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ABSTRACT
Today digital qualification tools are part of many design processes
thatmake themdependent on long and expensive simulations, lead-
ing to limited ability in exploring design alternatives. Conventional
surrogate modelling techniques depend on the parametric mod-
els and come short in addressing radical design changes. Existing
data-driven models lack the ability in dealing with the geometrical
complexities. Thus, to address the resulting long development lead
time problem in the product development processes and to enable
parameter-independent surrogate modelling, this paper proposes a
method to use images as input for design evaluation. Using a case
study on the curtain airbag design process, a database consisting of
60,000 configurations has been created and labelled using amethod
based on dynamic relaxation instead of finite element methods. The
database is made available online for research benchmark purposes.
A convolutional neural network with multiple layers is employed to
map the input images to the simulationoutput. Itwas concluded that
the showcased data-driven method could reduce digital testing and
qualification time significantly and contribute to real-time analysis
in product development. Designers can utilise images of geometri-
cal information to build real-time predictionmodels with acceptable
accuracy in the early conceptual phases for design space exploration
purposes.
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1. Introduction

Todaymany products are challenged by having transdisciplinary, iterative, and simulation-
drivendesignprocesses. Fluctuating requirements lead theway to iterative solution finding
(André 2017) in top-down development processes. Throughout the development process,
a variety of models within different levels of description or granularity (Maier, Eckert, and
John Clarkson 2019) are utilised. This utilisation dictates considerable design iterations
as the model maturity level increases. Moreover, back-and-forth work between engineer-
ing teams with different specialists from various disciplines adds to design iterations and
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increases development lead time (Arjomandi Rad 2020). Iterations are tied up with the
nature of the development and therefore it is not desired to be reducedor eliminated. How-
ever, being able to qualify design ideas in real-time through an iterative design process, can
give many industries an advantage in their product development.

During the design processes, simulations have been mainly used in the digital qualifi-
cation phase to test the performance of a pre-built model. To this end, a wide range of
simulations such as rigid body dynamics, finite elements/differences, computational fluid
dynamics (CFD), discrete events, and so on are used. However, with so many sources for
design iterations, it is not surprising that many companies, on top of well-known and com-
mercially developed tools, attempt to develop in-house qualification tools and accelerate
their design evaluation process. Figure 1 shows a process model for our studied design
process that is challenged in this noted way. As depicted in the picture, during the devel-
opment process series of simulations as an example of digital qualification are performed
sequentially.

In this process, failing at each point takes the design back to the beginning point where
all requirements need to be tested again. In such an iterative and simulation-driven design
process, once everything is checked within the digital realm, physical testing and qualifi-
cation begin to verify the design before lineup for the production. This creates additional
iterations in case thedesign fails in thephysical qualificationphase,which requires all digital
qualifications to be performed from the start.

One area dealingwith iterative designprocesses that have offeredmany solutions to this
problem is Design Automation. This field essentially aims to automate the activities that
are carried out during an engineering design process (Johansson 2011). Not only it entails
connecting and running engineering supports with various goals by computer codes but
also goes beyond and covers a wide range of preparatory tasks necessary for running
those scripts that range from digitising tacit knowledge in spreadsheets to parameterising,
annotating, or even recently extending digitalmodel constituents (Johansson 2014; Heikki-
nen 2021). Automation in the design process substitutes computers for human labour to
achieve faster design iterations and therefore shows a greater benefit when human labour
is an issue. However, as the illustrated challenging design process in Figure 1 shows, the
majority of the time in the design loops is spent not by humans but by computers them-
selves for reading, processing, and writing the information. As an instance of processing

Figure 1. An iterative and simulation-driven design process.
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the data, solving finite element simulations for a complex product can takeweeks, and per-
forming them even in an automated way by computers does not fulfil the solution criteria
for fast design space exploration.

To Deal with iterative design, some studies have proposed Reasoning support for pre-
dicting requirements change and propagation, based on metrics that quantify require-
ments volatility behaviour (Hein et al. 2022). Other attempts to use network-oriented
solutions to address changing requirements and predict their propagation exists (Dong
et al. 2022). However, in most cases, these frameworks rely on PLM software processes or
similar change management systems to get dependency relationship simulations.

Another area of researchdealingwith theproblemat hand is themeta or surrogatemod-
elling methods such as regression modelling, Grey relational analysis, Inductive learning,
Groupmethod of data handling, Kriging, etc., which have been used for decades to replace
expensive computer analyses and cut down computational lead time (Simpson et al. 2001;
Wang and Shan 2007). By cutting down computational time, these methods contribute to
a lower development lead time which frees up resources and makes the design process
more efficient. Additionally, the ability of these methods in capturing tacit knowledge in a
company or bringing downstream production knowledge to the early conceptual phases
and their response time after being created makes them highly interesting for addressing
iterative design process issues.

Surrogatemodels are criticised to be narrow in the sense that they are specifically devel-
oped for the computational analysis stage of the development process and are dependent
onpreviously acquireddata tobe able to function effectively (Fuhg2019; Nunez et al. 2012).
To overcome such issues, designers increase thedesigndimension,which leads to so-called
high dimensional, expensive, and black-box (HEB) problems (Shan and Wang 2010) that
require more sophisticated methods than straightforward statistics.

From a wider perspective, and looking out of the product development box, Artificial
Intelligence (AI) which ismainly used to build surrogatemodels in engineering research has
seen periods of reduced interest, called ‘AI winters’ (Crevier 1993) induced by hardware and
software limitations. Today the latest wave of AI research is derived from bigger databases
anddeeper networks. Global AI competitions like ImageNet helped to increase the accuracy
of the classification benchmark problems up to 97%which is essentially better than human
performance (Soo Ko 2022; Panchal et al. 2019). Similar efforts in mechanical engineering
to build annotated large-Scale 3D object databases have surged recently with the same
hopes for increasing the availability of engineering benchmarks and the chance for higher
precision for networks in future studies (Kim et al. 2020; Chang et al. 2015; Koch et al. 2019).
The question if deep learning can address high dimensionality has been raised by other
researchers (Li, Wang, and Liu 2017) but remains for discussion.

Onewell-established deep learningmethod associatedwith the latest AI waves is Image
Regression in the computer vision field. The characteristic of this category as shown in
Figure 2 are the input as images and continuous space as output. Age estimation andhouse
price estimation are among the well-known problems for benchmarking developed algo-
rithms. Using these problems many researchers try to estimate house prices from visual
features from house photographs (Ahmed and Moustafa 2016) and also human age esti-
mation from face portraits (Angulu, Tapamo, and Adewumi 2018). Examples of image
regression in engineering problems exist that in many cases do not use such a conven-
tion to define their work (see Section 2.3). However, to exploit potential customised AI
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Figure 2. Input–output of deep learning methods with some examples.

algorithms in image regression and pave the way for more customisation on engineering
databases this convention canbehelpful (Panchal et al. 2019) and therefore is chosen in this
paper.

The main purpose of this paper is to propose a prediction tool that can foretell simula-
tion results while the design is being performed. The illustrated design process in Figure 1
shows such a hypothetical solution as a real-time prediction model right after the design
process, shown in the picture by the red box. There are several considerations with regard
to this hypothetical solution. One is the speed of prediction and the other is how much
it can integrate with the design environment. Time is one of the main elements in the
usability of such a tool in the design departments. A shorter time means faster design iter-
ations between design tools and design teams in the industry. Moreover, the accessibility
and usability of such a tool is equally important. Being able to be implemented as an add-
on in the design environment will allow a wider audience to access an evaluation tool in
the design process. It also helps to analyse more complex design variants within a short
computational time and also makes it possible to navigate and assess the design space
faster.

This paper contributes to the literature by showing how sophisticated image regression
methods can be used by simply inputting screenshots from Computer-aided design (CAD)
files as input for training. The accessibility of acquiring such screenshots in a CAD environ-
ment and the possibility of using noiseless pictures (not distorted and not blurred) is the
advantage of the proposed framework in this paper. To the best of the authors’ knowledge,
this is the first database that utilises screenshots of the design in the CAD environment to
produce input images for such purposes. The second contribution is providing a showcase
for using dynamic relaxation as a means for labelling the database which conventionally
counts as a drawback for applying surrogate models in the literature. Lastly, the image
regression literature can benefit from engineering databases such as the one provided in
this paper. This kind of database can be used for testing and benchmarking purposes in
optimising image regressionmethods in engineeringproblems. Having engineering-based
databases published will enable the developers to tailor algorithms for engineering-based
problems.
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This paper provides a database of curtain airbags and also presents a framework on how
such databases can be built and utilised in the design processes as a real-time prediction
tool. A critical review of the latest surrogate modelling techniques is presented in the sec-
ond section. The third section describes the studied casewhich is the volume simulations of
curtain airbags as an example of the noted design processes. Finite element simulations of
the airbag are presented concisely in this section. In the fourth section, Dynamic Relaxation
(DR) as amethod is presented and used to acquire volumes of 60,000 CADmodels with dif-
ferentgeometrical configurations. In thenext section, screenshotsof eachCADmodel in the
sketch environment are used to create input images for a database. The database is then
verified by 100 randomly created design cases, evaluated by the finite element method
(FEM). In section six, the verifieddatabase is used to train and test aCNNmodel as a real-time
prediction tool. The final section discusses the contributions, and implications of the find-
ings on how suchmodels can help CAD designers know the consequence of their decisions
in the early development phases.

2. Related research

The Literature indicates themost high-priority challenge for the yet-to-mature field of data-
driven design is the lack of methodologies (Briard et al. 2023). Several literature reviews
have attempted to point to hindrances along the way of using data science in engineering
design (Chiarello, Belingheri, and Fantoni 2021; Jiao et al. 2021) and suggest several areas
for future studies.

The parameterisation of CAD models is one of the well-known issues in applying sur-
rogate models to design problems (Mohammad et al. 2022; Chiarello, Belingheri, and
Fantoni 2021; Umetani and Bickel 2018). Parameterisation limits the designers to follow the
same convention every time they need to design something, yet in real cases, the design
might lose or take some geometric features. Therefore, parameterisation limits the creativ-
ity needed for the designwork and results in a limited ability to explore the required design
space. The number of the utilised parameters in a data-driven design approach affects the
accuracy of the prediction model. Most of the conventional metamodelling approaches
have been challenged by the curse of dimensionality which implies that the performance
or accuracy of a system is reduced by an increased number of dimensions.

Conventional parametric model-based surrogate modelling techniques are a couple of
decades old and essentially utilise relatively simple statistical methods normally with scalar
inputs. Additionally, not all the surrogate modelling techniques are aiming for data-driven
design-aiding solutions. The studies that are connected to pre-design and development
work (such as market analysis or Kansei engineering) and also to post-design stages (such
as production or after-market are excluded. As another criterion for reviewed papers,
developing a design qualification/testing or predictive decision-making is used.

This section aims to present and categorise existing papers that are using recently
developed data-driven algorithms to build real-time analysis or present similar surro-
gate/metamodels to cut computational anddesign lead time. Interestingly, all the reviewed
publications were published in the last five years which was not an intentional limitation in
the performed search strings.

The review reveals that most of the selected geometries in these papers are of very sim-
ple shapes. It canbe argued that these novel data-drivenmodels are not developedenough
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Table 1. Reviewed papers based on their input type.

Input types References

Scalars or Binary Secco and Silva de Mattos (2017) and most of the papers in the
Simpson et al., Wang and Shan

Vectors or Time series Cao et al. (2021), Deshpande, Lengiewicz, and Bordas (2021),
Cunningham, Simpson, and Tucker (2019), Belaid, Rabus, and
Krestel (2021), and Vurtur Badarinath, Chierichetti, and Davoudi
Kakhki (2021)

Images or Matrices Guo, Li, and Iorio (2016), Wang et al. (2018), Umetani and Bickel (2018),
Khadilkar, Wang, and Rai (2019), Ferreira and Bell (2020),
Messner (2020), Nie, Jiang, and Burak Kara (2020), Zhao et al. (2021),
Yoo et al. (2021), Toro, Wiberg, and Tarkian (2022), and Du
et al. (2022)

and lack the ability to deal with complex geometries in real-case scenarios. Moreover,
labelling these datasets in all of the reviewed cased have performed by costly simulations
suchas finite element analysis.Moreover, a publicly available andwell-developedengineer-
ing image regression database is still missing in the literature. To easily navigate between
the different papers and knowwhich ones can be categorised as image regression, we cat-
egorise the reviewed papers based on the type of input they are using as this is one of
the advantages of recent algorithms. The categorisation sheds light on the wide range of
new possibilities that new development in this area has awakened. Table 1 summarises the
papers reviewed in this section.

2.1. Scalars or binary parameters as input

A large number of papers are those that use scalar parameters as inputs. This category has
existed for several decades and it mostly included the type of HEB problems described
earlier. For instance, Secco and Mattos created a database of 100,000 aerodynamic cases
to predict CAE outputs such as lift and drag coefficient for wing-fuselage configurations
(Secco and Silva de Mattos 2017). In total, 40 input variables were used. Several multi-
layer feed-forward Artificial Neural Network (ANN) was trained using a scaled conjugate
gradient algorithm. It was concluded that it is possible to set up an ANN to substitute an
expensive computational analysis. However, the drawbackwith such databases is themen-
tioned parameterisation and dimensionality which hinders the development of this class of
metamodels.

2.2. Vectors or time series as an input

In this category, the inputs are vectors or time series and represent geometrical information
or Finite Element (FE) problem definition. The motivation is usually supported by the fact
that for complex geometries, the bottleneck for surrogate modelling is parameterisation
which leads to the loss of a lot of detailed geometrical information. For example, Cao et al.
used geometric information of a surface mesh with Graph Neural Networks (GNN) to apply
the surrogate modelling method (Cao et al. 2021). In their method, control points of the
geometry are used to generate non-uniform rational B-spline (NURBS) surfaces, which are
later used to get the surfacemesh as the input of the surrogatemodel. The GNNwas able to
extract geometric information from the surfacemesh of the designs automatically and also
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predict the output of the model which was the fluid domain on a special kind of turbine
exhaust system.

As another example of using geometrical information data, researchers used nodal
forces as input and proposed (Deshpande, Lengiewicz, and Bordas 2021) a probabilistic
approach for predicting a 2D/3D beam displacement in real-time. In the study, the input
is the load vector of each node and the output is the finite element responsewhich is a vec-
tor of displacements for the same node. Themethod is still young and does not extrapolate
well when the force is applied to those nodes that were not part of the training process.

Apart from the mesh and nodal forces, point cloud representation is another form of
geometrical information that has also been used as an input. For instance, Cunningham
et al. used two databases consisting of 2500 point clouds that belonged to 250 watercraft
and aircraft 3D models to predict their CFD simulation results such as drag and lift coeffi-
cients (Cunningham, Simpson, and Tucker 2019). They performed the prediction on several
sets of surrogate models and their results show that non-neural network models (such as
radial basis functions) canachieve comparable accuracy to theneural networkmodels (such
as the well-known ResNet architecture). They concluded that neural networks should not
be treated as ‘one size fits all’ and every problem should be checked for the most efficient
network.

Belaid et al. proposed CrashNet which is a deep neural network architecture to predict
crash test outcomes in the automotive development process, a calculation that is tradition-
ally performed by FE simulations (Belaid, Rabus, and Krestel 2021). This was achieved by
formulating car crash events as a time series prediction and using multiple scalar features
and the car’s acceleration time series as input. Theprediction outputwas a time series of the
occupant’s chest accelerationwhich is an injury severitymetric. As another example, Badari-
nathet al. studied thepotential of a surrogatemodelling toolwith real-timedata as input for
monitoring stress distribution over a beam and defined a customised maintenance sched-
ule (Vurtur Badarinath, Chierichetti, and Davoudi Kakhki 2021). Three well-knownmethods
namelyGradient boosting regression trees, random forest, and artificial neural networks are
used to train on the acceleration of the beam on five specific reference positions that are
later extrapolated and used to predict the acceleration on any other point on the geometry.
Although the utilised geometrywas simple, it demonstrates a successful healthmonitoring
system on a time-varying mechanical system.

2.3. Images ormatrices as input

For this group, the input is in the matrix form and holds grey scale pixel values. Gener-
ally, three matrices represent Red, Blue, and Green (RGB) values or some other form of
geometrical information in form of matrices. Whereas when the problem is 3D the matrix
changes to the tensor form. Although, geometry can be represented in multiple ways and
some of these representation forms can be embodied in matrices. However, Guo et al.
argue that not any kind of representation can be effective since its semantic meaning
can vary (Guo, Li, and Iorio 2016). One effective example demonstrated in their study is
called Signed Distance Function (SDF) which can provide a universal representation for dif-
ferent geometrical shapes. Guo et al. successfully show how mathematical concepts like
SDF sampled on a Cartesian grid are more effective for geometrical shape representation
in CNNs.
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To avoid parameterisation, a technique that can predict the fluid flow shape around
a given three-dimensional object interactively is presented (Umetani and Bickel 2018).
A database of different objects is gathered from the ShapeNet repository and used in
CFD analysis to label the input data as PolyCube 3D projection of the objects with their
aerodynamic performances such as velocity and pressure.

A predictionmodel is proposed (Wang et al. 2018) for the separation stress evaluation of
a 3D printed part during the pull-up process. The input to the database was images of the
shapes of the contact zones which are created by n-fold symmetric shape functions. The
output was discrete locations of stress as a square grid. More 3D printing application exam-
ples exist (Khadilkar, Wang, and Rai 2019) where deep learning has been used to predict
stress in the 3D printed parts. The input images were created from STL files with available
data augmentation techniques. The distribution of stress on layers (i.e. 2D stress grid for
each layer as the output) is calculated from finite element analyses.

Some studies (Ferreira and Bell 2020) utilise images as input to predict the output of
onboard sensors in experimental aerodynamic tests. Creating a training database like that
from real-life images can be time-consuming. Moreover, the sensors that are attached to
the plane, due to the physics of the test, can introduce misleading measurements and
increase theerror in assumptionsduring thedesignphase. Therefore, in this study imagesof
ageneric aeroplanemodel togetherwithperspective viewsofCADmodels areused tobuild
adatabase topredict theoutputs such as angularmeasurements inwind tunnels (pitch, roll,
and yaw) in the aeroplane design process. Two sets of CNN were used including the well-
known architecture VGG-16. The reported error values less than 0.5◦ for each angle indicate
promising predictive performance.

Messner built a surrogate model with CNN to evaluate the mechanical properties of
square-symmetric, periodic composite structures (Messner 2020). The problem geometry
in this study is discretised into unit cell square regions like pixels which are used as input.
The drawback of this method is the generalisability of the method since this special dis-
cretisation might not work for every material or geometry. Nei et al. used images of a
2D linear cantilevered beam as input and solved 120,960 different configurations of the
geometry with an FE model and trained a CNN that can predict the stress field as a pic-
ture (Nie, Jiang, and Burak Kara 2020). This end-to-end surrogate modelling was limited
by having simple geometry, boundary, and load conditions. As a heat transfer application,
other researchers (Zhao et al. 2021) developed adeep learning-based surrogatemodelwith
data augmentation and transfer learning that has been used to make a quick and high-
precision temperature field prediction for someheat sources. Themajor limitations of these
studies are that either the domain shape or the finite element simulation was too simple
which can be more complicated in real-life problems. As another end-to-end study, Yoo
et al. introduced a CAD/CAE integrated deep learning framework for generative design and
studied the application of this system on an automotive road wheel design process (Yoo
et al. 2021).

More recently researchers (Toro,Wiberg, and Tarkian 2022) have proposed using images
of b-pillar panels from different vehicle models as input and locators of fixture layout as
three locating points (3-2-1 principle) as output within a deep learning algorithm. The
framework helps with the design of fixture layouts in the sheet metal industry. Another
recently purposed real-time evaluation framework for modelling in the field of aerofoil
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design utilised deep learning (Du et al. 2022). In this study, the input was a combina-
tion of both images of aerofoil shape and operating parameters which were mapped
to aerodynamic performance namely, the flow field. Apart from having relatively simple
geometry which seems to be the limitation of the many studies in the category, the pro-
posed framework reduced the time cost for aerofoil evaluation from 20 min with CFD to
just 5 ms.

3. Studied prototype and finite element simulation

In this paper, the curtain airbag has been chosen as a case product. The curtain airbag
design process is highly iterative and simulation-driven (Mohammad et al. 2022) and
has several transdisciplinary requirements from different stakeholders. This product has
a roughly two years development lead time where the major part of this time goes into
dealing with iterative requirement satisfaction.

During the airbag design process and in the first step of the design assessment, the vol-
ume is controlled. This is because in the early stage of the design process the volume of the
bag determines which inflator capacity should be used for a particular design. Since infla-
tors are big factors in the final cost of the airbags, choosing the wrong inflator might lead
to an overpriced quotation or even an unwanted deployment. As for the rest of the design
process, other simulation models are used for other requirements.

To study this design process, a prototype geometry that represents the important
aspects of real curtain airbags and its complexities, is designed and fully defined in CATIA.
All 14CADparameters used to createdifferent configurations from thegeometry are shown
in Figure 3.

These parameters are selected together with airbag designers in the case company. The
selection criteria were to choose those parameters that are usually changed for producing
the new shapes in real-case scenarios. Therefore, Some of the other parameters that do
not follow this criterion are assumed to be constant. The selected parameters are varied
between the minimum and maximum bounds to create different shapes. The bounds are

Figure 3. Selected parameters to create different configurations of the geometry.
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Figure 4. Design automation process used to create all the databases.

selected tomake the parameters independent and prevent design failure in the realisation
process.

To generate all the databases, a fully automated python script is used as a wrapper for
executing different codes. A process view of this script is shown in Figure 4 which essen-
tially connects different design tools together. It should be noted that some of these tools
also use a special version of python as their scripting language in their local environment.
As shown in the picture, a design of experiments Latin Hypercube python script is used on
the mentioned 14 parameters to attain the required number of samples at each database
within the mentioned bounds ( min–max). In the next step, these design cases are gener-
ated using CATIA VBA script. At the same time and before saving the geometry, the script
takes a screenshot from adefined angle and saves the image. The image file (as png) is used
as input later and the geometry file (as igs) is used in the finite element analysis to calculate
the volume after deployment. In the continue, the main python scripts run two additional
scripts for meshing and processing through ANSA and LS-DYNA, respectively, as shown in
the same figure.

For meshing the geometry, the auto mesh function is used and the generated key files
are savedwhich are then passed into the processing step in LS-DYNA. For the finite element
method (FEM), the Uniform Pressure technique (Hirth, Haufe, and Olovsson 2007) is used
where the volume of the airbag is calculated by applying the Gaussian integral theorem.
The method is known for stability, speed in run time, ease of implementation, and also to
yield acceptable and accurate results. The output of this step was the d3plot files for each
design case.

The main python code then executes a META post-processor script to read the d3plot
files (simulation output). The volume is measured at a certain time (100 ms) as an ending
criterion to resemble a car crash incident in a real-case scenario. During this time frame, the
pressure in the airbag is raised to 40 kPa and kept constant.

To measure strain and stress rate, the mean integration point (IPT) effective strain and
effective strain (vonMises) rates are selected in LS-DYNAwhich is illustrated in four different
time frames in Figure 5. The figure demonstrates two hanging lug positions on the top of
the bag and also how the stitched island inside the bag that is affecting the deployment.

For the current prototype geometry, the simulation run time is 10 to 15 min but for a
real-size bag, it can take up to around 45–60min depending on the size and complexity of
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Figure 5. Example of stress and strain for an airbag design during deployment.

the bag in various classes (i.e. sedan, coupe, SUV, etc). On one hand, creating a big database
with this method is not feasible because just 10 thousand simulation runs will take around
3 months for the small prototype used in this paper and 10–12 months for the real-size
airbag used in industry. On the other hand, using such an automated script does not fulfil
the industry’s needs for envisioned real-time evaluations in the Introduction section. There-
fore, to solve the issue a new framework that can label 60 thousand images in a reasonable
time is introduced in the next section.

4. Computation of volume using dynamic relaxation

The bottleneck of applying machine learning-based surrogate modelling to engineering
models has always been to build large amounts of labelled training data. This process can
be prohibitively time-consuming if the computational models are too complex. Some sim-
plifications of the models need to be made for the process to be feasible. Simplifications
introduce additional errors which need to be taken into consideration and controlled.

Amethod for form-finding is Dynamic relaxation, which can be used to quickly compute
volume for a large number of cases. Dynamic relaxation is an explicitmethod for static anal-
ysis of discretised structures. It has been used for modelling of, e.g. high pressure confined
structures, thin pre-stressed fabric membranes, and for form-finding of civil and architec-
tural structures such as hanging cables, chains, and domes. The method solves a static
force-equilibrium problem by reformulating it as a dynamic problem and then minimis-
ing the total energy of the system by iteratively updating the mesh, such that the sum of
the kinetic energies acting on all the nodes in the system is as low as possible, i.e. until the
system reaches static equilibrium (Wong 2013). In the current paper, for implementing DR
a component in Rhino ◦:̧-Grasshopper named ’Kangaroo’ is used. Kangaroo is a live physics
solver that is mostly used for interactive simulations, form-finding, optimisation, and con-
straint solving. We shall briefly discuss the differences between traditional computational
models used for computing the volume of an airbag and the DR approach.

The LS-DYNA time integration method is stated as the semi-discretised system

Mü + p = f



12 M. ARJOMANDI RAD ET AL.

whereM denotes the mass matrix, ü = d2u
dt2

denotes the second time derivative of the dis-
placement field, p = S(u)u denotes the internal force vector, with S denoting the stiffness
matrix and f denotes the external and body loads.

This can be reformulated as

Mü = r(u)

where r(u) denotes the residual force field. For time step n a centre difference time
integration leads to

ün+1 = M−1r(un)

and in general, we have the displacement field in the explicit form

un+1 = M−1g(un)

where g(un) denotes the coupled time discretisation terms of the dynamic equilibrium
problem. The explicit time integration method is conditionally stable and there is a rela-
tion between the mass matrix and the critical time step, which needs to be controlled for
the method to be stable. Additionally, the mass matrix is made diagonal for the method to
truly be cheap, which is required since the time steps are short. Since themethod is applied
on shell or continuum elements, the spatial discretisation and subsequent FEM are quite
computationally heavy compared to a simpler approach taken in dynamic relaxation.

In dynamic relaxation, the fictitious dynamic problem is stated as

Mü + Cu̇ + Su = f

where C denotes the damping matrix. This can be rewritten as

Mü + Cu̇ = r(u)

The time integration scheme is given by an e.g. a central differencing scheme resulting
in the same form as seen in the case of LS-DYNA. The difference, however, is the spatial
discretisation. The implementation of DR in Grasshopper uses simple trusses, or springs
as elements, which are the simplest type of elements, with only stiffness as a ‘material
parameter’. Furthermore, the DR method uses fictitious time steps and a diagonalised fic-
titious mass matrix which, for the sake of stability, does not need to adhere to the same
constraints as in the physically accurate method used by LS-DYNA. Thus the time steps,
damping coefficient, and mass matrix are chosen in such a way as to minimise the number
of iterations.

The discussion here on the differences between the methods is short and quite general
since the implementational details of the DR in Grasshopper are not publicly known. How-
ever, Similarities anddifferences betweenDRand theNewton–Raphsonmethodhavebeen
studied by Rombouts et al. where it is shown that the DR used in an implicit formulation is
a special case of Newton–Raphson (Rombouts et al. 2018). It is also shown that the tangen-
tial stiffness matrix used in Newton–Raphson can be seen as a well-chosen fictitious mass
matrix. The authors conclude that theDRmethod is suitable for highly nonlinear responses,
and it is relatively easy to implement.

The same geometry files (.igs) from the first 100-design database, created in the previ-
ous section, that are used in FE simulations are used onemore time to compute the volume
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Figure 6. The process for Volume simulation in the Grasshopper.

Figure 7. Volume simulation visualisation in the Rhino.

with the dynamic relaxationmethod by using the Kangaroo solver in Grasshopper. As illus-
trated in Figure 6 first all the geometries are imported from .igs files in Grasshopper and
then decomposed into BREPSwith a standard component. Then the BREPS are used to pro-
duce the mesh within another component. In the next stage, all the nodes on the edge of
thegeometry are anchored (clamped) and all the othermiddle nodes are subjected to inter-
nal pressure. The Show component is used for visualisation and the edge length as amargin
which allows the code to identify the boundaries. Together, all four goals (see Figure 6,
Show, Pressure, Edge length, and Anchor) are used as input for the Kangaroo solver. The
rest of the components are for visualising the shape in a 3D geometry from which the vol-
ume is extracted and stored. The results are visualisedwith front, right, top, and perspective
views captured from Rhino (see Figure 7).

To investigate how much DR answers are close to FE results, the calculated volumes
from the two dynamic relations in this section are compared with the volumes that are
calculated from finite elements for the same first 100-design database, performed in the
previous section. In this way, the Pearson correlation method is used to analyse the cor-
relation between these two methods over the same design cases. The results depicted in
the middle step of Figure 8 show an accuracy of R2 = 0.9926 between the output of the
two methods. This relation between the two outputs proves that Dynamic Relaxation can
be successfully employed for finding the volume of inflatable structures such as airbags.
This correlation can also be employed to measure new samples’ volume output. Simply by
calculating DR volume output, the correlation can give the output for FE volume and vice
versa.
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Figure 8. Labelling process using the correlation between Dynamic Relaxation (DR) and Finite Element
(FE).

5. CAD-based database for image regression

This section presents the generation of the database consisting of 60,000 CAD models as
an input, and also the calculation of volumes for each design as a label. Two initial scripts,
namely Latin hypercube and CATIA VBA, in the described design automation code in the
previous section are employed to create two databases with the size of 60,000 and 10,000
design cases (just the .png and .igs files). This process goes fast anddoes not takemore than
2–3 h. The correlationmentioned in the previous section which is shown in Figure 8 is used
to map the dynamic relaxation volume output to the FE volume output. This correlation
proves to map DR results to FE output, which is possible by using the correlation that can
be found from their comparison.

As shown in the figure, the outputs that have been derived by mapping dynamic relax-
ation to finite elements have been verified tomake sure that they are accurate enough and
are working not only on the mentioned database but also will work on a separate testing
database aswell. To do so, 100 design cases from the 60,000 images database are randomly
chosen. Then thedescribeddesign automation script in theprevious section is used tomea-
sure the volume simulation of each model. The Pearson correlation method is used to find
out the error between the output from the FE method and the output that was created by
mappingDR. The error is reported to be under 1%which is considered an acceptable range.

By following such a process, the simulation run timewas shortened from 10–15min (for
FE) to around 10–15 s (for DR), i.e. a reduction of 98%. More interestingly in Grasshopper,
file handling, such as opening the file, reading, saving, and closing the file take more than
the simulation itself which justifies why it is important to pursue real-time prediction mod-
els in a CAD environment. For this study, performing all volume calculations for 60,000 CAD
files took around one week which could have taken more than one year in FE. Moreover,
by taking steps further and making such analyses available in real-time in a CAD environ-
ment, designers can evaluate their decisions independently from discretisation or any file
handling.

When each file was realised in CATIA just after saving the CAD file, a Visual Basic for
Application (VBA) script was used to export screenshots of the geometry in the sketch envi-
ronment and then save each image as a separate file. Furthermore, a python script was
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Figure 9. Examples from the database consist of 60,000 labelled images.

used to crop the screenshot files, remove the unnecessary areas and convert them into
single-channel greyscale images. This was because it is sufficient if each pixel carries only
information about the intensity and information from red, green, and blue (RGB) layers
will not contribute to the learning process. At the end of this process, each image had a
resolution of 1200 × 900 pixels.

Since screenshots are taken automatically from a predefined angle in CATIA, the geom-
etry has similar positioning in all the images which is an interesting aspect associated with
the proposed databases. This process makes sure the constant pixels fall on top of each
other in every image which can help the learning process. This is usually not the case for
other databases on image regression such as ‘face to age’ or ‘house to price’ databases.
And these databases after being scrapped from the web, need to go through an enormous
amount of pre-processing like cropping and editing.

The collected database is composed of 60,000 images (png files) in their original size
and their associated labels. This database has beenmade publicly available in Kaggle (Arjo-
mandi Rad 2022) by the authors for everyone so it can be used as a benchmark problem for
algorithm improvementpurposes. To enable the reuseof thedatabyother researchers, two
databases with reduced sizes of 24×36 pixels and 40×60 pixels were also created within
pickled and zipped (.pkl.gz) format and are made available publicly. This format allows for
all the images and their associated labels to be stored in an n-dimensional python array.
Figure 9 shows examples from the 24×36 and 40×60 pixels databases, respectively.

The figure shows thatmoving froma small size like 36×24 to 40×60 canhave abig effect
on the pixels that represent some of the small parameters like island angle or some of the
radii in the corners. By trying several sizes, we conclude that 40×60 is a reasonable size and
it can represent most of the changes in different geometries in the database.

6. A real-time predictionmodel

In this section, a convolutional neural networkwill be applied to the database thatwas built
in theprevious section to illustrate that CADscreenshots canbeused topredict a simulation
output in real-time. The network trained in this section, can be used as an estimator during
the design phase and enable the designer to know the consequence of the decisions that
are being made while working with the CAD sketch. For example, by defining a button in
CATIA that runs a code in macro, we can execute a simple process that generates a screen-
shot from a certain view in CAD and use it as input to estimate the volume output for it. This



16 M. ARJOMANDI RAD ET AL.

Figure 10. The architecture for utilised convolutional neural networks.

part is considered trivial andwill not be discussed in the current paper. However, we do dis-
cuss how the engine behind the macro code or the simple architecture CNN architecture
can be built.

Convolutional neural networks are developed to deal with images as their inputs.
Among the reviewed papers in the second section, CNNs have been used successfully in
a wide range of applications to map images to desired outputs. In the current paper, an
implemented CNN is used in Tensorflow to build a class of customised architecture. Ten-
sorflow is an open-source machine learning platform with flexible tools and a very large
community that let researchers quickly develop and deploy various algorithms on different
applications.

CNNs have two important functions inside, called convolution and pooling. Inside a con-
volution, several filters are used for scanning the input imagewhich results in decreasing its
size and increasing its dimension. Later the pooling is used to compress the images and cut
down the size even more while keeping the dimension the same. This process is repeated
several times with the aim of decreasing the image size and extracting features with differ-
ent filters. At each repetition (i.e. layer) the images go through the ReLu activation before or
after the pooling process. Moreover, to prevent the network’s dependency on the training
data (known also as memorising the data) and over-fitting, we use dropouts in every layer.
In the last layer, the convoluted data gets flattened and then densified two times to change
the dimensionality of the output (fromproceeding convolutional layers) tomatch up in size
with the values of the data in which the model is working.

Figure 10 shows the architecture of the utilised CNN in the current paper with three con-
volutional layers that compress and extract features from the input images and one fully
connected flat layer that flattens, densifies, and connects finally to the output bins. In this
implementation, the hyperparameters such as kernel size, alpha, pool size, activation, and
padding type in the network are default values and the other parameters (such as dropout
rate, input shape, and layer density) are chosen based on trial and error and best practices
from literature.

To be able to use CNN on our database, the regression problem is changed to a classifi-
cation problem in the current paper. To this end, all 60,000 numbers for volume are sorted
and divided into 10 different bins each with 6000 samples. This is because the distribution
of the volume between minimum and maximum was not equal and dividing them based
on distance would make some of the bins have more samples than others. Therefore, this
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Figure 11. Accuracy (Left) and loss (Right) for the training and validation databases, respectively.

imbalance would have caused the network to give higher chances for some bins than oth-
ers. To prevent this, the bins are divided based on the number of samples instead of their
range.

To create the image regression model, the database of 60,000 images with a size of
40×60 pixels is divided into 5 sections. Themodel is trained using 4 sections of 48,000 train-
ing andone section of 12,000 evaluating sets. Thismodel is then cross-validated for 5-Folds,
using each time the same 4-1 section ratio. The training was performed using a batch size
of 128 and epoch number of 50 and it took approximately 3 h on a normal core i7 desktop
computer.

As the final step, the testing database with 10,000 new samples was used. Asmentioned
at the beginning of Section 5, the testing dataset was created separately to make sure the
latent space includes entirely new shapes anddiffers from thosewhich are used in the train-
ing and evaluatingdatabase. The testing showed roughly 89%accuracy and 0.26 losswhich
means that from 10,000 testing cases, 8943 cases were predicted correctly and 1057 cases
were placed in thewrong bin. Results are shown in Figure 11. The testing is done fast under
1min on the same computer.

In Figure 11, the loss value which is representing the summation of the errors in our
model (calculated from the cost function) for each case in the testing database is shown on
the right. The curve on the left shows the accuracy which is the percentage of the correct
prediction and can only be applied to classification tasks. As can be inferred from the figure,
the accuracy gap between training and validation converges to roughly 90%. Also in the
loss graph, both training and validation are decreasing well and in a stable manner with
an acceptable gap between them (known as the generalisation gap) with every epoch and
converging to 0.2 which shows a successful result.

The presented training and testing process for a simple CNN architecture shows the
model can predict the volume output with acceptable accuracy that is needed for early
design phases. This CNN model is not optimised and there is definitely room for a couple
of percent improvement by small changes, but this is left for future studies. It is also worth
mentioning that duringmany iterations in the early development phases of a product, hav-
ing a fast requirement checker that uses the design shape to predict a simulation output
(at least with 90% accuracy) will accelerate the design process. Neural network-basedmod-
els are essentially approximation models and therefore are not expected to give us a 100%
accurate answer in a requirement evaluation process.
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7. Discussion

Existing digital qualification and testing entail going through iterations of simulation tools.
This process is often sequential and any small change in the design will require rechecking
almost all other requirements. This issue hinders rapid design space exploration and also
evaluation of radical ideas during product development processes. The results in this paper
present a predictionmodel for the first requirement check in the airbag design process, i.e.
the volume simulation, and the framework todevelopdatabases that canbeused for similar
requirement checks. With presented real-time prediction ability, the designers will be able
to carry out the required number of design iterations among design tools or design teams
in a faster and more effective way.

The findings in this paper also reveal the advantages and disadvantages of using auto-
matic shape generation for deep learning databases. It can be asserted that engineering-
baseddatabaseshave special characteristics and thereforeneed special treatments in terms
of machine learning algorithms used with them. The disadvantage is the risk of having
skewed trainingdata. For example, some little change in thedimensionof thebagproduces
very little difference in the image’s pixels but the output may be affected significantly.

There are advantages to engineering databases as well. For example, because all the
images are created in an automated fashion, a lot of pre-processing that is common with
databases can be saved. Taking screenshots by code in the CAD environmentmakes it pos-
sible to lay all the constant pixels in one (pixel) positionwhich can save a lot of training time
in the process. This is something that takes a lot of processing time in other databases. Not
utilising thismethod requires extensive data augmentation that artificially expands the size
of trainingdatabases by creatingmodified versions of the images such as rotated, distorted,
and resized images, etc.

The contribution of the paper to the literature is discussed in the Introduction section.
However, the implication of the industrial contributions can also be added here. As dis-
cussed earlier, during the design process the designers can benefit from a good enough
estimation to have an idea about the effects of taken decisions. Often designers in the
conceptual phase want to get a rough idea for a simple change (like a parameter on the
geometry). This kind of need highlights the importance of proposed prediction tools that
will accelerate those small-fix iterations. From the managerial point of view, having such
predictors in the design process is also important. This is not only helpful in reducing the
design lead time and freeing the resources but also is an enabler for design people to
perform performance analysis (like CAE) and by doing so, prevent unnecessary iterations
between design teams. Integrating such predictors in a CAD environment is trivial and
therefore is not included in this paper. However, a graphical user interface increases the
accessibility of using and maintaining such tools in the industry.

Although it can be argued that training and testing of such predictors take time, this is
only a one-time investment. Once themodel is trained the saved time compensates for the
initial investment. In addition,many companies already store a lot of CAD information from
past projects that can be utilised. Furthermore, by having a constant feed into the training
database and adding the final version of every project, these models can be maintained.
Lastly, the paper reaches the findings by the use of off-the-shelf tools and open-source
codes which helps to improve the repeatability of this framework on similar problems in
the industry.
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Naturally, there are some limitations to the purposed framework as well. This limitation
lies in the ability of 2D images in representing the design input space. From a usability per-
spective, some properties such as form, strain, or final position that aremore representable
by thegeometrical variation canbeusedmore effectively by this framework. Therefore, pre-
dicting objectives that are more affected by other aspects of product development such
as material choices, energy, and information processing mechanisms in the product will
face higher errors. The error margin on approximating models (such as the presented one
here)will never be zero and thus these predictorswill never be able to replace conventional
analysis methods but rather be used as a complementary tool in the design toolbox.

Another limitation that also affects the generalisation of the proposed framework is that
the utilised dynamic relaxation method in this paper cannot be applied to any simulation
problem. More studies are necessary to investigate the application of dynamic relaxation
in labelling other types of problems as well other objectives such as stress or fatigue. How-
ever, the framework can be generalised to many existing geometry-sensitive simulations.
As mentioned in the previous sections, this method has been applied to specific form-
finding problems of membranes and unstable structures such as hanging cables, chains,
and domes.

Future work can involve applying the framework to more diverse simulation prob-
lems. Exploring the abilities and limitations of dynamic relaxation in labelling engineer-
ing databases. Moreover include more physical aspects of the geometry by considering
cloud-based or voxel-based representation as an input data type for training AI models.

8. Conclusions

An iterative and simulation-driven design process is studied and the associated develop-
ment lead time problem is addressed. To avoid parameterisation and high dimensionality,
real-time prediction model as a hypothetical solution that includes the use of data-driven
design togetherwith a labelling process for the database is presented. Performed literature
review of the latest data-driven methods in engineering design shows a gap in the litera-
ture for using real-case scenarios with complex geometry, a lack of engineering databases
for benchmarking, and also methodologies for building such databases, i.e. labelling these
databases. The framework presented in this paper uses dynamic relaxation in Grasshop-
per to estimate the volume as an objective for the curtain airbag design case. By reducing
simulation time, this process made it possible to label a large number of CAD geometries
with a small amount of finite element analysis. An image-based machine learning library
with Convolutional neural networks gives a 90% accurate response in several milliseconds.
Being able to analyse an idea fast when and where CAD work is being performed, signifi-
cantly reduces iterations and the development lead time which shows the importance of
such a prediction tool. This ability could also capture downstream implicit knowledge and
make it available in the early phases. Additionally, the paper contributes to the literature by
providing an engineering-based database as well as a framework on how to acquire it. This
case study shows using accessible CAD screenshots has several advantages over imaging
methods from products. The possibility of being integrated with usual CAD environments
makes such design tools maintainable easily but new studies are necessary to outline the
possibilities and limitations of this tool.
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