzed, and to have
partially overlapping small ODE-based models, which are of high
confidence, but which cannot be used to analyze the omics data.
One challenge is to use the existing data to establish a core model
of high confidence, and another challenge is to have a
differentiated view of the variables that are not in core model
with different degrees of confidence. One example of such a
situation is adipocyte signaling.
Adipocyte signaling controls multiple processes of the adipo-

cyte, and transmits the response to biologically important
regulators such as insulin and adrenaline. Dysregulations in the
adipocyte signaling network can lead to complications such as
type 2 diabetes (T2D). Thus, understanding adipocyte signaling is
central to understanding metabolic diseases such as type 2
diabetes, a disease for which the prevalence is increasing globally.
Within adipocyte signaling, we have developed several partially

overlapping models for different aspects of the adipocyte, such as
glucose uptake, lipolysis, and adiponectin secretion17–22. These
models have not been combined into a single high confidence
core model. Furthermore, large-scale phosphoproteomics data is
available from 3T3-L1 adipocytes, which has not been analyzed
using scalable mechanistic approaches. Adipocyte signaling is
therefore a good use-case to solve an increasingly common
problem.
Here, we present a method to create comprehensive mechan-

istic models with layers of confidence, starting with the
interconnection of three partially overlapping models into a core
model containing detailed interactions of high confidence. From
there, we add large-scale data in layers starting from high
confidence interactions to purely data-driven interactions (Fig. 1).
When adding these layers, we use a parallel, pairwise approach
with a manageable computation time.

RESULTS
We first established a core model of adipocyte signaling (Fig. 2D),
based on our earlier work18,21,22. The included earlier works
consists of three independent models. Firstly, a glucose uptake
model18 that includes major insulin signaling pathways of
adipocytes, based on data from both non-diabetic and type 2
diabetic patients (Fig. 2A). Secondly, a lipolysis model22 that
describes the release of fatty acids and glycerol in response to α-
and β2-adrenergic receptor agonists and inhibitors, as well as the
anti-lipolytic effect of insulin (Fig. 2B). The lipolysis model includes
intracellular signaling intermediaries and is also based on data
from both non-diabetic and type 2 diabetic patients. Finally, an
adiponectin release model21 that unravel the mechanisms of
adiponectin release in response to epinephrine, and a β3-
adrenergic receptor agonist, as well as intracellular signaling
intermediaries. This adiponectin release model includes patch-
clamp experiments of adiponectin vesicle exocytosis in clonal 3T3-
L1 adipocyte cell line, as well as confirming studies in adipocytes
from non-diabetic patients (Fig. 2C).

The crosstalk between different pathways in adipocyte
signaling
To connect the models, we searched for crosstalk between the
included signaling pathways (Fig. 2). There are clear crosstalk
between glucose uptake and lipolysis, through the signaling
pathways of both insulin and α- and β-adrenergic receptors. A
central node for this crosstalk is cAMP, which is stimulated by β-
adrenergic receptors and inhibited by α-adrenergic receptors, and
in turn affects the phosphoinositide 3-kinase inhibitor (PI3Kα)23.
PI3Kα is also involved in the insulin – glucose uptake signaling
network. Furthermore, insulin will lead to the activation of PKB
which in turn activates phosphodiesterase 3B (PDE3B). At
unphysiologically high insulin concentrations there is also an
additional inhibitory effect from insulin to PDE3B (ref. 23). PDE3B is
involved in the breakdown of cAMP, which in turn is a central
mediator in both adiponectin secretion and lipolysis20,24.

The creation of a core model from previous models and data
The three separate models18,21,22 were connected in two steps.
Firstly, we connected the lipolysis model22 with the glucose
uptake model18. This was done by replacing the insulin action
(Ins1) and the protein kinase B (PKB) equations from the lipolysis
model with the insulin receptor and PKB from the glucose uptake
model, and by having cAMP from the lipolysis model activate the
mammalian target of rapamycin complex 2 (mTORC2) in the
glucose uptake model. This interaction of cAMP to mTORC2 is a
simplified mechanism of the activation of PI3K with subsequent
activation of mTORC2. Secondly, we connected the newly
combined lipolysis–glucose uptake model with the adiponectin
model21. In essence, we combined the model by letting the β3-
adrenergic receptors from the adiponectin model activate
adenylyl cyclase (AC) from the lipolysis model instead of directly
leading to a production of cAMP. All details regarding the
connection of the models and the connected core-model are
found in the Supplementary Information, in the “Model equations
and parameter values” section.

The core model can reproduce all previously used data
We tested the core model by separating the experimental data used
in the previous works18,21,22 into an estimation set and a testing set.
To be able to compare the combined core model to the ingoing
individual models, we divided the data in the same way as done in
the previous works. In practice, this meant that we used the data for
adiponectin release stimulated by the β3-adrenergic receptor agonist
CL 316243 in the presence of intracellular ATP21, and the data for the
phosphorylation of hormone-sensitive lipase (HSL) in response to
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stimulation with insulin and isoprenaline22, for model testing and
thus removed this testing data from the set of estimation data. After
estimating the model parameters using the estimation data, we
found the best agreement to be acceptable, supported by a χ2-test
(v�est ¼ 616:50< χ2ðp ¼ 0:05; df ¼ 582Þ ¼ 639:23). We then esti-
mated the model uncertainty by finding the maximal and minimal
simulation values in each time point for each experiment, while
simultaneously requiring the agreement with the estimation data to
be sufficiently good (v�est < χ2ðp ¼ 0:05; df ¼ 582Þ), described in
detail in the “uncertainty estimation” section. While estimating the
model uncertainty, we also collected the parameter set giving the
best agreement with the testing dataset. We found that the best
model agreement to the testing data was statistically acceptable
(v�test ¼ 20:65< χ2ðp ¼ 0:05; df ¼ 16Þ ¼ 26:30). The full description
and graphical representations of the model agreement to data is
given in the Supplementary Information, in the “Recreation of the
model agreement to data and tests from previous works” section.
After testing the model, we included both the estimation and

testing data into an extended set of data. We tested if the model
could explain the extended set of data sufficiently well. We found
the model agreement to the extended data to be acceptable
(v�ext ¼ 654:81< χ2ðp ¼ 0:05; df ¼ 598Þ ¼ 656:00), and thus
decided to use the connected model as a core for further
extensions. The model agreement to the extended data is shown
in Figs. 3–5. We again estimated the model uncertainty by finding
the maximal and minimal simulation values in each time point for

each experiment, while simultaneously requiring the agreement
with the extended set of data to be sufficiently good
(v�ext < χ2ðp ¼ 0:05; df ¼ 598Þ), described in detail in the “uncer-
tainty estimation” section.
Finally, we tested if the connection rendered any large changes in

the individual submodels, by testing the connected model’s ability to
explain the individual datasets. The combined model, when trained
on the full set of data, was slightly worse at describing the individual
datasets, relative to the individual models trained on only the
individual datasets. Neither the agreement to the glucose uptake
dataset (v�glu ¼ 378:14< vext ¼ 410:95< χ2glu ¼ 441:28), the lipolysis
dataset (v�lipo ¼ 163:20< vext ¼ 178:60< χ2lipo ¼ 181:77) nor the adi-
ponectin release dataset (v�adi ¼ 40:0< vext ¼ 65:3< χ2adi ¼ 69:8) lead
to the rejection of the connected model when using the parameter
set trained to the full dataset.

The core model can reproduce both the normal and T2D
condition using the same set of parameters
The values kinetic parameters of the model were kept constant
between the normal and type 2 diabetic condition simulations.
The type 2 diabetic condition was simulated in the same way as in
the original works by changing the initial values for 6 states in the
model: (1) IR was reduced by 45%17, (2) GLUT4 was reduced by
50%17, (3) FOXO1 was reduced by 45%18, (4) AS160 was reduced
by 55%18, and 6) S6 was reduced by 52%18. Furthermore,
two parameters were used to reduce the effect of mTORC1 on

Fig. 1 Overview of traditional approaches and the developed approach. In the field of systems biology, typically small mechanistic models
of high confidence are developed. These dynamical models can be used to make time continuous predictions such as to simulate new
experiments, e.g., a new drug intervention. However, they are slow to develop and are thus not suitable for analyzing omics data. Conversely,
large omics data are commonly analyzed using statistical models within the field of bioinformatics using tools that are much faster than the
slow development of the mechanistic models. However, the networks generated from such methods are typically not (time) continuous, and
the individual interactions are often put together to a network in a less rigorous manner than in the small scale mechanistic models. In our
approach, we first manually combine three separate mechanistic models into a connected core model. This core model is then expanded
automatically using omics data and lists of interactions. During this expansion, we gradually introduce lower confidence additions. Thus, we
end up with an expanded model with a highly confident core with layers of gradually decreasing confidence, with the possibility to simulate
experiments on a large portion of the phosphoproteome. Relative to the ordinary way of developing mechanistic models, this expansion is
fast, and is able to construct a model consistent with data and prior knowledge within a time-frame of days rather than years.
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IRS1-S307 phosphorylation17 and the reesterification of fatty acids
to triglyceride (TAG)22, symbolized by the red arrows with flat
arrowheads in Fig. 2. These two scaling parameters were allowed
to vary between 0 (full blockage) and 1 (no effect) during the
parameter estimation, but where kept constant in the simulation
of the type 2 diabetic condition. We refer to the original
works17–19,22,23 for the rationale on these changes in the type 2
diabetic condition.

The connected core model can predict the effect of the
crosstalk: the effect of isoprenaline on glucose uptake
With the connected core model, we can now make predictions
how inputs from one submodel affect the function of another
submodel. For example, we can now predict how isoprenaline
stimulation affects the glucose uptake. We did this by
predicting the dose response of insulin on the glucose uptake,
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Fig. 2 The submodels and the connected core model of adipocyte signaling. By connecting models of A glucose uptake in response to
insulin (ins), B fatty acid (FA) and glycerol release in response to α- and β2-adrenergic receptor signaling, and C adiponectin secretion in
response to cAMP, ATP and Ca2+ (added inside the cell with a pipette) and extracellularly stimulated β3-adrenergic receptor signaling a core
model (D) was created. The model includes key differences between signaling normally and in type 2 diabetes. Additional inputs to the
models include phentolamine (phe), isoprenaline (iso), epinephrine (epi), and CL 316243 (CL).
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with or without isoprenaline added (Fig. 6). Our predictions
show that 10 nM isoprenaline increases the glucose uptake
both without insulin and with low doses of insulin. However,
above 10 nM insulin, glucose uptake is maximal and cannot
further be augmented by isoprenaline. Similar observations
have been observed in e.g., rat adipocytes25. Furthermore, our
predictions also show the same effect of isoprenaline on
glucose uptake in the type 2 diabetic condition, but the
augmenting effect is halted at a lower concentration of insulin.
This prediction highlights the benefits of connecting the
submodels, by enabling simulations that was not previously
possible by the individual submodels.

From the core model to the comprehensive mechanistic
model of adipocyte signaling
To go from the core model to the comprehensive adipocyte, we
use phosphoproteomic data for the time-resolved insulin
response in 3T3-L1 adipocytes26. The phosphoproteomic dataset
contains 37,248 phosphosites on 5705 proteins, of which 15% are
insulin responding. After removing sites with only a single repeat

in any time point, the dataset contained 5909 sites on 1937
proteins. Prior knowledge on possible protein–protein interactions
was collected using the python package OmniPathDB3, which
compiles a list of interactions from several sources, such as
Reactome and PhosphoSitePlus. The list includes a confidence
level in the sense of number of primary sources that have studied
each interaction.
We first decided whether to employ a top-down or a bottom-up

approach. By filtering the list of interactions to only include
interactions where phosphoproteomic data were available, we
could estimate the size of the maximal model if constructed using
all available interactions with data. Such a model would contain
6642 states and 59169 parameters, assuming each phosphoryla-
tion site can switch between a phosphorylated and an unpho-
sphorylated state, returning to the unphosphorylated state using a
single parameter, and that each input in the list of interactions
would contribute with one parameter. Clearly, the amount of
unknown parameters would be too many to optimize using even
the most state-of-art methods. We thus conceived a bottom-up
approach instead.
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Fig. 3 Model agreement with the insulin signaling data. Data comes from isolated human adipocytes stimulated with insulin in different
doses and for different times18. In all panels, lines represent the model simulation with the best agreement to data, the shaded areas represent
the model uncertainty, and experimental data points are represented as mean values with error bars (SEM). Simulations and experimental data
in red correspond to experiments under type 2 diabetic conditions, and in blue under non-diabetic conditions. The model agreement was
assessed with a χ2-test, as described in the “Statistical analysis” section.
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We divided the phosphoproteomic data into two sets as done
by the authors in ref. 26: one set with sites responding to insulin
stimulation and another set with sites not responding to insulin
stimulation, based on if the sites are effected by inhibitors of PI3K
and PKB. We refer to these datasets as responders or nonresponders
respectively. For our model expansion, we started with the
responder data.
Using a pairwise approach, we expand the core model towards

the comprehensive mechanistic model in multiple layers (Fig. 7).
We refer to the additions of all adjacent sites as the addition of a
layer of sites to the model. For the first layer, we start with the core
model and add phosphorylation sites by identifying the sites that
are adjacent to the core model given the prior knowledge about
the interactions. We start with interactions of the highest
confidence, i.e., with the most (20) primary sources. From that
level of confidence, we test in a random order if the
phosphorylation sites can be added using interaction from the
core model as input. Once no more adjacent proteins could be
added to the layer, we save the layer and use the layer to find new
adjacent sites. This layered addition of sites is continued until no
more sites could be added to the model.
Once no more sites could be added to the model, we also

included the interactions with the second-highest number of
primary sources and attempted to add adjacent sites. We
continued to include interactions with a lower confidence in a
stepwise manner until no more sites could be added even with
the interactions with the lowest number of primary sources. Using

the responder data and all interactions, we added 254 sites to
the model.
We then used all of the data (including the nonresponders), and

again started with the interactions with the highest number of
primary sources. Again, we step-wise included interactions with a
lower number of primary sources. Using all data and all
interactions, we could add 1957 additional sites, to a total of
2211 sites. When no more interactions could be added using all
the data and all the interactions, we continued to add sites not yet
included in the model using a data-driven approach. Here, we
created a new list of potential interactions, based on the
agreement between the simulations of the sites in the expanded
model with the experimental data of the sites that had not been
added. Using the data-driven approach, we could add 848
additional sites, to a total of 3059 sites structured into a total of
57 layers (Fig. 8). The final expanded model contains 6288 states
and 6537 parameters. The parameter values were trained using
24472 time-resolved data points with a single input (insulin
stimulation) and using 5201 data points with two other
independent input signals (insulin stimulation combined with
either the MK or LY inhibitor) as validation.
We collected the added proteins into a list, and sorted the list

by the first expansion layer in which any of the protein’s
phosphorylation sites were added. We then ran the list through
gProfiler27 as an ordered query with mus musculus as the target
organism. As a result, “response to insulin" (GO:0032868, p-value:
2.2 ⋅ 10−30) and “insulin signaling” (KEGG:04910, p-value:
3.9 ⋅ 10−28) were identified as important terms. For comparison,

Fig. 4 Model agreement with the lipolysis data. Released glycerol (left) was measured using microdialysis in the adipose tissue in situ43. All
other data (middle, right) of released glycerol, released fatty acid (FA), phosphorylation of hormone-sensitive lipase (HSL) on Serine 552, and
phosphorylation of protein kinase B (PKB) on serine 308 or threonine 473 were measured in isolated human adipocytes23. In all panels, lines
represent the model simulation with the best agreement to data, the shaded areas represent the model uncertainty, and experimental data
points are represented as mean values with error bars (SEM). Simulations and experimental data in red correspond to experiments under type
2 diabetic conditions, and in blue under non-diabetic conditions. Dashed lines and experimental data with open triangles were not used to
estimate the model parameters. Light/dark gray horizontal bars indicate adrenergic stimulation with epinephrine (epi) or isoprenaline (iso),
and black horizontal bars in the left figures indicate insulin (ins) stimulation. The model agreement was assessed with a χ2-test, as described in
the “Statistical analysis” section.
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we also ran the same test with the same proteins but in a
randomized order, without finding the terms as important
(“response to insulin”, GO:0032868, p-value: 1.8 ⋅ 10−21 and “insulin
signaling”, KEGG:04910, p-value: 1.1 ⋅ 10−9). In summary, these
results indicate that our method is indeed able to capture the
relevant pathways for insulin signaling.

Predicting inhibitions. To test the validity of the expanded
model, we made predictions by simulating the change in the
insulin response with a PKB inhibitor and with a PI3K inhibitor,
and compared the predictions to experimental data for the
insulin response in the presence of the PKB inhibitor MK2206

and the PI3K inhibitor LY294002, gathered in the same study as
the large-scale time series data26. Since the model was
expanded using both interactions and data with different levels
of confidence, we evaluate the model’s predictive capabilities on
a layer-to-layer basis. The simulated time series of all phosphor-
ylation sites, and the effect of the inhibitors, can be found in the
Supplementary Information, in the “Time series of all sites added
to the model” section. The model is able to correctly predict the
direction of the two separate inhibition experiments in a
majority of all sites, in all confidence layers (Fig. 9). Note that
the model predictions are the most accurate when the most
confident interactions and data are used, and that the accuracy
of the predictions fall as the confidence is decreased (when
going from left to right in Fig. 9a, b). Since the model expansion
is done using the most confident interactions and data first - and
then gradually decrease in confidence - it is clear that additions
with higher confidence give the most accurate model predic-
tions (left to right in Fig. 9a, b).

Simulating type 2 diabetes. Since the connected model used as a
core for the automatic model expansion could simulate type 2
diabetes, we can now simulate how the effect of type 2 diabetes
would spread to a large portion of the phosphoproteome. We
evaluated the effect of type 2 diabetes by simulating the
response to insulin, but now in a type 2 diabetic condition. In
practice, we simulated the type 2 diabetic condition as
described in the section “The core model can reproduce both
the normal and T2D condition using the same set of
parameters”. The time-resolved comparison between normal
and type 2 diabetic conditions are shown for the first 15 added
phosphosites in Fig. 10, and for all phosphosites in the
Supplementary Information, in the “Time series of all sites
added to the model” section. Furthermore, we quantified the
change between normal and type 2 diabetic conditions by
finding the fold change relative to the normal condition at
t= 20 min (Fig. 11). The quantified effect is also available in
Supplementary Data 1.

DISCUSSION
In this work, we present a methodology for automatic model
expansion from a dynamic core model to include large-scale
data and keep track of the level of confidence of both data and
interactions (Fig. 7), showcased in the context of adipocyte

Fig. 5 Model agreement with the adiponectin exocytosis data. Data represent patch-clamp capacitance recordings in 3T3-L1 adipocytes22.
In all panels, lines represent the model simulation with the best agreement to data, the shaded areas represent the model uncertainty, and
experimental data points are represented as mean values with error bars (SEM). Stimulation included epinephrine (EPI), CL β3-adrenergic
receptor agonist CL 316243 (CL), cAMP, calcium (Ca2+), and ATP. The model agreement was assessed with a χ2-test, as described in the
“Statistical analysis” section.

10 -11 10 -9 10 -7

[Insulin] (M)

50

100

%
 o

f m
ax

Glucose uptake

Normal:   0 nM iso
Normal: 10 nM iso
T2D:   0 nM iso
T2D: 10 nM iso

Fig. 6 Predicting the effect of isoprenaline on glucose uptake. The
model predicts that 10 nM isoprenaline (iso) increases the glucose
uptake both without insulin and with low doses of insulin. However,
above 10 nM insulin, glucose uptake is maximal and cannot further
be augmented by isoprenaline. Lines correspond to the simulated
glucose uptake as the response to insulin stimulation, where the
uptake is expressed as the percentage of the maximal uptake. Solid
lines correspond to the glucose uptake in the absence of isoprena-
line, and dashed lines correspond to glucose uptake in the presence
of 10 nM isoprenaline. Both insulin and isoprenaline were added at
time point 0, and the response was measured after 30min. Blue and
red lines correspond to normal or type 2 diabetic (T2D) conditions
respectively.
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signaling. In the methodology, the new data is added in parallel
in layers, to reduce computation time and allow for thousands of
added time-resolved measurements. To create a connected
high-confidence core model of adipocyte signaling, we have
connected major events related to lipolysis, glucose uptake, and
adiponectin release into a connected model (Fig. 2). This
connected model, developed herein, agrees with numerous
observations from adipocytes (Figs. 3–5). From the core model,
we use our methodology to add layers of experimentally
measured phosphosites26 based on a list of possible interac-
tions, including level of confidence, compiled using Omni-
PathDB3. The developed methodology allows for combining
detailed mechanistic models, common in the field of systems
biology, with large-scale data, traditionally analyzed in the field
of bioinformatics, thus acting as a bridge between such
methods.
The biological relevance of a comprehensive model of

adipocyte signaling is related to type 2 diabetes. Insulin
resistance is a hallmark of type 2 diabetes, and the core of the
model describes in detail the intracellular insulin resistance of
adipocytes (Fig. 3). A major function of adipocytes is to act as an
energy reserve for other organs, i.e., to store and release fatty
acids. The release of fatty acids is increased in type 2 diabetes,
due to a decrease in reesterification (Fig. 4). Also, high levels of
circulating adiponectin has been associated with a reduced risk
of type 2 diabetes28, and an increased insulin sensitivity29. All of
these processes have already been established in detail in

models, and here we provide a connection including crosstalk
that allow for their simultaneous simulations. Even more
importantly, we provide a link between these highly established
processes to the whole phosphoproteome, where the model
allows anyone to simulate, e.g., the effect of a drug. We provide
a type 2 diabetes version of the model (Figs. 10 and 11), and
therefore the model can be used to predict the effect of anti-
diabetic drugs throughout the adipocyte. In several efforts (e.g.,
refs. 30,31), plasma omics measurements of diabetic patients
have been related to clinical parameters using statistical models.
Such models provide important insight to relations between
clinical parameters and specific proteins and/or genes, and can
be used for classifications of patient groups. Such purely
statistical models cannot, however, go beyond the data used
for training to e.g., simulate the effect of new treatments.
The created comprehensive model has a layered level of

confidence based on both interactions and data (Fig. 8). Most
of the data from the insulin signaling models18,22 comes from
isolated primary adipocytes from non-diabetic and type 2
diabetic patients, where protein levels and activities have been
measured using antibodies and the western blot technique.
The adiponectin release and phosphoproteome data instead
comes from the 3T3-L1 adipocyte cell line, where the release of
adiponectin was measured using a patch-clamp technique, and
the protein phosphorylations were measured with mass-
spectrometry. Furthermore, the small-scale data (western blot
and patch-clamp) are typically more reliable since there are

Fig. 7 Overview of the developed approach. At the core of the method is our connected model. Outside the core connected model, there
exists phosphoproteomic data (gray circles) not covered by the model. Using lists of interactions and our automatic model expansion
algorithm we are able to add parts of this phosphoproteomic data, for proteins adjacent to the core model to create an expanded model that
can be used to simulate scenarios. In step 1, the method find all phosphosites that are adjacent to the model using a set of allowed
interactions. The possible additions are subdivided into independent parallel subproblems. In step 2, the methods tests the possible
additions, first using only a single input in step 2a, then using dual inputs in step 2b. The additions are evaluated based on the agreement to
data, exemplified using the two time-series plots, where dots with error bars correspond to experimental data and solid lines correspond to
simulations of the new addition using inputs from the model. If the agreement is good enough, the potential addition is added to the model.
After step 2, all approved additions are collected and added as a new layer in the model in step 3. Including the new layer, the method checks
for additional possible additions. If any adjacent site exists, the method returns to step 1 and finds all possible additions. If no possible
additions exist, the method allows additional interactions of a lower confidence in step 4 and again checks for possible additions. When
interactions of all confidence levels have been included and there exists no more adjacent sites that can be added to the model, the
expansion is stopped. Finally, the expanded model can used to simulate new scenarios in step 5.
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more repeats (typically n= 5−15) compared to the large-scale
phosphoproteomic data (n= 0−3) per measurement. The
additions in the expanded model is based on interactions
with varying degrees of confidence. During the expansion, we
first start with the interactions with the highest confidence,
and then incrementally allow interactions with lower con-
fidence (Fig. 9).
The development of new mechanistic ODE-based models for

biological systems is a long and iterative process. The develop-
ment of an ODE-based model typically starts with finding or
collecting data, and formalizing a hypothesis based on the
observation in the data for some biological system. The
hypothesis is translated into a mathematical model, which is
tested and refined, typically in many steps. The development of
the models included in the core model here, as well as the
gathering of corresponding data, have taken us and our
collaborators decades of work. Thus, it is not feasible to cover

the entire phosphoproteome with consistent high quality data
and mechanistic ODE-based models. The developed automated
methodology, therefore, provides a reasonable trade-off
between confidence in the model and the coverage of the
phosphoproteome (Fig. 7).
The most confident part of the model is the connected core

model, which agrees with the full set of original experimental
data sufficiently well (Figs. 3–5), supported by a χ2-test:
v�ext ¼ 654:81< χ2ðp ¼ 0:05; df ¼ 598Þ ¼ 656:00. However, at
the same time the optimal cost (v�ext) is close to the threshold
of rejection (from 654.81 to 656.00). This means that only
changes in the parameter values resulting in a maximum cost
increase by 1.19 is accepted when estimating the model
uncertainty. In other words, a cost increase by around 0.2%.
This narrow range of acceptable increases of the cost before
rejection directly translates to a model uncertainty that is also
narrow. We do not believe this narrow uncertainty to be the

1 57
layer

core

Fig. 8 The comprehensive model of adipocyte signaling. The network structure of the expanded model, color coded by the order addition
for the 60 added layers in blue. The core model is shown in yellow. Additions with high confidence is shown in dark blue, and additions with
lower confidence in light blue. The full network is also available in Supplementary Software 1. The simulations and experimental data for all
phosphosites in the model are available in the Supplementary Information, in the “Time series of all sites added to the model” section.
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result of failed optimizations, but rather due to that only a small
increase in the cost is allowed. Consequently, the model is given
a larger freedom with the estimation dataset (Supplementary
Figs. 1–3), due to fewer data being used, resulting in a larger
uncertainty. Simultaneously, the best agreement to either the
estimation or full datasets are highly similar, since extended set
of data consists mostly of data from the estimation dataset.
Perhaps alternative thresholds of rejection should be consid-
ered, such as allowing a cost increase from the optimal cost
corresponding to one degree of freedom (χ2(p= 0.05, df= 1)=
3.84). Anyway, the model is accepted and large-scale which
provides a key and necessary criterion for a valuable explanatory
model. Furthermore, we showed the extended model’s pre-
dictive capability using independent inhibition data which
indeed yielded largely correct predictions, which further
strengthens the validity of the large-scale predictions.
We showcased the usefulness of the model by predicting the

change in phosphorylation levels in type 2 diabetic condition.
These predictions could not be tested against experimental data
and are as such predictions of lower reliability. When time-
resolved experimental data of phosphoproteome changes in
response to insulin in the type 2 diabetic condition becomes
available, such data can be used to test the model and to
increase its reliability. While experimental data are the gold
standard for observing the behavior of biological systems, the
model could still be useful even when such data are eventually
available. Since the data is typically time-discretized while the
model is time-continuous, it can be used for predicting what is
happening in between experimentally measured data points, or

what happens given different conditions, for example, a
different insulin dose.
Another way to increase the reliability of the full expanded

model could be to further refine the core model by including
additional processes and origination points for further expansion.
While the core model explains processes like glucose uptake,
lipolysis, and adiponectin release, it does not currently contain
other important processes like leptin and resistin secretion, or
insulin stimulated lipogenesis. Including such additional processes
would improve both the core model and the expanded model,
and are relevant future extensions of the model.
The presented expanded model is a model that is consistent

with both experimental data and prior knowledge, but it also is
not the final model for the phosphoproteome. Rather, the model
is one acceptable explanation the dynamics of a large part of the
insulin stimulated phosphoproteome. Training the model on
additional large-scale time-resolved data, including additional
perturbation data, when such data becomes available will result
in a different (and more reliable) expanded model. We here
present a way of integrating experimental data from different
conditions into a cohesive framework that is consistent with
prior knowledge.
While the developed method is able to generate an extended

model that is consistent with both experimental data and prior
knowledge, there are still some limitations to the models. Firstly,
some core model is necessary to start the automatic expansion. In
practice, this might not be an issue, since most signaling pathways
have at least some small-scale detailed model available. Further-
more, it would also be possible to start with a minimal core as
long as the model can respond to the inputs (such as responding

 

 

Fig. 9 The predictive ability of the comprehensive model. For each added layer, we compute the predictive ability of the model using
independent inhibitor data. a shows the ability of the model to correctly predict the direction (inhibitory or stimulatory) for the effect of PKB
inhibition at 20min after insulin stimulation, for the automatically added phosphosites. b shows the ability of the model to correctly predict
the direction (inhibitory or stimulatory) for the effect of PI3K inhibition at 20 min after insulin stimulation, for the automatically added
phosphosites. c shows the total number of added phosphosites. Vertical black lines correspond to when additional (nonresponder) data and
purely data-driven interactions were allowed.
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to insulin in this case). Still, the use of a reliable core model is also
a strength of the method, because it establishes a reliable
foundation for the construction of the expanded model, and it
increases that chance that the model can capture the intricate
dynamics of biological systems. Another limitation is related to the
availability of large-scale data and prior knowledge of the
interactions in the studied system. Unfortunately, large-scale
datasets measured using a high number of repeats and at many
time points are not available, and detailed information on the
interactions in the system are also typically not available in the
prior knowledge. Instead, the prior knowledge typically only
contains information on the level of which proteins interact with
each other, and not how phosphorylations on specific sites on
proteins influence the phosphorylation of sites on other proteins.

The developed method herein resembles our previously
developed method (LASSIM2). The previous method also consisted
of a core model used to describe additional constituents of a
biological system. The most significant change in the current
developed method, is that we now expand the model in an
iterative fashion, and that we now use prior knowledge to guide
the model expansion. We now also use prior knowledge of the
interactions with different levels of reliability, and keep track of
the corresponding reliability of the expanded model.
A remaining issue in the method developed herein is that the

expanded model will always be constructed in a feed-forward
manner. In other words, that new additions will not feed back to
previous additions. Such feedbacks are potentially important for
the dynamic behavior of many measured phosphosites, and such
phosphosites will not be correctly represented with the method.
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Fig. 10 Simulations and data for the first 15 added sites of the comprehensive model. In all panels, blue lines represent model simulation
with the best agreement to data and experimental data points are represented as mean values with error bars (SEM). Individual data points
are shown as empty circles. Red lines are simulations of the type 2 diabetic conditions, and these simulations are model predictions without
corresponding data. All model simulations of the effect of type 2 diabetes are available in the Supplementary Information, in the “Time series
of all sites added to the model” section. The model agreement was assessed with a χ2-test, as described in the “Statistical analysis” section.
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To further develop the method to include key feedback signals
would therefore be an important future step.
Alternative attempts at modeling the phosphoproteome

have been made, such as the machine learning clustering
analysis in the original work that collected the phosphopro-
teome data used herein26, or the PhosR method for identifying
“signalomes” from the same research group32. Other attempts
include the multi-omics analysis method MEPHISTO33, or the
employment of protein-protein interaction databases to infer
time-dependent kinase-substrate relationships34. However, to
the best of our knowledge, none of these methods are able to
explain the time dynamics of the phosphoproteome using a
mechanistic approach. Furthermore, they are not able to
simulate new situations and make predictions, something our
expanded model is able to do.
Another approach to model human adipocytes on a large scale

is the use of genome-scale metabolic models35. Such models
provide another view on adipocyte changes in obesity and type 2

diabetes. These models integrate genomics, transcriptomics, and
proteomics data and apply to a fixed metabolic map based on
known human metabolic reactions. Such models are complemen-
tary to the work herein since they do not consider the signaling
pathways, and our approach does so far not include metabolic
reactions. We are currently gathering labeled metabolite data for
metabolic flux analysis from human adipocytes. These data will be
integrated in the next version of the comprehensive adipocyte.
The developed method is not limited to adipocyte signaling,

and could be applicable to other biological systems which have a
signaling cascade originating from a well-define core, perhaps
most simply other systems of signal transduction via phosphor-
ylations, where large-scale experimental time-series data is
available. Some such examples could be FGF21 signaling in
mice36, or human stem cell differentiation37.
In summary, we here present a method that can scale small-

scale dynamic models to the omics level, while still preserving the
dynamic qualities of the model. Our method can integrate data

-1 1

Fig. 11 The effect of type 2 diabetes propagated to all sites in the expanded model. The color code goes from red corresponding to
decreased signaling, to green corresponding to increased signaling in type 2 diabetes. White corresponds to no, or low, effect. The full
network is also available in Supplementary Software 1. The simulations and experimental data for all phosphosites in the model is available in
the Supplementary Information, in the “Time series of all sites added to the model” section.
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from different sources into a cohesive framework, and can be
further extended when additional data becomes available in the
future. The expanded model can be used to predict events, such
as perturbations by an inhibitor or a drug, and the changes to the
signaling network as a response to a disease. Furthermore, the
method should be applicable to other biological systems where
detailed small-scale models, and omics-level data, are available.

METHODS
Data collection and filtration
We used publicly available data, both data previously used to
develop our models of glucose uptake, lipolysis, and adiponectin
release17,18,21,22 and from other sources26.
For the newly used phosphoproteomic data26, we excluded

sites where any time point had less than two repeats and then
calculated the mean and standard error of the mean. For the
inhibition data, sites with less than two repeats, or with an unclear
effect of the inhibition (such that the uncertainty covered both an
increase and a decrease) were ignored when the prediction
accuracy was calculated. Furthermore, we divided the data into
two groups (responders and nonresponders to insulin) based on the
original classification done by the authors of the phosphopro-
teome work26.

Quantifying the model agreement to experimental data
In order to evaluate the model’s performance, we quantified the
model agreement to data using a function typically referred to as
a cost function. In this case, we used the normalized sum of
squared residual as cost function (Eq. (1)).

vðθÞ ¼
X

t

yt � ŷtðθÞ
SEMt

� �2

(1)

Here, v(θ) is the cost for the set of parameter values θ, equal to the
sum of the normalized residual over all measured time points, t; p
is the parameters; yt is the measured data and ŷtðθÞ is the model
simulations; SEMt is the standard error of the mean for the
measured data.

Statistical analysis
To reject models, we used the χ2-test with a significance level of
0.05. We used 582 degrees of freedom for the original training
data leading to a threshold for rejection of χ2(p= 0.05, df= 582)
≈ 639.23. For the extended set of experimental data including all
the experimental data from the connected model we used 598
degrees of freedom, resulting in a threshold for rejection of
χ2(p= 0.05, df= 598) ≈ 656.00. Any combination of model and
parameter set that results in a cost (Eq. (1)) above the threshold
must be rejected. If no parameter set exists for a model that
results in a sufficiently low cost, the model structure must be
rejected. We assumed the measurement noise to be additive and
normally distributed.
For the automatic model expansion, we allowed additions to

the model where the cost for the tested phosphorylation site was
below χ2(0.05, 8) ≈ 15.5.

Optimization and software
We used MATLAB R2021a (MathWorks, Natick, MA) and IQM tools
(IntiQuan GmbH, Basel, Switzerland), a continuation of SBTOOL-
BOX238, for modeling. IQM tools uses CVODES39 to numerically
integrate the ODEs. The parameter values were estimated using
the enhanced scatter search (eSS) algorithm from the MEIGO
toolbox40. We allowed the parameter estimation to freely find the
best possible combinations of parameter values, within

boundaries. Both the optimal parameter values and the bounds
for the parameter values are given in Supplementary Tables 1–3.

Uncertainty estimation
To estimate the model uncertainty, we employed the formulation
of the uncertainty estimation problem as described in ref. 41 and
implemented in refs. 21,22. In short, we estimated the model
uncertainty by maximizing or minimizing a specific model
prediction p̂ (such as the simulation of an experiment at a specific
time point), while requiring that the model agreement with data is
sufficiently good (the cost being less than the χ2-limit) (Eq. (2)).

minimize p̂

subject to vðθÞ � χ2
(2)

Here, some prediction p̂ is minimized to find the lower bound on the
value of the prediction, while requiring the cost v(θ) to be below the
χ2-threshold. To get the upper bound of the prediction, the problem
in Eq. (2) can be solved as a maximization problem. In practice, we
solved the maximization problem as a minimization problem by
changing the sign of the objective function (Eq. (2)) to �p̂.
Furthermore, we relaxed the constraint (Eq. (2)) into the objective
function as a penalty term offset by jp̂j, scaled with the absolute
value of the prediction given the optimal parameter set p̂ðθ�Þ if
v(θ) > χ2 (Eq. (3)).

minimize p̂þ penalty

subject to penalty ¼ jp̂j þ jp̂ðθ�Þj � ð1þ jvðθÞ � χ2jÞ; if vðθÞ>χ2
0; otherwise

�

(3)

Automatic model expansion
To do the automatic model expansion, we created an algorithm
which is outlined as pseudocode in Algorithm 1. In essence, we
create an expanded model by iteratively adding proteins to the
core model by identifying the proteins that are closest to, but not
yet in, the model, and test if they can be added to the model in a
pairwise fashion. This was done using phosphoproteomic data
collected using mass-spectrometry26, and a list of protein-protein
interactions compiled using the python package OmniPathDB3. In
detail, we find all proteins that are adjacent to the model, i.e.,
having at least one direct interaction in the list of interactions
going from the model to the proteins. Using the list of adjacent
proteins and corresponding prior knowledge interactions, we test
if the proteins can be added to the model one by one (in parallel).
In practice, each addition of an adjacent protein is tested using
three different types of interactions. Firstly, we test if the
interaction can be a single pairwise interaction corresponding to
a phosphorylation, a dephosphorylation, or a saturated phosphor-
ylation of the adjacent protein. Secondly, we test if the interaction
must be a double interaction with two different inputs (double
phosphorylation, double dephosphorylation or one phosphoryla-
tion with one dephosphorylation). Lastly, we test if the interaction
results in a phosphorylation leading to a subsequent secondary
state (such as an internalization) before returning to the unpho-
sphorylated state. The adjacent proteins and interactions are
tested by comparing the model simulation of the adjacent protein
with the available experimental data. All adjacent proteins where
the model simulations agree with the data sufficiently well are
added to the model. We refer to the addition of the adjacent
proteins that agree with data sufficiently well as the addition of a
layer to the model. Once one such layer have been added to the
model, we repeat the process of finding and adding another layer
of adjacent proteins. For subsequent addition of layers, proteins in
the previous layers are also used to find the new adjacent
proteins.
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Algorithm 1. Automatic model expansion
I← prior knowledge of protein-protein interactions
PM← all proteins in model
PA← all proteins adjacent to model, given I and PM
valid interactions ¼ ;
layer← 0
while PA≠; do
for pA in PA do
IA← interactions from PM to pA in I
for i in IA do ⊳ Interactions already tested are not

tested again
valid← test_pairwise(i)
if valid then
valid_interactions= valid_interactions+ i, return

end if
end for
if not valid then
i1← best i from pairwise loop
for i2 in IA do
valid← test_double(i1, i2)
if valid then
valid_interactions= valid_interactions+ i1+ i2, return

end if
end for

end if
if not valid then
for i in IA do ⊳ Interactions already tested are not

tested again
valid← test_extra_state(i)
if valid then
valid_interactions= valid_interactions+ i, return

end if
end for

end if
if valid then
PM= PM+ pA,

end if
end for
PA← all proteins adjacent to model, given I and PM
layer= layer+ 1

end while
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