
https://setac.onlinelibrary.wiley.com/action/showCampaignLink?uri=uri%3A1a142d69-b12f-43d5-9819-12638faf15cc&url=https%3A%2F%2Fcontent.knowledgehub.wiley.com%2Fsolutions-for-the-analysis-of-pfas-forever-chemicals%2F&pubDoi=10.1002/etc.5494&viewOrigin=offlinePdf


© 2022 The Authors wileyonlinelibrary.com/ETC

Environmental Toxicology and Chemistry—Volume 42, Number 3—pp. 628–641, 2023
Received: 25 February 2022 | Revised: 13 June 2022 | Accepted: 27 September 2022 628

Environmental Toxicology

Transcriptional Responses as Biomarkers of General
Toxicity: A Systematic Review andMeta‐analysis on
Metal‐Exposed Bivalves

Gustaf M. O. Ekelund Ugge,a,b,* Ullrika Sahlin,c Annie Jonsson,b and Olof Berglunda

aDepartment of Biology, Lund University, Lund, Sweden
bSchool of Bioscience, University of Skövde, Skövde, Sweden
cCentre for Environmental and Climate Science, Lund University, Lund, Sweden

Abstract: Through a systematic review and a series of meta‐analyses, we evaluated the general responsiveness of putative
transcriptional biomarkers of general toxicity and chemical stress. We targeted metal exposures performed on bivalves under
controlled laboratory conditions and selected six transcripts associated with general toxicity for evaluation: catalase,
glutathione‐S‐transferase, heat shock proteins 70 and 90, metallothionein, and superoxide dismutase. Transcriptional re-
sponses (n= 396) were extracted from published scientific articles (k= 22) and converted to log response ratios (lnRRs). By
estimating toxic units, we normalized different metal exposures to a common scale, as a proxy of concentration. Using
Bayesian hierarchical random effect models, we then tested the effects of metal exposure on lnRR, both for metal exposure in
general and in meta‐regressions using toxic unit and exposure time as independent variables. Corresponding analyses were
also repeated with transcript and tissue as additional moderators. Observed patterns were similar for general and for
transcript‐ and tissue‐specific responses. The expected overall response to arbitrary metal exposure was an lnRR of 0.50,
corresponding to a 65% increase relative to a nonexposed control. However, when accounting for publication bias, the
estimated “true” response showed no such effect. Furthermore, expected response magnitude increased slightly with
exposure time, but there was little support for general monotonic concentration dependence with regard to toxic unit.
Altogether, the present study reveals potential limitations that need consideration prior to applying the selected transcripts
as biomarkers in environmental risk assessment. Environ Toxicol Chem 2023;42:628–641. © 2022 The Authors. Environ-
mental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCTION
In ecotoxicology, a biomarker is considered a measurable

biological change that can be used as an indicator of chemical
exposure and/or a predictor of adverse effects (van der Oost
et al., 2003). In the context of environmental risk assessment
(ERA) of chemicals, understanding of both mechanistic and
quantitative links between exposures and relevant biological
effects is crucial to predict harm to biota and ecosystems

(Martin et al., 2019; van der Oost et al., 2003). Consequently, it
is of great importance that ERAs are supported by robust sci-
entific evidence (Martin et al., 2019). For practical application
of biomarkers, empirical support can therefore be required to
show that a specific marker candidate is both sensitive, by re-
sponding at relevant exposures, and robust, by large and
predictable response magnitudes.

Molecular biomarkers such as gene transcripts have been
proposed to capture responses upstream of adverse effects on
the organism level (Calzolai et al., 2007; Piña et al., 2007).
Some transcripts may be specific to certain toxicants or bio-
logical effects, whereas others, including responses involved in
toxicant metabolism, oxidative stress, and general cytopro-
tection, are considered potential biomarkers of general toxicity
and chemical stress (Le Saux et al., 2020; Sulmon et al., 2015).
Many studies on transcriptional biomarker candidates are,
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however, based on single or few exposure groups and/or
pooled samples from multiple individuals. Such exposure
setups may provide important understanding of the molecular
mechanisms involved in the responses that may guide identi-
fying markers likely to respond to a chemical stressor. However,
substantial empirical support of response effect sizes and var-
iability is required for successful detection and appropriate
interpretation of biomarker responses. The evaluation of a
putative biomarker can therefore suffer greatly if, for instance,
concentration dependence and individual variation are in-
sufficiently addressed (Bahamonde et al., 2016; Fent &
Sumpter, 2011). Furthermore, experimental setups in ecotox-
icological research often differ in study species, biomarker
candidates (transcripts and/or tissues), and exposure conditions
(chemicals, concentrations, and/or exposure durations; Martin
et al., 2019). As a result, it can be difficult to put single tran-
scriptional studies in a relevant frame of reference within the
body of scientific literature. Therefore, out of context, even
results standing out as highly significant may on their own offer
little information on the general potential and practical
applicability of a biomarker candidate in ERAs.

Bivalve mollusks are common study organisms used
for studying various aspects of aquatic pollution (Beyer
et al., 2017; Binelli et al., 2015; Zhou et al., 2008). One im-
portant feature among bivalves is that they are sessile, which
greatly facilitates both site‐specific in situ assessments and field
collection for laboratory studies (Beyer et al., 2017; Binelli
et al., 2015; Zhou et al., 2008). As filter‐feeders, they are con-
tinuously exposed to large volumes of water and, con-
sequently, pollutants present in the water column (Beyer
et al., 2017; Binelli et al., 2015). Also, because many bivalves
are bottom‐dwellers (Kraan et al., 2010; Zieritz et al., 2014),
sediment is often an additional plausible exposure route. Fur-
thermore, bivalves occupy various aquatic habitat types, which
can allow selection of relevant study species on a case‐by‐case
basis, rather than having to rely on laboratory model species. In
general, their role as sentinel species and the high availability
of ecotoxicological studies make bivalves candidates for further
evaluation of transcriptional biomarkers of pollution.

In the present study, we performed a systematic literature
review to synthesize published research on transcriptional
responses to toxicants and subsequently a series of meta‐
analyses to quantify expected responses to toxicant exposure.
Because of their ecological relevance and practical use in ERAs
and biomonitoring, we targeted responses in bivalves. In a

previous literature review, Miao et al. (2015) identified
glutathione‐S‐transferase (gst), heat shock proteins 70 and 90
(hsp70, hsp90), metallothionein (mt), and superoxide dismutase
(sod) among the genes most frequently reported in bivalves to
respond to pollutant exposures in general. By addressing re-
sponse trends to both general and continuous exposures
(concentration and time), our objective was to evaluate the
overall responsiveness of transcriptional biomarker candidates
of general toxicity and chemical stress. Specifically, we selected
metal exposures to represent general toxicity and a specific set
of transcripts (catalase [cat], gst, hsp70, hsp90, mt, and sod)
that represent common biomarkers of nonspecific chemical
stress (Le Saux et al., 2020; Miao et al., 2015; Sulmon
et al., 2015). To account for individual variation while also re-
ducing the variability of experimental exposures, we limited the
analysis to include controlled laboratory studies where tran-
scriptional responses were measured on the individual level.
Specifically, we asked whether available data can generally
support that (1) transcript levels respond to metal exposure, (2)
responses show monotonic concentration dependence, and (3)
response magnitudes increase or decrease with exposure time.
For each of these questions, we evaluated general responses
as well as responses in transcript‐ and tissue‐specific subsets.
For transparency and reproducibility, we used the guidelines
specified by O'Dea et al. (2021) as a basis for the reporting of
our study (see checklist in Supporting Information).

MATERIALS AND METHODS
Systematic review

Literature searches were performed in two databases, Web
of Science and Scopus (Table 1). The searches were initially
performed on May 15, 2019, followed by an updated search on
September 13, 2021. In the first search, we included all pub-
lications to date, whereas we excluded publications indexed
before 2019 in the second search. In addition, for articles
subsequently selected for inclusion in the meta‐analysis, a
backward citation search was performed to identify additional
potentially relevant literature not captured in the database
searches. For this purpose, we used the reference indexing
functions in both Web of Science and Scopus.

The same screening procedure was performed for all
articles, whether found directly from database searches or
subsequently from the backward citation search (Figure 1;
Supporting Information, Table S1). The screening and selection

TABLE 1: Databases and search terms used in the literature search for the systematic review

Database Search terms Search hits

Web of Science (search for “Topic”
within “All databases”)

(*transcript* OR *pcr OR (gene NEAR/1 expression)) AND (mollus* OR
mussel* OR bivalv* OR clam*) AND (pollut* OR *toxic* OR xenobiot*
OR (stress* NEAR/3 chemic*)) AND (*toxic* OR stress* OR respons*
OR biomarker*) AND (aquat* OR fresh* OR limn* OR marine)

2151 (May 15, 2019)+ 653
(September 13, 2021)

Scopus (search for “Title, Abstract,
Keywords”)

(*transcript* OR *pcr OR (gene W/1 expression)) AND (mollus* OR
mussel* OR bivalv* OR clam*) AND (pollut* OR *toxic* OR xenobiot*
OR (stress* W/3 chemic*)) AND (*toxic* OR stress* OR respons* OR
biomarker*) AND (aquat* OR fresh* OR limn* OR marine)

478 (May 15, 2019)+ 183
(September 13, 2021)

The search was initially performed on May 15, 2019, and updated on September 13, 2021.

Transcriptional responses as biomarkers of general toxicity—Environmental Toxicology and Chemistry, 2023;42:628–641 629
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procedures were performed by one and the same person
(G. Ekelund Ugge) for all searches. Duplicates, review articles,
and conference abstracts were removed, leaving original re-
search articles, for which we screened all titles and abstracts. In
the screening process, we first removed articles not based on
chemical exposures and articles on irrelevant topics (e.g., par-
asitology, immunology, phylogenetics, and human toxicology).
Second, articles were excluded if based on study organisms
other than bivalves. Third, we removed articles in which other
types of responses or biomarkers, but not transcripts, were
mentioned in the abstract (e.g., proteins, metabolites, enzyme
activity, or histopathology). Fourth, we required that exposures
were performed in vivo under controlled laboratory settings
and based on single compounds in water. Specifically, in situ
and in vitro studies were excluded, as were experiments in
which chemical exposure was performed via, for instance, diet,
sediment or by injection. Similarly, we also excluded studies on
nano‐ and microparticles or chemical mixtures and studies on
environmental stressors typically considered outside of eco-
toxicology (e.g., pH, nutrients, radiation). After screening for
eligible ecotoxicological studies, we performed an additional
selection step to narrow the range from all pollutants and
transcripts to general toxicity and general stress responses. As
a proxy of general toxicity, we included studies (1) based on
metal exposures and (2) testing one or more biomarker can-
didates from the selected set of transcripts (cat, gst, hsp70,
hsp90, mt, and sod), all of which are representative of general
cytoprotection and oxidative stress defense.

After removal of duplicates representing overlap between
literature searches (k= 31), a total of 122 articles were selected
for full‐text assessment of experimental setups. To ensure a
sufficient level of understanding of experimental setups, we
excluded articles not written in English (k= 4). Also, one article
that was previously not identified as a review article was ex-
cluded for not presenting original data. When evaluating ex-
perimental designs, we required that (1) a negative control
exposure had been performed parallel to metal exposures; (2)
transcriptional responses were assessed on the individual level,
by quantitative polymerase chain reaction (qPCR); (3) exposure
setups were unambiguous and replicated; and (4) criteria
specified for title and abstract screening were still met after
full‐text evaluation. In case an article contained multiple ex-
periments, exposure groups, and/or transcriptional responses,
all subsets fulfilling the criteria were included (see section Data
extraction). Articles not fulfilling all criteria were excluded from
the meta‐analysis for noneligible experimental design/non-
applicable methodology (k= 79). Consequently, we excluded,
for instance, studies that only used a 0‐h exposure as a control
group and studies that pooled tissue or RNA samples from
multiple individuals prior to qPCR. For data extraction, we re-
quired that measures of response effect size, variation, and
sample size were presented for each exposure group, including
the negative control. In case any essential piece of information
was unclear or lacking from an article at this stage, authors were
contacted, initially via e‐mail. If no author response was received
after first contact or if the response left unclarities, requests were

FIGURE 1: A Preferred Reporting Items for Systematic Reviews and Meta‐Analyses flowchart summarizing the screening and selection processes for
articles included in the final meta‐analysis. The number of studies (k) is presented for each screening and selection step. For details on the evaluation
procedure, see text and Supporting Information, Table S1.
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clarified and repeated at least once. Repeated requests were
made both via e‐mail and, when possible to track the author
profile, via ResearchGate. Studies for which available in-
formation remained insufficient (k= 16) were ultimately excluded
from further analysis to avoid uncertain assumptions of missing
data or unclear exposures. In the end, 22 studies were left for
inclusion in the meta‐analysis (see Study characteristics section
and Supporting Information for a seperate list).

Data set
Data extraction. Data were extracted for relevant responses
(transcript × tissue) in all relevant exposure groups (toxicant ×
concentration × exposure time), including negative control
treatments. All data extractions were performed by one and
the same person (G. Ekelund Ugge). In case a study included
additional pollutant exposures (e.g., mixtures or nanoparticles),
we included any exposure group corresponding to single‐metal
exposure via water but omitted remaining groups. If inter-
actions with other environmental stressors were investigated
(e.g., different temperatures or CO2 levels), we extracted data
only from exposure groups representing normal or background
conditions of that stressor.

In a few cases, data sets were provided directly by the au-
thors. Otherwise, all data were collected from original articles
and supplementary materials. Unless presented in text or ta-
bles, we used the software Graph Grabber, Ver 2.0.2, for
graphical data extraction. Specifically, we extracted or calcu-
lated response mean, standard deviation, and sample size for
each available biomarker candidate (cat, gst, hsp70, hsp90, mt,
and sod) in all analyzed tissues and species. Different isoforms
of the transcripts were treated as replicates of the same bio-
marker candidate as a way to retain as much data as possible
because transcript isoform was not specified in all studies. In
case presented sample sizes were nonspecified (e.g., pre-
sented as ranges) or inconsistent (e.g., different n in text and
figure legend), the smallest presented sample size was as-
sumed for all exposure groups of that study, unless specific
sample sizes were provided on request to the authors.

Toxic units. As a way to normalize different metals to a
common scale, we used toxic units as a proxy of exposure
concentration. For simplicity, the term concentration will
hereafter be used to also include relative measures of exposure
such as toxic unit. Specifically, we used the “standartox”
package in R to obtain metal toxicity data from the US Envi-
ronmental Protection Agency's ECOTOX Knowledgebase
(Scharmüller et al., 2020). For each metal represented in the
meta‐analysis data set, acute toxicity data (72–96‐h 50% lethal
concentrations [LC50s]) for bivalve species were retrieved on
December 15, 2021. The choice of using mortality as an end-
point for normalization was largely based on data availability. In
addition, although not directly linked to the transcriptional re-
sponses of interest, mortality from metal exposure was con-
sidered a measure of general chemical stress. No bivalve acute
toxicity data were available for As(V), Gd, Sm, and Y; and these
exposures were excluded from toxic unit determination. In the

downstream analyses, corresponding data points (n= 58) were,
however, excluded only from models based on toxic units. For
remaining metals, an LC50 was retrieved for every available
bivalve species. In case of more than one LC50 data point for a
metal × species combination, only the lowest LC50 was re-
tained, as a conservative estimate of species sensitivity. In turn,
the median log10(LC50) was selected across species to repre-
sent general bivalve sensitivity and for normalization of toxic
unit. The reported metal concentration (log10‐transformed) was
then used to determine logTU (toxic unit) for each (applicable)
entry in the meta‐analysis data set, according to Equation 1.

= ( )

− ( )

log TU log Reported concentration

Median log LC50

10

10 (1)

Nonindependence and effect size calculation. To account
for nonindependence of multiple effect measurements from
the same study, we (1) split the control group sample
size between exposure treatments, and (2) included a
variance–covariance matrix in our models. Prior to effect size
calculations, the control group sample size was in each case
divided by the number of corresponding exposure groups
(toxicant × concentration), which is one approach to adjust
for nonindependence from multiple comparisons (Higgins
et al., 2021). The adjusted control group sample size was then
in each case used for calculation of response effect size. The
variance–covariance matrix was generated using the R package
“metaAidR” (Lagisz et al., 2021) and included in our models to
account for nonindependence of multiple effect measures
within the same exposure group (see section, Meta‐analyses).
We assumed a correlation factor of 0.5 for effects from the
same exposure group (study × toxicant × concentration).

Because the majority of studies presented results on the
linear scale, all data presented on a log scale were back‐
transformed prior to effect size calculations. Log response ra-
tios (lnRRs) and corresponding variances (vLRR) were de-
termined for each extracted response (Rosenberg et al., 2013),
according to Equations 2 and 3. Response represents response
magnitude, SD is standard deviation, and n is the (adjusted)
sample size. Exposed and control groups are denoted by
subscripts E and C, respectively.

=lnRR ln
Response

Response
E

C
(2)

=
×

+
×n n

vLRR
SD

Response
SD

Response
E

E E

C

C C

2

2

2

2 (3)

Meta‐analyses
To address our questions, the response variable lnRR was

assessed under different combinations of categorical (transcript
and tissue) and continuous (toxic unit and exposure time)
moderators, resulting in the nine models summarized in
Table 2. Linear regression was used to evaluate the general
trends of concentration and time dependence of response
magnitudes. One tissue, visceral mass, was only included in a
single study; and, because of the low replication, the

Transcriptional responses as biomarkers of general toxicity—Environmental Toxicology and Chemistry, 2023;42:628–641 631
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corresponding data points (n= 3) were excluded from analyses
using tissue as a moderator. To account for heterogeneity
between and within studies, we included a random effect that
grouped measurements by the respective study × species ×
transcript × tissue × time combination. For each specific model,
the random effect was, however, modified to omit any
grouping factor also occurring as a moderator (transcript,
tissue, and time). Also, I2 was calculated for each model as a
measure of heterogeneity between the groups. First, a matrix
(P) was defined for each model according to Equation 4, where
X denotes the model matrix for the respective model and W
corresponds to the inverse of the variance–covariance matrix
(see Section Nonindependence and effect size calculation;
Viechtbauer, 2022).

= − ( ′ ) ′−P W WX X WX X W1 (4)

This was in turn used to calculate I2, according to Equation 5.
In the present study, τ2̂ corresponds to the estimated between‐
group variance extracted from the posterior distribution, k to
the number of observations, and p to the number of columns in
the respective X matrix (Viechtbauer, 2022).

τ

τ
= ×

ˆ

ˆ +
−

[ ]

I 100% k p
tr

2
2

2
P

(5)

The meta‐analyses were implemented as Bayesian hierarchical
random effect models in the “brms” R package (Bürkner, 2017).
The variance–covariance matrix was incorporated into the
models using the “fcor” function (Table 2). Parameters were
estimated from the posterior sample derived by Markov
chain Monte Carlo sampling in “Stan” (Stan Development
Team, 2021), with 2000 iterations and four chains, using a burn‐
in of 2000 iterations. Prediction intervals of the effect sizes were

estimated for models with no or categorial moderators only,
using the posterior sample and assuming normal distributions
for study effects (IntHout et al., 2016). All models were checked
for convergence. The “Rhat” statistic did in no case exceed the
critical threshold (1.05), and simulation effective sample sizes
(ESSs) for the effect parameters were judged to be sufficiently
large (Table 2).

Sensitivity analysis
To test the influence of the assumed 0.5 correlation factor in

the variance–covariance matrix, all models were repeated using
variance–covariance matrices based on correlation factors of
0.1 and 0.9, respectively. We also assessed publication bias
toward reporting positive results, using a funnel plot and meta‐
regressions based on ESS of the response data, as suggested
for data sets with many nonindependent effects (Nakagawa
et al., 2022). The ESS (4ñi) was calculated according to Equa-
tion 6, where nE represents the sample size of the exposure
group and nC represent the control group sample size
(adjusted for multiple comparisons).

ñ =
+

n n
n n

4
4

i
Ei Ci

Ei Ci
(6)

The meta‐regressions were performed by adding ESS as an
independent variable to the models without continuous mod-
erators. The intercept from such meta‐regression models has
been suggested to function as an estimate of a “true” effect
size, adjusted for bias at infinite sample sizes (Nakagawa et al.,
2022). First, the square root of the inverted ESS was included as
an independent variable. In cases where the modeled intercept
overlapped 0, this intercept was used as an estimate of the
“true” effect size. If the intercept did not overlap 0, the inverse

TABLE 2: Summary of model structure used for the nine meta‐analyses of bivalve transcriptional responses to metal exposure

Continuous

Moderator None Toxic unit (log10TU) Exposure time (log2time [h])

Categorical None Overall response (intercept
model)

Overall concentration‐dependent
response

Overall time‐dependent response

~(1|groupa)+ fcor(vcv_matrix) ~Log10TU+ (1|groupa)+ fcor(vcv_matrix) ~Log2time+ (1|groupb)+ fcor(vcv_matrix)
ESS: 1660 ESS: 1605–2751 ESS: 2332–2809

Transcript Transcript overall response Transcript‐specific concentration
dependence

Transcript‐specific time dependence

~Transcript+
(1|groupc)+ fcor(vcv_matrix)

~Log10TU × transcript+ (1|groupc)+ fcor
(vcv_matrix)

~Log2time × transcript+ (1|groupd)+ fcor
(vcv_matrix)

ESS: 1306–2428 ESS: 2217–3325 ESS: 2114–2811
Tissue Tissue overall response Tissue‐specific concentration dependence Tissue‐specific time dependence

~Tissue+ (1|groupe)+ fcor
(vcv_matrix)

~Log10TU × tissue+ (1|groupe)+ fcor
(vcv_matrix)

~Log2time × tissue+ (1|groupf)+ fcor
(vcv_matrix)

ESS: 1724–1815 ESS: 1623–2142 ESS: 2211–2806
aStudy × species × tissue × transcript × time.
bStudy × species × tissue × transcript.
cStudy × species × tissue × time.
dStudy × species × tissue.
eStudy × species × transcript × time.
fStudy × species × transcript.
The group random effect represents the study × species × transcript × tissue × time combination, modified to exclude any grouping factor used as a moderator in the
specific model. The same variance–covariance matrix was used for all models. Simulation effective sample sizes for effect size parameters are reported for each model.
TU= toxic unit; vcv_matrix= variance–covariance matrix; ESS= effective sample size.

632 Environmental Toxicology and Chemistry, 2023;42:628–641—Ekelund Ugge et al.
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ESS was instead used for the corresponding model (Nakagawa
et al., 2022). Also, the correlation between ESS and toxic unit/
exposure time was assessed to estimate the potential influence
from publication bias on the slopes of corresponding models
(Supporting Information, Figure S1).

Software
The statistical analyses were performed using R, Ver 4.0.5. The

packages “brms,” Ver 2.16.1 (Bürkner, 2017); “brmstools,” Ver
0.5.3 (Vuorre, 2018); “metaAidR,” Ver 0.0.0.9000 (Lagisz et al.,
2021); “openxlsx,” Ver 4.2.4 (Schauberger & Walker, 2021); and
“standartox,” Ver 0.0.1 (Scharmüller et al., 2020) were used for
statistical analyses and data set manipulation, whereas “dplyr,”
Ver 1.0.7 (Wickham et al., 2021); “ggbeeswarm,” Ver 0.6.0
(Clarke & Sherrill‐Mix, 2017); “ggplot2,” Ver 3.3.5 (Wickham,
2016); “ggpubr,” Ver 0.4.0 (Kassambra, 2020); and “tidybayes,”
Ver 3.0.1 (Kay, 2021) were used for producing figures.

RESULTS AND DISCUSSION
Study characteristics

A total of 396 effect sizes were extracted from the 22 included
studies. The most abundant transcript was mt (27%), followed by
cat (18%), gst (18%), sod (16%), hsp90 (10%), and hsp70 (9.3%).
Most effect sizes corresponded to measurements in gills (54%),
followed by digestive gland (36%), gonads (9.3%), and visceral
mass (0.76%). For more detail, see sections Transcript‐specific
effects and Tissue‐specific effects, respectively. Furthermore, 13
different bivalve species were represented in the data set:
Dreissena polymorpha (27%, n= 108; Hanana et al., 2017, 2018;
Louis et al., 2021; Navarro et al., 2011), Crassostrea gigas (20%,
n= 81; Choi et al., 2008; Cong et al., 2012, 2013; Jo et al., 2008;
Metzger et al., 2012), Cerastoderma glaucum (20%, n= 80;
Karray et al., 2015), Mytilus galloprovincialis (8.6%, n= 34;
Jimeno‐Romero et al., 2017; Piscopo et al., 2016; Rocha et al.,
2018), Anodonta anatina (6.1%, n= 24; Ekelund Ugge et al.,
2020), Geloina coaxans (6.1%, n= 24; Guo et al., 2020), Rudi-
tapes philippinarum (4.0%, n=16; Chen et al., 2018), Crassostrea
virginica (2.5%, n= 10; Götze et al., 2014; Lebordais et al., 2021),
Mytilus edulis (1.8%, n= 7; Poynton et al., 2014), Mercenaria
mercenaria (1.0%, n= 4; Götze et al., 2014), Meretrix meretrix
(1.0%, n= 4; Gao et al., 2021), Mactra chinensis (0.76%, n= 3;
Zhang et al., 2016), and Cerastoderma edule (0.25%, n= 1;
Desclaux‐Marchand et al., 2007). Finally, Cd was the most
common metal exposure (53%, n= 210, k= 14), followed by Cu
(14%, n= 55, k= 5), Cr(VI) (6.1%, n= 24, k= 1), Hg (5.1%, n= 20,
k= 1), Gd (4.0%, n= 16, k= 1), Sm (4.0%, n= 16, k= 1), As(V)
(3.5%, n= 14, k= 2), Y (3.0%, n=12, k=1), Ag (2.0%, n= 8, k= 1),
As(III) (2.0%, n= 8, k= 1), Ni (1.5%, n= 6, k= 1), Pb (1.0%, n= 4,
k= 1), and Zn (0.76%, n= 3, k= 1).

Overall effects
By addressing responses to general metal exposure and by

using concentration and time as continuous predictors, the

objective of the present meta‐analyses was to assess the gen-
eral responsiveness of transcriptional biomarker candidates in
bivalves. We demonstrated an overall relative increase of the
tested transcriptional responses on exposure to metal stressors
(Figure 2A), suggesting that the transcripts are in fact sensitive
to general metal stress. Without separation of transcripts and
tissues, the average lnRR from metal exposure was 0.50. For an
arbitrary metal exposure and a random transcript × tissue
combination, this would translate to an expected 65% increase
relative to a negative control treatment. By comparison, recent
meta‐analyses on pesticide‐exposed fish demonstrated similar
(although inverted) overall effect sizes for cholinesterase ac-
tivity (Santana et al., 2021) but smaller effect sizes for enzymes
involved in antioxidant defense and biotransformation (Santana
et al., 2022). Similar effect sizes were also demonstrated in a
meta‐analysis on cortisol in fish exposed to various con-
taminants (Rohonczy et al., 2021). On the one hand, this could
suggest that the robustness of transcriptional responses is
comparable to that of other molecular biomarkers. However,
an expected lnRR of 0.5 appears small considering the large
variability (95% prediction intervals ranging from approximately
−1 to 2) and high heterogeneity (I2=97%). The overall response
would therefore suggest only a moderate robustness of the
selected biomarker candidates.

In contrast, there was no implication of concentration de-
pendence (Figure 2B,D), giving no support for an overall mon-
otonic response relative to the estimated amount of stress. In a
meta‐analysis on cortisol levels in fish, Rohonczy et al. (2021)
were similarly unable to demonstrate concentration dependence
relative to the contaminant exposure, despite positive overall
responses. While one explanation could simply be a lack of
concentration–response relationships, it could also result from
comparing different toxicants on a common scale. In our study, it
is possible that the toxic unit approach does not provide high
enough resolution and/or that the between‐group heterogeneity
(I2= 97%) or other sources of unaccounted variability obscure
concentration dependence that could perhaps be demonstrated
in wide‐range concentration–response setups, using single spe-
cies and single toxicants (Ekelund Ugge et al., 2022). On the
other hand, the present data set covers a wide range of both
response effect sizes and estimated stress exposures. If it were
universally true that the biomarker candidates are highly sensitive
to the relative amount of stress exposure, the applied meta‐
analytical models would most likely have captured a rough esti-
mate of the concentration dependence. Consequently, on larger
scales and in heterogenous data sets, metal stress appears to be
a stronger predictor of transcriptional responses when assessed
as a binary variable (exposed vs. nonexposed) than when treated
as a continuous one (e.g., toxic unit).

Furthermore, we observed an overall time dependence,
with response magnitudes increasing with longer exposure
periods (Figure 2C,D). Although the slope was shallow, the
credible interval did not overlap 0. Previous studies on single
bivalve species (see Bao et al., 2018; Fang et al., 2010; Liu
et al., 2014) have demonstrated how the selected transcripts
peak after 3–15 days of metal exposure. In line with these
findings, our results therefore suggest that exposures for at
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least a few days are generally more likely to capture
transcriptional responses than exposures of a few hours.

Transcript‐specific effects
With regard to separate transcriptional responses, five out

of six transcripts demonstrated average positive responses to
exposure treatments (Figure 3). The implication would there-
fore be that the responsive transcripts cat, gst, hsp70, mt, and

sod indeed have some potential as transcriptional biomarkers
in bivalves. Despite a trend of positive responses, the credible
interval of hsp90 overlapped 0 (Figure 3D); and insufficient
robustness is likely to limit the potential biomarker use of this
transcript. In addition, there was a general lack of concentration
dependence for separate transcripts (Figure 4). Despite pos-
itive responses to relative arbitrary metal exposure, there was a
trend of decreasing response magnitudes with increasing toxic
unit. Slopes were, however, shallow, with five out of six credible
intervals overlapping 0. For sod, the upper confidence bound

FIGURE 2: Effect of metal exposure on selected transcripts in bivalves. Effect size is expressed as log response ratio, determined according to
Equation 2. The subplots demonstrate the overall effects of metal exposure (A), concentration dependence (B,D), and time dependence (C,D),
determined by Bayesian hierarchical random effect models. The overall effect was determined by an intercept model without moderators, whereas
concentration dependence and time dependence were determined by meta‐regressions using toxic unit and exposure time as moderators. Each
point represents an extracted effect size. Colors represent the different transcripts, and the point size represents the relative weight (inverted
standard deviation). Shaded areas (B,C) and bars (A,D) represent 95% credible intervals, and a 95% prediction interval is represented by a horizontal
line (A). Each plot shows the number of studies (k) and effect sizes (n) represented in the respective analysis, as well as corresponding heterogeneity
(I2). cat= catalase; gst= glutathione‐S‐transferase; hsp70/hsp90= heat shock proteins 70 and 90; lnRR= log response ratio; mt=metallothionein;
sod= superoxide dismutase.
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was just below 0, and the slope was also the steepest for this
transcript (Figure 4F,G). In contrast, the general trend of time‐
dependent increases of response magnitudes was persistent
in all biomarker candidates, although gst, hsp70, and hsp90
credible intervals overlapped 0 (Figure 5). Heterogeneity was
consistently high (I2= 83%–99%), with all transcript‐specific
models following the general pattern gst≥ cat> sod>mt≥
hsp90> hsp70. In summary, cat, gst, hsp70, and mt closely
followed the trends of the overall effects, whereas hsp90
credible intervals overlapped 0 for all moderators, and sod
demonstrated a negative concentration–response relationship
not observed in the other transcripts.

Tissue‐specific effects
Two out of three tissues demonstrated positive average

responses to exposure treatments (Figure 6). For the overall
effect, digestive gland and gill credible intervals did not
overlap 0 (Figure 6A,D), in contrast to gonads (Figure 6G).
The potential for detecting responses therefore appears higher
in gills and digestive glands, as could be expected from
potential uptake and metabolism of metals in these tissues

(Bonneris et al., 2005; Won et al., 2016). The general lack of
concentration dependence was consistent in all tissues
(Figure 6B,E,H,J), but interestingly, time dependence was weak
for the separate tissues (Figure 6C,F,I,J). Specifically, gills and
gonads showed a trend of responses increasing with time
(Figure 6F,I), whereas digestive gland responses were largely
unchanged (Figure 6C). Considering that all credible intervals
overlapped 0, the general trend of time dependence, however,
appears driven by factors other than tissue. Finally, hetero-
geneity was high across tissues in all models (I2= 91%–99%)
and consistently highest in gonads.

Sensitivity analysis and limitations of the present
meta‐analysis

Generally, there was little influence from changing the cor-
relation factor in the variance–covariance matrix to 0.1 or 0.9
(Supporting Information, Figure S2). In a few specific cases,
credible intervals could change from just overlapping 0 to not
doing so or vice versa, such as for overall effects in gonads,
concentration dependence in sod, or time dependence in gst,

FIGURE 3: Effect of metal exposure on specific transcripts in bivalves. The subplots demonstrate the effects of arbitrary metal exposure on catalase
(A), glutathione‐S‐transferase (B), heat shock protein 70 (C), heat shock protein 90 (D), metallothionein (E), and superoxide dismutase (F) expression.
Effects (log response ratio) were determined by Bayesian hierarchical random effect models using transcript as moderator. Each point represents an
extracted effect size, and the point size represents the relative weight (inverted standard deviation). Bars represent 95% credible intervals, and
horizontal lines below represent 95% prediction intervals. Each plot shows the number of studies (k) and effect sizes (n) represented in the respective
subset, as well as corresponding heterogeneity (I2). cat = catalase; gst = glutathione‐S‐transferase; hsp70/hsp90 = heat shock proteins 70 and 90;
lnRR = log response ratio; mt = metallothionein; sod = superoxide dismutase.
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hsp70, and mt (Supporting Information, Figure S2). There is,
however, no indication that a changed correlation factor
would generally exaggerate or suppress effects in a way that
would impact the general conclusions. Therefore, the results
would support that our assumption of a 0.5 correlation factor
represents a reasonable middle ground for addressing non-
independence in our data set.

Transcriptional studies commonly present multiple effect
sizes; for instance, there were only two studies in the data set
used for the present meta‐analysis from which we extracted a
single effect size relative to control. Because publication bias
can be driven by the reporting of positive results such as
“statistically significant” differences (see Nakagawa et al.,
2022), the likelihood of such detection, and hence publication,
would increase with an increasing number of responses
(transcripts, tissues) and/or exposure treatments (toxicants,
concentrations, exposure durations). Indirectly, this could,
however, also result in publication of negative results observed
within the same study that would perhaps not be published on
their own. It could therefore be possible that multibiomarker
approaches in transcriptional studies might partially counteract
the impacts of publication bias.

For the present data set, funnel plots revealed a slightly
right‐skewed distribution of effect sizes (Supporting
Information, Figure S3A,B), which can be indicative of

publication bias. Performing meta‐regressions based on the
inverted ESS, we also estimated new effect sizes that were
adjusted for potential publication bias (Supporting In-
formation, Figure S3C). Because there was no implication of
dependence between ESS and toxic unit or exposure time
(Supporting Information, Figure S1), we assumed that poten-
tial interactions with model slopes were negligible and that
potential publication bias mainly affected estimates of model
intercepts. That is, we would expect potential influence on the
absolute effect size but not on the change relative to toxic unit
or exposure time. Not surprisingly, adjusted effect size esti-
mates were consistently smaller than nonadjusted ones for our
intercept models (overall or separated by transcript or tissue),
with credible intervals consistently overlapping 0 (Supporting
Information, Figure S3C). Despite this apparent over-
estimation of the effect sizes by our original models, it is worth
noting that even nonadjusted effect sizes were generally
small. Also, high variation would generally appear to affect
the model outcomes to a greater extent than the over-
estimation of effect sizes. Ultimately, the sensitivity analysis
suggests that (1) our data set (presumably extending to the
bulk of scientific literature) is biased, and (2) on a large scale,
the expected transcriptional responses to arbitrary metal ex-
posure are seemingly not distinguishable from 0, even when
approaching infinite sample sizes.

FIGURE 4: Concentration dependence of specific transcripts in metal‐exposed bivalves. The sub‐plots demonstrate the effects on catalase (A),
glutathione‐S‐transferase (B), heat shock protein 70 (C), heat shock protein 90 (D), metallothionein (E), and superoxide dismutase (F) expression.
Effects (log response ratio) were determined by Bayesian hierarchical random effect models using transcript and toxic unit as moderators. The
model slopes are summarized in (G). Each point in a plot (A–F) represents an extracted effect size, and the point size represents the relative weight
(inverted standard deviation). Shaded areas (A–F) and bars (G) represent 95% credible intervals, and each plot shows the number of studies (k) and
effect sizes (n) represented in the respective subset, as well as corresponding heterogeneity (I2). cat = catalase; gst = glutathione‐S‐transferase;
hsp70/hsp90 = heat shock proteins 70 and 90; lnRR = log response ratio; mt = metallothionein; sod = superoxide dismutase; TU = toxic unit.
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In addition to the impact from publication bias, there are
some other important limitations to the present data set. For
instance, different isoforms were in some cases grouped to-
gether to represent a single transcript. This is in many ways
analogous to using multiple species to represent “bivalves” or
multiple compounds to represent “metals.” Ultimately, it in-
creases the generality of the results, while decreasing the
specificity. Furthermore, the data points were not evenly dis-
tributed across either toxic units or exposure time points, in
particular for certain subsets of the data. For hsp90 and go-
nads, the coverage over both exposure concentrations and
exposure time was rather narrow, which results in greater un-
certainties of the respective meta‐regressions. Similarly, there
was not sufficient replication or representation of all combina-
tions for us to consider transcript × tissue interactions. Provided
sufficient data, such analyses would give a higher resolution
and could help specify what transcript to analyze in which tissue
for highest biomarker potential.

With regard to the meta‐analyses themselves, one important
limitation is the nonindependence of multiple data points from
the same studies. This has been presented as a common
phenomenon in meta‐analyses on ecology and evolution
(Nakagawa et al., 2022) and would in many cases likely extend
to the adjacent research fields of ecotoxicology and environ-
mental science. By taking measures to adjust the data and

models (see section, Nonindependence and effect size calcu-
lation), we ultimately assume that nonindependence has been
accounted for. Another important limitation is the use of toxic
unit as a measure of relative concentration and/or chemical
stress. The way we use it, toxic unit is a rough measure that
assumes equal tolerance within the whole taxonomic group
of bivalves. The transformation of a toxicant × concentration
combination to toxic unit therefore adds uncertainty to each
data point. Consequently, it might not be a suitable approach
in, for instance, mechanistic response modeling. However, we
argue that normalization of different toxicant exposures to a
common scale makes it possible to better represent the gen-
eral trends that we are currently addressing. Consequently, if a
strong relationship between general metal stress and tran-
scriptional responses were present, it should be detectable by
meta‐regression even when using a rough estimate such as
toxic unit as moderator.

Finally, we once again acknowledge some underlying lim-
itations that affect both the generality and the specificity of
our results. Our objective was to identify the general trends of
biomarker potentials rather than representing a fine‐tuned
mechanistic approach. Our results thus simply suggest what
responses to expect from arbitrary exposure, as supported by
available data. Still, there were important limitations to the
scope of our study. We only used bivalves to represent

FIGURE 5: Time dependence of specific transcripts in metal‐exposed bivalves. The subplots demonstrate the effects on catalase (A), glutathione‐S‐
transferase (B), heat shock protein 70 (C), heat shock protein 90 (D), metallothionein (E), and superoxide dismutase (F) expression. Effects (log
response ratio) were determined by Bayesian hierarchical random effect models using transcript and exposure time as moderators. The model
slopes are summarized in (G). Each point in plot (A–F) represents an extracted effect size, and the point size represents the relative weight (inverted
standard deviation). Shaded areas (A–F) and bars (G) represent 95% credible intervals, and each plot shows the number of studies (k) and effect sizes
(n) represented in the respective subset, as well as corresponding heterogeneity (I2). cat = catalase; gst = glutathione‐S‐transferase; hsp70/hsp90 =
heat shock proteins 70 and 90; lnRR = log response ratio; mt = metallothionein; sod = superoxide dismutase.
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FIGURE 6: Effect of metal exposure on selected transcripts in three bivalve tissues. The subplots demonstrate the overall effects (log response ratio)
of metal exposure in digestive glands (A), gills (D), and gonads (G); the concentration dependence of responses in digestive glands (B), gills (E), and
gonads (H); and the time dependence of responses in digestive glands (C), gills (F), and gonads (I), determined by Bayesian hierarchical random
effect models. The overall effects were determined using only tissue as moderator, whereas concentration and time dependence were determined
by meta‐regressions using toxic unit and exposure time as additional moderators. The model slopes are summarized in (J). Each point in plot (A–I)
represents an extracted effect size. Colors represent the different transcripts, and the point size represents the relative weight (inverted standard
deviation). Shaded areas (B,C,E,F,H,I) and bars (A,D,G,J) represent 95% credible intervals, and horizontal lines (A,D,G) represent 95% prediction
intervals. Each plot shows the number of studies (k) and effect sizes (n) represented in the respective subset, as well as corresponding heterogeneity
(I2). cat = catalase; gst = glutathione‐S‐transferase; hsp70/hsp90 = heat shock proteins 70 and 90; lnRR = log response ratio; mt = metallothionein;
sod = superoxide dismutase.
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potential, environmentally relevant bioindicators and metal
exposure as a proxy for general chemical stress. In addition,
we limited the evaluation of biomarkers to six transcripts. Even
so, between‐group heterogeneity was consistently high
(I2 ≥ 83%), and it is plausible that other taxon × toxicant ×
transcript combinations would yield different results. Hence,
for different setups and/or very specific exposure conditions,
our results may be of limited use for prediction of specific
responses. In that case, setups focusing on, for instance,
single species/genera and/or single compounds can offer a
higher resolution (Ekelund Ugge et al., 2022), which could
potentially be necessary to address more specific questions.
On the other hand, such setups would tend to be even less
appropriate for extrapolations and for addressing more gen-
eral questions. We have no apparent reason to believe that
another selection of taxa, compounds, and/or genes would
better fit our research questions. Therefore, we suggest that
our results offer a fair representation of the general biomarker
potentials of (assumed) stress genes for metal‐exposed bi-
valves in particular, and to some extent pollutant‐exposed
organisms in general.

CONCLUSIONS
Based on the published scientific literature, there was sup-

port for slight positive responses of the assessed transcriptional
biomarker candidates at arbitrary metal exposure, both overall
and (with the exception of hsp90) when assessed separately.
The same was also true for the overall responses in gills and
digestive glands. However, there was also an implication of
publication bias in favor of positive effect sizes, likely leading to
a general overestimation of biomarker responsiveness. Pre-
dicted effect sizes from arbitrary metal exposure should
therefore be interpreted with caution because it is not unlikely
that the “true” effects in most cases would be close to 0. Taken
together, this suggests low sensitivity and robustness of the
biomarker candidates.

There was a slight increase in expected response with ex-
posure time, although this effect was weaker for the transcript
and tissue subsets than for the overall response. The general
implication would be that sensitivity increases with time and
that the probability of detecting differences is likely higher after
days or weeks than after hours of exposure.

Finally, except for a slight decrease in sod, there was little
support of concentration dependence of the responses with
regard to toxic unit, either for overall responses or for
transcript‐ or tissue‐specific effects. As discussed, this could
partially be due to low resolution resulting both from the var-
ious species × transcript × toxicant combinations and from the
uncertainties around toxic units. Nonetheless, it gives a clear
implication that, on a large scale, there is no universal
concentration–response relationship for stress‐related tran-
scripts in metal‐exposed mussels. Consequently, in the ab-
sence of species‐, toxicant‐, and/or tissue‐specific data, robust
responses should not necessarily be expected even at high
exposure concentrations.

The present study illustrates a number of limitations of the
selected transcriptional responses in bivalves, which would
likely be true for a range of other taxa, transcript, and toxicant
exposures. Prior to potential application of transcriptional bi-
omarkers in ERA, it will therefore be crucial to further address,
for example, concentration dependence, time dependence,
and individual variation. Provided there is sufficient mechanistic
understanding and/or empirical support, transcripts may have
great potential for various approaches in ERA, such as adverse
outcome pathways, multibiomarker models, or transcriptional
points of departure. Whether or not there are transcripts that
on their own can function as biomarkers of general toxicity
and chemical stress, however, remains a question for future
research.

Supporting Information—The Supporting Information is avail-
able on the Wiley Online Library at https://10.1002/etc.5494.
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