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thereof) of curriculum learning and
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Learning from only real-world collected data can be unrealistic and time consuming

in many scenario. One alternative is to use synthetic data as learning environments

to learn rare situations and replay bu�ers to speed up the learning. In this work, we

examine the hypothesis of how the creation of the environment a�ects the training

of reinforcement learning agent through auto-generated environment mechanisms.

We take the autonomous vehicle as an application. We compare the e�ect of two

approaches to generate training data for artificial cognitive agents. We consider the

added value of curriculum learning—just as in human learning—as a way to structure

novel training data that the agent has not seen before as well as that of using a

replay bu�er to train further on data the agent has seen before. In other words,

the focus of this paper is on characteristics of the training data rather than on

learning algorithms. We therefore use two tasks that are commonly trained early

on in autonomous vehicle research: lane keeping and pedestrian avoidance. Our

main results show that curriculum learning indeed o�ers an additional benefit over

a vanilla reinforcement learning approach (using Deep-Q Learning), but the replay

bu�er actually has a detrimental e�ect in most (but not all) combinations of data

generation approaches we considered here. The benefit of curriculum learning does

depend on the existence of a well-defined di�culty metric with which various training

scenarios can be ordered. In the lane-keeping task, we can define it as a function of

the curvature of the road, in which the steeper and more occurring curves on the

road, the more di�cult it gets. Defining such a di�culty metric in other scenarios is

not always trivial. In general, the results of this paper emphasize both the importance

of considering data characterization, such as curriculum learning, and the importance

of defining an appropriate metric for the task.

KEYWORDS

data generation, curriculum learning, cognitive-inspired learning, reinforcement learning,

replay bu�er, self-driving cars

1. Introduction

Autonomous vehicles such as self-driving cars operate in the real world, which means that

the driving agent has to handle a wide range of different tasks and scenarios such as lane

following, negotiating traffic and intersections, communicating (explicitly or implicitly) with

pedestrians, etc. Since all these situations are safety-critical, it is also critical that the autonomous

vehicle is capable of handling them in all foreseen and unforeseen guises. For example, when

negotiating intersections, it must be able to handle any type of intersection, various traffic loads,

the potential presence of pedestrians, and other vulnerable road users, and so on.

As with all such real-world situations, it is not feasible (nor desirable to attempt) to

fully and completely anticipate all possible situations that an autonomous vehicle might

possibly encounter. Therefore, fully hard-coded solutions are simply impractical (Da Lio et al.,

2017) and a significant portion of the research on autonomous vehicle control focuses on
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machine learning approaches, such as deep learning, to design

a controller that can learn the appropriate skills. Deep learning,

generally speaking, has been hugely successful in many tasks that are

relevant for autonomous vehicles, most famously image processing

(Geiger et al., 2013; Wali et al., 2015; Grigorescu et al., 2020). End-

to-end deep networks are also successful at learning how to map

sensory inputs onto motor outputs for the control of simple agents

(Bojarski et al., 2016; Chen andHuang, 2017; Haavaldsen et al., 2019).

These advances are possible because the innovations in deep neural

networks (compared to earlier approaches) increased their ability to

extract relevant data in the training set. The flip side of the coin is,

however, that this places a large onus on the training set used: while

we can be relatively confident that a modern deep learning algorithm

will make close to optimal use of the training set, it cannot go beyond

what the quality of the training set affords. One way this is dealt with

traditionally is by having extremely large data sets (given that the

available computing power is now at a point where their processing

is feasible). However, for many real-world applications, collecting

such data sets is usually not practical and often not possible even in

principle. When it comes to autonomous vehicles, part of the reason

is that critical situations are also rare: no amount of driving in sunny

conditions can result in data on how to handle a spot of black ice in a

corner at night.

While it is therefore possible to train controllers that do

reasonably well in most common situations (the state-of-the-art of

which can be observed at any time by evaluating the performance of

commercial products), dealing with rare events that are both unlikely

to be encountered often enough to be relevant in training data and

critical in terms of safety remains a challenge. In robotics, attempts

exist to address this challenge through reinforcement learning (RL),

where the agent is given feedback on the quality of the actions taken

and thus able to adapt. Rare situations can thus be trained explicitly

when the agent encounters them. At the same time, it is clear that

this cannot take place in the real world given the consequences of a

poor decision on behalf of the controller (Zhao et al., 2020). There

is thus a significant interest in training controllers for autonomous

vehicles in simulation with auto-generated scenarios. Such scenarios

can be entirely new situations or variations of actually encountered

rare events to increase robustness (Da Lio et al., 2017). For example,

initial training in tasks like lane-keeping could involve entirely new

situations (if the vehicle encounters certain curvatures for the first

time). A rare event, meanwhile, could concern a pedestrian crossing

the street unexpectedly, where variations on speed of the pedestrian,

location, degree of occlusion through other objects, and so on, could

then be simulated.

An important distinction between deep learning and

reinforcement learning concerns how the training phase should be

structured given the mechanisms by which the agent actually learns

in each. Deep learning is largely supervised and focuses on learning

correct associations between inputs and outputs by providing a

training set that contains both the input and the expected output

for that input. For that reason, it is common to randomize the

elements in the training set so that the algorithm can generalize over

the entire set. In reinforcement learning, the agent learns through

interactions with the world. Therefore, it is important to structure

these interactions appropriately during training. For example, a fully

untrained model might struggle to learn how to deal with particularly

complicated situations, while a model that has mastered the basics

can fare better (Kulkarni et al., 2016). Another issue is catastrophic

forgetting (Parisi et al., 2019): while the vehicle needs to learn from

novel situations, it should not forget how to handle those it has

previously encountered. Overall, how to structure training using

reinforcement learning so that skills can be learned accumulatively

and appropriately is a challenging problem (Berseth et al., 2018).

At the same, humans clearly demonstrate an ability to learn in

such a manner themselves. For humans, however, development and

learning are rarely random.More often, it is a consequence of internal

development and change and external guiding forces working in

tandem. A simple example can be observed in formal education:

most academic programs are structured according to a curriculum

such that students learn more simple or basic concepts first before

moving on to more complex concepts (Hacohen and Weinshall,

2019). In reinforcement learning, the approaches that take inspiration

from this are therefore called curriculum learning (Narvekar et al.,

2022). Specifically, curriculum learning suggests that it is beneficial

to structure the exposure to learning examples, often progressively

proceeding from initially simple tasks to increasingly complex ones

(Elman, 1993; Bengio et al., 2009; Krueger and Dayan, 2009; Hacohen

and Weinshall, 2019).

In this paper, we are interested in two aspects when it comes

to the use of curriculum learning for autonomous vehicles. First,

curriculum learning assumes that it is possible to structure training

scenarios from “simple” to “complex.” This implies the existence of

some difficulty metric that can be used to rank scenarios. However,

in driving scenarios, this may not always be trivial to define. In a

lane-keeping task, which is typically one of the first tasks that any

autonomous vehicle controller needs to learn (Bojarski et al., 2016;

Santana and Hotz, 2016; Ha and Schmidhuber, 2018; Bae et al., 2021),

such a metric could be defined based on the curvature of the road,

number of corners, and so on, since these are the aspects that interfere

with keeping the vehicle in the center of a lane. In a pedestrian

avoidance task, the difficulty for scenarios can be defined by the

trajectory of the pedestrian and assessments of whether the pedestrian

is, for example, careful or reckless; however, even if such metrics can

be found, it is much less clear how the difficulty of one scenario to

the other could be quantified. The second aspect we are interested in

is the actual benefit of structured data in general and of curriculum

learning in particular. In other words, we are interested in the core

assumption hat there is a benefit to structure in the training set, as

there is to human learning.

We use reinforcement learning to train autonomous vehicles on

two tasks, lane keeping, and pedestrian avoidance. These are chosen

because they are standard tasks on which any controller is trained

and because one of them has a clearly defined difficulty metric, while

the other does not. As the main focus is on the training data, we

implement multiple ways to generate synthetic training scenarios for

autonomous vehicles (where we use the word “synthetic” to denote

that these scenarios are not hard coded or explicitly designed by the

programmer but are specified and generated by an auto-generation

mechanism), in particular with and without a curriculum structure.

For the lane keeping task, we find that structured learning

environments improve the quality of the learned controller only

if it is not used in combination with a replay buffer (a technique

in reinforcement learning that allows the reuse of previously

encountered scenarios when training on a novel one). For pedestrian

avoidance task, we do find that a non-structured scenario generation

approach is already sufficient for the controller to perform well-

enough (i.e., avoiding the pedestrian in all test cases).
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Overall, the contributions are therefore two-fold: first, we

demonstrate that curriculum learning does not necessarily provide an

added value, so the inability to define an appropriate difficulty metric

is not always a relevant hurdle. Second, however, when it does provide

a benefit, this depends on other aspects of the algorithm: in our

case, additionally using a replay buffer (for which there can be good

reasons) had a detrimental effect in our structured learning scenarios.

In the remainder of the paper, we first detail our methods for

generating synthetic training scenarios and our implementation of

reinforcement learning. We then describe how both lane-keep and

pedestrian avoidance tasks are designed. This is followed by the main

results: for the lane keeping task, we demonstrate performance on

a baseline as well as on different synthetically generated training

scenarios. For pedestrian avoidance, we only present results on one

training regime, as there is no clear quantitative metric for how to

order the scenarios in terms of difficulty for the autonomous vehicle,

making curriculum learning difficult. We conclude with a discussion

relating these results to the wider literature and suggestions for

future work.

2. Background

2.1. Types of synthetic training data

As discussed in the introduction, we focus on different

mechanisms to structure the sequence of synthetic training scenarios

that the vehicle encounters. In principle, this implies that we will

generate novel scenarios in simulation and either sort them in order

of some difficulty metric, or not. This corresponds to purely off-line

training of a vehicle in simulation before it is used on a road.

However, it is also possible to simply learn from past experience

rather than to generate such novel scenarios. This would correspond

to a vehicle that actually has encountered a certain situation on the

road and is now “replaying” it to learn and improve its behavior in

this situation. In the literature, this is typically referred to as, and

implemented using, a replay buffer (Lin, 1993; Mnih et al., 2013,

2015).

Naturally, it is also possible to combine the two. In this paper,

as detailed below, we will explore the performance of the various

combinations of scenario generation (none, random order, ordered

by difficulty) and use of a replay buffer (not used used).

2.2. Synthetic scenario generation

There are different approaches to generate complete scenarios for

a learning agent without hard-coding them. One approach is to use

a Generative Adversarial Network (GAN) (Goodfellow et al., 2014),

in which a network learns to generate new unseen data from a given

data set. GANs have previously been used to train a neural network

to generate video scenarios similar to the collected real-world video

data. These scenarios were then validated by running a RL driving

agent through them (Santana and Hotz, 2016), and initial results

demonstrated that the synthetic data were close to the real.

Ha and Schmidhuber (2018) used a similar technique in an Acari

driving car game. Their work illustrates the use of internal models

in a deep learning setting. First, the car explores the environment to

learn the model of the world. Next, it learns to generate new scenarios

in the form of a sequence of images similar to those explored, albeit

with slight differences that the car has not experienced before. The

agent then attempts to learn (through RL) to drive in these new

scenarios. In evaluation, the agent performed better when trained in

the synthetic (unseen) environment before being injected back into

the real environment. This illustrates that agents might benefit from

unseen examples, similar to how humans gain a behavioral advantage

from re-enacting hypothetical future situations (Revonsuo, 2000;

Svensson et al., 2013; Billing et al., 2016; Gershman and Daw, 2017;

Windridge et al., 2020).

However, one potential drawback of GAN lies in their stochastic

nature. It is not trivial to retain control over the exact generation

process or over what features are to be emphasized. To address this,

scenarios can also be generated using a physics simulation engine.

Such a simulation builds an environment from features specified,

for example, through an API (Application Programming Interface).

This allows for auto-generating novel scenarios while maintaining

designer-imposed constraints. Such an approach is regularly used

in robotics, and although the scenarios are often hard-coded in the

literature (e.g., Gu et al., 2017), they do not have to be.

Curriculum learning, however, also considers the temporal aspect

of the training phase, suggesting that faster training and higher

performance can be achieved if the learning material is presented

in an appropriate order. For example, ordering episodes in difficulty

would result in a sequence of episodes [Ep1,Ep2,Ep3,Ep4...Epm]

in which, for each episode Epk, episode Epk+n is more difficult

than episode Epk, where m is the number of episodes and n is

a positive integer. Thus, curriculum criteria as sequencing metric

is required to specify that episode Epk+n is more difficult than

episode Epk.

One aspect to consider is how and when to create training

episodes. One possibility is to generate them all prior to

learning. For example, Anzalone et al. (2022) used the ready

made environments in CARLA to train a curriculum RL on all

environments. Another alternative is to adapt the difficulty of

episode creation based on the current performance of the agent

(Narvekar et al., 2017). As we are interested in the effects of

ordering episodes by difficulty, we generate them at the start

with this criterion in mind and as such, the order is not

determined during training in function of some aspect of the

learning agent.

Another aspect is to determine when the agent moves from one

episode to the next. The agent may repeatedly attempt some specific

episode until performance plateaus (measured, e.g., by network error

or accumulated rewards). However, recent research has found this

to be unnecessary and that the agent can simply move to the next

episode upon completion (Narvekar and Stone, 2019).

This incremental structure in the sequence of episodes assumes

that difficulty is measured by certain metrics that can be used to

compare episodes. Therefore, that some metric C exists such that

|CEpa | < |CEpb |. For example, Camargo and Sáenz (2021) proposed

curriculum learning for game engine. The agent plays the same

game (e.g., soccer) but the game parameters such as the opponent

speed and reward function varies between episodes. In the lane

keeping scenario, this is measured by the degree of curvature in the

road segments as well as the frequency of their occurrence in the

same road length. In the pedestrian avoidance scenario, however,

there are many candidate variables that might contribute to such

a metric, including the trajectory of the pedestrian, the speed at
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which they are moving, and more. Rare and unusual events cannot

be excluded; for example, the pedestrian may start to cross a road

but then reverse direction. Although the sequence of episodes may

includes such, or other, varieties, there is no unambiguous way to

measure and order the difficulty of these episodes. This is often

an issue, and in these cases, an expert human can order episodes

manually, relying on their domain knowledge rather than some

simple metric. This is referred to as human-in-the-loop curriculum

generation (Narvekar et al., 2022). Here, the episodes used in the

pedestrian avoidance task are essentially randomly ordered. Since

this was sufficient to solve the task, as detailed below, we did not

investigate specific orderings further. One could however consider

stable pedestrian trajectories to be easier than trajectories with

frequent direction changes. Similarly, a pedestrian who is partially

or wholly occluded before crossing the road would be part of a

more difficult episode than a pedestrian who remains visible at

all times.

2.3. Replay bu�er

Reinforcement learning is usually a sequential process where

the agent learns experiences in the order it encounters them, but

the addition of a replay buffer allows the agent to preserve older

experiences. The agent accumulates the previous experiences of the

state and action in a buffered memory and learns them to improve

the policy. One of the earliest approaches that use a replay buffer

(also known as experience replay) in reinforcement learning was

the Dyna architecture (Sutton, 1991). Lin (1993) suggested that it

might be useful to introduce experience replay to a simulated mobile

robot to speed up the credit assignment making the agent more

likely to remember what it had learned before. Later work with deep

reinforcement learning has demonstrated the utility of replay buffers

for deep reinforcement learning in several tasks (Mnih et al., 2013,

2015; Lillicrap et al., 2015).

A replay buffer is not about creating novel scenarios, but

about remembering previous experiences to better learn from

them. In the case of a reinforcement learning agent, the learning

agent accumulates (in the replay buffer) previous experiences (or

transitions) in the form of a quadruple (st , at , rt+1, st+1), which can

be interpreted as the execution of an action at in a state st results in

a new state st+1 and rewards rt+1 (Lin, 1993; Vanseijen and Sutton,

2015; Zhang and Sutton, 2017). It may then reuse them to access parts

of previous scenarios without explicitly perceiving the transition from

the sensory data (e.g., Gershman and Daw, 2017).

Although typical replay buffers are based on stochastic retrieval

of experiences from a bufferedmemory, recent efforts have attempted

to improve this mechanism (Horgan et al., 2018). Schaul et al. (2016)

for example, proposed a prioritized experience replay, in which the

latest experiences receive higher priority to be repeated than the

older ones. One of the drawbacks of the prioritized experience replay

is that it increases the complexity of the algorithm from O(1) to

O(logN) (Zhang and Sutton, 2017). Instead of storing the experience

weight for each entry and restructure them for retrieval, Kim and

Choi (2018) used two neural networks; one as the main network and

another as a secondary network. The secondary network, referred as

ScreenerNet, learns to predict the weight of the experience based on

the error of the main network.

3. Methods

3.1. Experimental setup and tasks

Our basic experimental setup is a simulated autonomous vehicle

that learns to drive on test roads. It can do so purely based on

performance on a training road, or using, in addition, various

additional synthetically generated scenarios. Therefore, not using any

synthetic training data implements a vanilla RL agent that serves as

a baseline. We also investigate two different tasks, low-level control

of lane-keeping and higher-level decision-making for pedestrian

avoidance task.

3.2. System architecture

The system architecture consists of four main components: (1)

OpenDs, the physical simulation, in which the training and testing

are executed, (2) a middleman connector that converts the simulation

into a RL environment, (3) a learning driving agent, and (4) a road

generator for creating novel scenarios (see Figure 1).

Opens Simulation1 is an open source driving simulator with

a multi-threaded physics engine, that allows in particular mesh-

accurate collision shapes and enables the application of basic forces

such as acceleration, friction, torque, gravity, and centrifugal forces

during simulation. The main motivation for using OpenDS is that it

provides a manner of creating episodic generation using APIs that is

viable with respect to complexity. The API uses Extensible Markup

Language (XML) files that are both human-readable and machine-

readable. This allows algorithmic generation of the environment

specifications in the XML files (see Figure 2A) which can then be

rendered into the 3D simulation environment (see Figure 2B).

The middleware connector is required to implement a RL loop

since OpenDS is just a simulator. We use this middleware connector

to calculate the reward function at each step. The connector also acts

as a communication bridge between OpenDS and the driving agent

to form a state message to the agent and an action message to the

maneuver message to the simulation (using a UDP connection with

20 messages per second).

The driving agent in this paper uses Deep-Q-Learning as the RL

algorithm. In Deep-Q-Learning, the calculation of the state-action

value function (Equation 1), is independent of the policy (Sutton and

Barto, 2018). In other words, the agent is able to calculate the value of

the next state without calculating the policy. The policy (π) in DQL is

to select the action that outputs the maximum Q value (Equation 2).

Qπ (s, a, θ) = E

{

rt+1 + γ max
a′

Qπ (ss+1, a
′, θi−1)|st = s, at = a

}

(1)

at = argmaxaQ(st , a,2) (2)

Where rt is the reward received, st+1 is the next state, a′ is

the action that would be taken in the next state and 2 are the

network’s hyperparasite.

The network is trained to minimize the loss at each step [defined

as the mean square error between the predictedQ(si, ai) value and the

1 https://opends.dfki.de/
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FIGURE 1

Episodic generator system architecture for self-driving car on OpenDS simulation.

FIGURE 2

From road description in XML to rendered road in OpenDS. (A) XML road description sample. (B) Bird view of a 3D rendered road in Opens. (C) 3D

rendered road.

actual value yi, Equation (3)] and the goal is to reduce the network

loss for the weights 2, calculated as in Equation (4).

yi =

{

rt , terminal state

rt + γmaxa′Q(st+1, a, θi−1), non terminal state
(3)

Li(θi) = Es,a[(yi − Q(s, a, θ))2] (4)

The neural network of the learning agent used in our experiments

consists of four layers [4, 30, 60, 3]. The input layer has four

neurons for the RL state values, followed by two fully connected

hidden layers with sizes of 30 and 60, both with a Rectified Linear

Unit (ReLU) activation function. Finally, the output layer has three

neurons with a linear activation function for the three available

actions. The RMSprop optimizer is used. The state is normalized

to have values between 0 and 1. The value of the exploration rate

(ǫ) defines the probability of selecting a stochastic or deterministic

policy at each step and here starts with 1 for the first 1,000 steps

and decreases by 10−7 at each step until it becomes steady at 0.2.

Hyperparasite are summarized in Table 1. During our study, wemade

some modifications to the exploration rate of the traditional decay

method.We allowed ǫ to increase by 0.25 when using the exploitation
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TABLE 1 Experiment hyper-parameters for the learning in the three

environment generation approaches.

Hyper-parameter Value

State space [LatOffsLaneL, SteerWhlAg, LaneCrvt,

LaneHeading]

Action space [0.05, 0,−0.05]

Network size [4, 30, 60, 3]

Network Optimizer RMSprop

Input layer activation function Linear

Hidden layer activation ReLU

Output layer activation Linear

Min reward 0

Initial (ǫ) 1

Decay 10−7

Final ǫ 0.2

Discount factor (γ ) 0.9

UDP frequency 20 message per second

strategy, or following the current policy, does not lead to success in

100 episodes in a row only if ǫ ≤ 0.5. This allows the driving agent to

explore even in the later stages of training.

During training: (1) the driving agent receives a representation of

the road through the middleman connector as previously described,

(2) selects the action from a set of available actions, (3) receives the

calculated reward signal, and (4) updates the weights of the network.

This repeats until it reaches a terminal state. The terminal state is,

in the lane-keeping task, defined as either a successful completion of

a road or driving outside the road boundaries and, in the pedestrian

avoidance task, defined as a collision with the pedestrian. Algorithm 1

describes the default algorithm for the learning agent.

Finally, the road generator automatically creates novel scenarios

by generating road descriptions and storing them in XML format.

These are then sent to OpenDS through APIS for road construction

(see Figure 2). Figure 2A shows a sample of road descriptions

produced by the road generator. Figure 2B illustrates the road

map produced by the API in OpenDS. This runs as a learning

environment, as shown in Figure 2C.

3.3. Lane keeping task

The first task is lane keeping, in which the goal of the driving

agent is to learn the low-level wheel steering control for driving

within the road lanes.

3.3.1. Reward function
The reward function, in this task, is based on the distance from

the edge of the road (Equation 5) and the car heading angle (Equation

6), as shown in Figure 3. This results in the reward function (Equation

7), where re is the reward for the distance from the side of the road, dl
is the distance of the car from the left edge of the road in meters, w is

the width of the lane in meters, rh is the reward for the car heading, lh

Initialize network ;

Initialize buffer;

for episode in episodes do

run OpenDS for the episode;

establish UDP connection between OpenDS and the

learning agent;

receive initial scenario message;

for each step t in episode do

select an action according to ǫ;

send action to OpenDS;

observe next state and reward;

append (state, action, reward, next state) to

buffer;

select mini batch from the buffer and train

the network;

decrease epsilon;

end

close the episode and the connection

end

Algorithm 1. Learning algorithm for the driving agent.

FIGURE 3

Lane keeping parameters.

is the angle between the car heading and the road heading in radius

and rt is the total reward. In simple terms, the function returns the

highest reward when the car is in the middle of the lane and aligned

with the direction of the road.

re = min(dl,w− dl) (5)

rh = 2e(−15|lh|) (6)

rt = re + rh (7)
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FIGURE 4

Summary of the di�erent combinations of synthetic scenario

generation and replay bu�er use in this paper.

3.3.2. Road generation
As detailed before, we distinguish between the creation of novel

training scenarios and the reuse of past experience in training,

without hard-coding either. The different combinations of ways

to structure scenarios during learning and usage (or not) of a

replay buffer are summarized in Figure 4. Notably, we also explore

the option of using neither synthetic generation of novel training

scenarios nor a replay buffer. In this case, the implementation

reduces a standard Deep-Q-Learning implementation that serves as

a baseline.

Our implementation of the replay buffer is based on the

standard technique (Mnih et al., 2015). In terms of ways to generate

novel scenarios, we primarily distinguish between unstructured and

structured generation. In the latter, the sequence of scenarios the

agent encounters is ordered by increasing difficulty (for the lane-

keeping task, difficulty of a scenario is based on the curvature of the

road generated for that scenario). An unstructured sequence, on the

contrary, does not impose any such ordering and is therefore random.

For the lane keeping task, we implement all combinations of

synthetic data generation and replay buffers (shown in Figure 4).

The important aspects of road generation are the ratio of straight

to curved segments and the geometries of the curves. All generated

roads are single-lane with an approximate length of 550 m. Here, we

describe these combinations in detail:

3.3.2.1. Control condition [A]

As previously stated, the control condition serves as a baseline

and implements a vanilla RL agent, similar to how simulations are

typically used in other works (e.g., Sallab et al., 2017). A single

randomly generated road is used (Figure 5A). This road is generated

so that it contains a mix of straight and curved segments of various

degree of curvature. Although it is a single road, it contains variations

in curvature to produce, after training, an agent that is generally

capable of keeping lanes. The agent repeatedly attempts to drive

the entire length of the road and training ends when the agent

successfully completes 100 consecutive drives.

3.3.2.2. Replay bu�er only [B]

In this condition a single road with random difficulty is used for

training. The road scenario is the same as used for condition [A].

Condition [B] differs from condition [A] by adding a replay buffer.

This buffer D is of size 1,000, which stores previous experiences

e; so D = {e1, e2, e3, e4, . . . }. ei itself is a tuple (si, ai, ri+1, si+1)

that contains the current state, the selected action, the reward after

executing the action and the next state, respectively. When the

number of accumulated experiences exceeds the size of the replay

buffer, an old experience is removed from the buffer, and the recent

experience is added to the buffer. Instead of the standard approach

of removing the oldest experience (Mnih et al., 2015), we set the

agent to remove the oldest most practiced experience type. This

is implemented by grouping experiences based on the curvature

values and then ordering the groups by size. The oldest experience

in the largest group is removed from the replay buffer, and the new

experience is added to the replay buffer.

At each step, the agent randomly samples a mini batch of 36

experiences from the replay buffer and trains the network using a

supervised learning gradient descent approach. The input data X for

the network training is a 4×36 state matrix, while the output Y is the

Q value for each action as a 3× 36 matrix.

For the first 1,000 steps of training, the exploration rate (ǫ) is fixed

at ǫ = 1, which means that the agent only follows a stochastic policy

to explore the different actions.

3.3.2.3. Unstructured synthetic data generation [C1]

In this condition the agent is trained in a number of scenarios,

each containing a different road. The agent proceeds from one

scenario to the next once it has successfully completed the current

road. We generate 100 different roads in random order of difficulty

before starting the training phase (see Figure 5B). The ratio of curves

and straights is fixed to [40 curves : 60 straights] for all roads. For

the different parts of the road, the length and the curvature were

randomly chosen between 20 and 60 m and –0.015 and 0.015 m−1,

respectively, summing up to a total length of 550 m.

3.3.2.4. Unstructured synthetic data generation with a

replay bu�er [C2]

This condition is identical to condition [C1] in terms of road

generation. It additionally uses a replay buffer implemented the same

way as in condition [B].

3.3.2.5. Structured synthetic data generation [D1]

In this condition structured data generation is used to generate

the 100 roads in increasing order of difficulty (see Figure 5C): the

first road is mostly straight, which then gradually increases the ratio

of curves to straight segments to reach the ratio previously used [40

curves : 60 straight] after 40 roads. The curvature limits were set as

(–0.007–0.007 m−1) for the first 40 roads, increasing to (–0.01–0.01

m−1) until road 80 and settled at (–0.015–0.015 m−1) for the last

20 roads.

3.3.2.6. Structured synthetic data generation with a replay

bu�er [D2]

This condition is identical to condition [D1] in terms of road

generation. It additionally uses a replay buffer implemented the same

way as in condition [B].
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FIGURE 5

Examples of some roads the learning agent encounters in a sequence. (A) The same road is repeated throughout training. (B) A sequence of roads in a

random order of di�culty used for training. (C) A sequence of roads ordered by increasing di�culty used for training.

3.4. Pedestrian avoidance through speed
control task

The second task relates to higher-level decision making. It takes

place on a road with a pedestrian and a stationary vehicle on a straight

road. The learning goal is not to learn to handle the road as in Task

1, but to learn to maintain a safe speed in relation to the irregular

crossing behaviors of a pedestrian. In this task, a pedestrian is added

to the scene at various locations, both on and at the side of the road.

The pedestrian walks along a random path to cross at an unexpected

moment with various speeds and stops. In addition, a stationary car

is added to the scene that may occlude the pedestrian (Figure 6). The

goal of the vehicle is to travel along the road while regulating the

speed to ensure pedestrian safety.

3.4.1. Reward function
In this application the learning agent receives a positive reward as

long as the controlled vehicle is driving at the preferred speed limit

when it is within a safe distance of the pedestrian and also if the

agent travels at a slower speed than the pedestrian while the agent

is in a predefined “red” zone close to the pedestrian. The agent gets

a negative reward if it speeds up in the red zone or travels too slowly

in a safe zone. Finally, hitting the pedestrian immediately results in

maximal punishment and ends the episode.

3.4.2. Road generation
The road generation mechanism, in this task, modulates the

start and end points of the pedestrian, at which point to cross the

road to which point on the other side, the speed of the pedestrian.

This, together with a trained vehicle, could result in a number

of possible scenarios. For example, an episode may begin with a

pedestrian standing mid-way down the road far from the starting

point of the car. In this case, the car could start approaching

the pedestrian and then start decelerating when it comes closer

to the pedestrian. It may have to stop completely and wait until

the pedestrian has left the road before it can increase the speed

again and complete the road. In another scenario, the pedestrian

might initially stand near the stationary car on the opposite side

of the road (see Figure 6) and then cross the road to the other

side at a random moment. In this scenario, the pedestrian may

not be visible immediately or may initially be visible and then

be occluded by the stationary car before emerging again on the

road. As the order of difficulty is subjective to the designer, the

generation mechanism is generally unstructured, yet the scenarios

are grouped and ordered by similarities and a variety of motion

movements in the road. The road generation produced a total

of 1,000 different pedestrian crossing scenarios for the training.

As this task deals with a higher level of control, the agent

network encounters very similar experiences in the sequence of

time steps; therefore, a replay buffer is used to overcome these

similarities. The replay buffer setup is similar to the one used in the

first task.

3.4.3. Training phase
During training the network parameter of the learning agent

was similar to that described in Table 1. However, the input

includes information about the distance from the pedestrian, except

when the pedestrian is occluded. The output is the action to

regulate the speed of the vehicle by accelerating or decelerating.

In the training phase, the agent interacts with different scenarios

of the pedestrian to learn the safe speed that corresponds to

the pedestrian movement. The agent needs to learn and finish

the road successfully to move to the next until it finishes the

1,000 roads.

4. Results

4.1. Lane keeping task

To evaluate the impact of synthetic data generation on learning,

all agents are tested on 100 new randomly generated roads. The
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FIGURE 6

In the pedestrian avoidance task, the pedestrian may be occluded by a

stationary vehicle at some point during the scenario.

mechanism and structure of generation for the testing phase are

similar to Condition [C1] with the 40 : 60 ratio between the curvy

segments and the straight segments. The agent relies on the trained

network for the policy selection. A 10% error is injected in the testing

(the exploration rate is set to ǫ = 0.1) to combat overfilling and

hinder the test. The agent’s performance is defined as the average total

reward received on the 100 test roads. The reward function captures

howwell the vehicle drives based on remaining (1) as close as possible

to the middle of the road and (2) aligned with the lane heading. The

theoretical maximum mean total reward is 8,500 (if the agent scores

the maximum reward of five at each of the 1,700 steps per episode

at the entire 100 episodes). The overall performance is illustrated

as the percentage of the theoretical maximum (Figure 7) and will

be described in detail in this section. The Root Mean Square Errors

(RMSE) for each condition are presented in Figure 8. A Nonferrous

correction was applied to the multiple t-test comparisons.

4.1.1. Control condition [A]
During the training phase, the vanilla RL agent exhibited rather

low performance during most of the trials, as evidenced by the low

reward scores. The mean total reward in each episode during training

was 2,060 (24% of the theoretical maximum), and the agent finished

training after 640 episodes and 410,000 experiences.

During the testing phase, the agent completed all the 100 testing

roads successfully, with a mean total reward of 6,750 corresponding

to 79% of the theoretical maximum.

4.1.2. Replay bu�er only [B]
Training ended after 216 episodes and 245,000 experiences.

The total rewards for each episode increased throughout the

training and resulted in an average reward of 4,560 (54% of the

theoretical maximum).

During the testing phase, the use of the replay buffer resulted in

a mean total reward of 5,300 corresponding to 62% of the theoretical

maximum, and the agent was unable to complete some of the roads

successfully. The performance is significantly lower than the control

FIGURE 7

Learning agent performance measured by the percentage of the

average total rewards out of the theoretical total reward at the testing

phase for the six experimental conditions. Error bar indicate 95%

confidence intervals. The figure shows the statistical significance

between conditions, in which * for P ≤ 0.05, ** for P ≤ 0.01, and ***

for P ≤ 0.001.

condition [A] (t-test: p < 0.0001). It can also be observed in

Figures 8A, C that the agent tends not to achieve a minimal RMSE

with respect to the distance to the center of the lane. This suggests

that when the agent is also unable to maintain headings (compare

Figure 8A with Figure 8B), it has an increased likelihood of leaving

the lane altogether.

4.1.3. Unstructured synthetic data generation [C1]
During training, the agent showed unstable performance,

performing well on some roads and poorly on others. The average

total reward was around 5,700 (67%), and the duration of the training

was similar to condition [A].

In the testing phase, the agent collected a mean total reward of

5,800 corresponding to 68% of the theoretical maximum. This is

significantly worse than the control condition [A] (t-test p < 0.0001).

It can again be observed in Figure 8 that the driving agents here do

not minimize the RMSE of their distance to the center of the lane,

resulting in a higher probability of leaving the road, when unable to

maintain the headings.

4.1.4. Unstructured synthetic data generation with
replay bu�er [C2]

The training ended in 200 episodes with 230,000 experiences.

Most of the training time, 90 out of the 200 episodes, was spent

on the first road. Once the agent had successfully learned to

complete this, it was able to drive on the remaining roads with

fewer failures.

The addition of the replay buffer compared to condition [C1]

resulted in a significant improvement (t-test p < 0.0001) with a

mean total reward of 6,700 corresponding to 79% of the theoretical

maximum and on par with the control condition [A] (t-test

p > 0.5). Interestingly, this is the only condition in which the
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FIGURE 8

Violin plots comparing the Root Mean Square Error (RMSE) during testing for the relevant conditions (conditions for which there are no unsuccessful runs

are omitted from the plot in question). (A, B) The RMSE of the heading with respect to the road heading, for (A) successful and (B) unsuccessful

completions of the test roads. (C, D) The RMSE of the distance from the center of the road, also for (C) successful and (D) unsuccessful runs.

Comparisons between successful and unsuccessful runs show, with the notable exception of [C2], that failure is typically a result of a failure to remain

near the center of the lane coupled with an inability to maintain heading.

FIGURE 9

The speed at the collision with the pedestrian during training for

collision cases.

driving agents remained largely close to the center of the lane

during unsuccessful runs. Instead, failure results entirely from the

inability to maintain an appropriate heading with respect to the

direction of the road, as can be seen from the heading RMSE

(Figure 8B).

4.1.5. Structured synthetic data generation [D1]
The training time of this condition was similar to that of

condition [A]. The average total reward was 5,900 which is 70% of

the theoretical maximum.

However, in the testing phase, this condition achieved the highest

scores of all, with a mean total reward of 7,000, which corresponds to

82% of the theoretical maximum. The improvement was significant

(t-test p < 0.05) compared to all other conditions (see Figure 7).

4.1.6. Structured synthetic data generation with
replay bu�er [D2]

The training ended in 230 episodes and 245,000 experiences.

The driving agent struggled mainly in the first 50 episodes. The

total rewards gradually increased during training, but performance

decreased in some episodes, likely due to increased complexity on the

road at those moments.

In the testing phase, the addition of a replay buffer to condition

[D1] resulted in amean total reward of 6,100 corresponding to 72% of

the theoretical maximum. This is significantly worse than condition

[D1], which had an identical setup, except for not using a replay

buffer (t-test p < 0.005). As can be seen from the RMSE of the

distance from the center of the road (Figure 8D), the main reason for
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failure in this condition was, once more, the inability to remain in the

middle of the road.

4.2. Pedestrian avoidance task results

The agent learns to successfully avoid the pedestrian through

speed control. Overall, the training was relatively fast and in total

around 180 pedestrian collisions were observed among the 1,000

training episodes (Figure 9). Despite these collisions, the average

speed of the car at the time of collision was gradually decreasing,

as expected.

The testing phase consisted of 100 pedestrian scenarios and no

collisions were recorded in any of these scenarios. The results show

that the speed control agent successfully drives at the optimal speed

when it is far from the pedestrian and slows down when it is about to

reach the pedestrian.

Since the vehicle performs well and is in line with expectations,

we omit a lengthy elaboration of this basic result. In terms of

illustrations, we present two of the 100 test cases. Figure 10A shows

the scenario of a pedestrian standing still in the middle of the road.

The vehicle was able to stop for the pedestrian until it crossed and

then continued driving. The speed adjustment is in relation to the

position of the pedestrian with respect to the vehicle, as shown in

Figure 10B. When the pedestrian is in the vehicle’s way, the speed

control agent stops until this is no longer the case. Another test

scenario included an occlusion, since the pedestrian crosses the road

diagonally from behind a stationary vehicle (Figure 10C). The results

in Figure 10D show that the vehicle slows down as long as the

pedestrian is on the road. The vehicle accelerates only when the

pedestrian safely reaches the sidewalk. Overall, it appears that the

vehicle is able to learn multiple pedestrian behaviors and adjust its

behavior to the environmental context, and drive at a safe speed in

relation to the location of the pedestrian.

5. Discussion and conclusion

Self-driving cars have been an ideal test case for many practical

applications of machine learning and cognitive systems in recent

times, not least because they promise an autonomous agent solving

non-trivial problems in a real environment (Mahmoud et al., 2022).

However, many interesting challenges remain unsolved, including

how vehicles can learn autonomously and robustly to drive safely

even in rare events or situations that the system developer does not

anticipate (Da Lio et al., 2017).

In this paper, we investigated ways to synthetically generate

additional training data, both by creating novel scenarios for the

vehicle (which can be learned either in a curriculum-like manner,

that is, ordered by increasing difficulty, or in a random order) and

by reusing existing scenarios using a replay buffer. This combination

has been explored previously in an article (Fang et al., 2019); however,

in that work, rather than retrieving stochastic experiences from the

stored buffer, curriculum learning was used to gradually learn from

these experiences. Here, we use curriculum learning at the scenario

generation level so that the vehicle learns easier driving scenarios

before turning to more sophisticated ones.

Our results showed that curriculum learning is a scenario

generation method that can improve the learning process,

but should not be taken for granted. Different combinations

of episode generation mechanisms and usage of replay buffer

had positive and negative effects on overall performance. In

particular, the replay buffer, which is a default mechanism in

RL, did not always show a positive result. It had a detrimental

effect when used on the vanilla RL agent and on the agent

using curriculum learning to structure training episodes.

Although the replay buffer did improve the performance of

unstructured learning using new training scenarios, the performance

did not reach the best performing agent (which used only

curriculum learning).

This detrimental effect could be due to the probability of

sampling the experiences from the buffer. At each step, a mini

batch of 36 is sampled from the 1,000 buffer experiences, which

means that each sample is selected with a probability of 0.036

at each time step. In addition to the low probability of being

selected, old experiences are also removed from the buffer and

replaced by new experiences. This increases the likelihood that

many potentially useful examples will never be seen by the network.

This was also supported by additional tests (not reported in

detail here) of different buffer sizes (100, 1,000, 100,000, and

1,000,000), which showed that larger buffers, i.e., lower likelihood of

being selected, showed even worse performance. On the contrary,

without the use of a replay buffer, each experience is ensured

to contribute to network learning. This shows that the structure

of generating the episode contributes to the learning more than

the replay buffer technique, which may not always be beneficial

for learning.

More generally, although some studies have found the technique

to be useful for various tasks (Mnih et al., 2013; Lillicrap et al., 2015),

the added value of replay buffers has also been questioned before.

Zhang and Sutton (2017), for example, evaluated different experience

replay mechanisms and found them to have a detrimental effect,

noting, in particular, that “... [T]he idea of experience replay itself

is heavily flawed. So future effort should focus on developing a new

principled algorithm to fully replace experience replay” (Zhang and

Sutton, 2017, p. 7).

Using GANs, as discussed earlier is a different way of

generating new scenarios (not just individual experiences) (Ha and

Schmidhuber, 2018). Although this method has gained a lot of

attention for producing training data, it produces stochastic imagery

data that may be unrealistic or not as helpful as it could be for the

agent. Here, we investigated the added value of curriculum learning

as yet another way of generating new, episodic, experiences from

which the vehicle could learn. This approach differs from the GAN

approach not just because of the structure of the training in terms

of increasing difficulty, but also because of the use of a physics

simulator to create actual novel scenarios as opposed to variations

on sensorimotor imagery based on past experiences. The need for

diverse and inclusive scenarios was emphasized by Codevilla et al.

(2019), who trained a model on different sizes of collected driving

data sets (2, 10, 50, and 100) hours of driving. They concluded

that training in data sets larger than 10 h of driving does not

ensure higher performance. It may even lead to negative effects

when the data set does not include enough variety for rare scenarios

to occur.
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FIGURE 10

Two examples from the 100 pedestrian occlusion test scenarios. (A) A pedestrian stops in front of the car before continuing to cross the road. (B) Speed of

the vehicle based on the position of the pedestrian with respect to the vehicle (positive latitude indicates distance to the left of the car, negative latitude

distance to the right. A latitude of 0 means that the pedestrian is directly in front of the car). The vehicle stops whenever the participant is in front of it. (C)

A pedestrian crossing the road diagonally from behind the stationary vehicle. (D) Speed of the vehicle based on the position of the pedestrian as above.

In this paper, different conditions were used to examine the

benefit of generating synthetic data for generation. These conditions

were used to compare the curriculum learning generation with

other methods in the literature while using the same evaluation

metric for comparison. Condition [A] which uses a single road

with no replay buffer serves as the control condition. It represents

the traditional usage of RL with a single environment in which

the designer aims to cover the different scenarios in this training

environment. Condition [B] represents the introduction of a replay

buffer that was proposed to speed up the training. Although the

literature has focused on the benefit of speeding up the training

(Mnih et al., 2013; Lillicrap et al., 2015), less work has highlighted

its drawback of degrading the training performance (Zhang and

Sutton, 2017). Conditions [C1] and [C2] represent the promotion

of machine learning to randomize the data to ensure variation

and avoid overfilling. This shows similarities to the approach of

creating random scenarios using neural networks such as GANs,

but with less control from the designer. Our study showed that

randomizing the episodes [as in condition (C1) would result in

the agent encountering difficult scenarios at the beginning of the

training which deteriorates the performance]. However, combining

this with a replay buffer compensates for the difficulty of learning.

Conditions [D1] and [D2] use curriculum learning, which is the

main topic of study of this paper. Compared to the previous

methods, curriculum learning showed an advantage when used

without the replay buffer compared to the condition with the

replay buffer.

Narvekar et al. (2022) proposed a taxonomy of curriculum

learning for RL. The classification includes different factors of what

the generation features focus on. The factors include the method of

transferring the learning (e.g., re-shaping the reward function or the

policy), the degree of designer involvement in the creation of the

scenarios (e.g., GANs vs. the technique described in this paper), and

the application area (e.g., grid world, physical simulation, or real-

world deployment). In our study, the factors were selected to examine

the use of curriculum learning for an application as self-driving cars.

The (re-)enacting of hypothetical situations such as it is

achieved by the kind of episodic simulations used in this work

has also received some attention in cognitive systems research

in the past (see, for example, Tani and Nolfi, 1999; Ziemke

et al., 2005; Hoffmann, 2007); however, the focus has typically

been on simple neural networks driving simplistic agents (such

as a simulated Kheda robot) in very simple environments (such

as wall-following environments). Among others, implementing
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a more credibly biologically inspired approach requires such

simulations to be more flexible with respect to their content

(Revonsuo, 2000; Svensson et al., 2013). Using curriculum learning

to structure such episodic situations can be a candidate way to

achieve this.

To reiterate the main intention of this paper, our purpose was

not to establish a new state-of-the-art in solving tasks such as lane

keeping or pedestrian avoidance, but to explore the added value of

generating additional synthetic training data, either based on past

experience (using a replay buffer approach) or by generating novel

scenarios. When generating novel scenarios, we hypothesized that

it might be desirable to structure them in order of difficulty, and

this is indeed what we found. At the same time, we noted that it

may not always be possible to identify a clear difficulty metric and

used the pedestrian avoidance scenario as an example. Although we

initially intended to explore alternative ways of providing structure

to the training scenarios in such a case, we found that the vanilla

learning agent managed to perfectly solve this task without any

further additions, which rendered that question obsolete. In a sense,

the pedestrian detection task may seem simpler because it requires

the manipulation of one degree of freedom (longitudinal control)

compared to lane keeping, which requires manipulating two (adding

latitudinal control). This is not a straightforward conclusion since

the pedestrian detection task also takes place in a more dynamic

environment, involving other agents, resulting in an increase in

complexity in that sense.

The overall take-home message of this study is therefore that we

do indeed find curriculum learning to be useful but that significant

questions remain on how to structure such a curriculum precisely. A

random scenario order of difficulty in the lane keeping task training

turned out to be detrimental, demonstrating that there is a need for

some difficulty metric to define the structure. Such a metric might

not exist in all cases, in which case it is possibly better to avoid

curriculum learning. In some cases at least, that does not have to be a

disadvantage, as our second use case showed.

There remain, of course, many aspects of this work that can

be improved in future research. The relative simplicity of the two

tasks (and thus the obvious need to confirm the results in more

complex scenarios) aside, even though we avoided hard-coding

specific training and test scenarios, the exact structures used for road

generation remained pre-defined. Future work should investigate

agents’ models that can be used to automatically determine a

suitable sequence of episodes to train on, possibly online during

the training phase. There are also interesting avenues that would

involve incorporating progressive learning (e.g., Berseth et al., 2018).

Combining both may lead to significant improvements in learning

performance and advanced abilities to learn multiple driving skills.
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