
Vol.:(0123456789)

Software Quality Journal (2023) 31:687–719
https://doi.org/10.1007/s11219-022-09607-z

1 3

On business adoption and use of reproducible builds
for open and closed source software

Simon Butler1 · Jonas Gamalielsson1 · Björn Lundell1 · Christoffer Brax2 ·
Anders Mattsson3 · Tomas Gustavsson4 · Jonas Feist5 · Bengt Kvarnström6 ·
Erik Lönroth7

Accepted: 10 October 2022 / Published online: 29 November 2022
© The Author(s) 2022, corrected publication 2024

Abstract
Reproducible builds (R-Bs) are software engineering practices that reliably create bit-for-
bit identical binary executable files from specified source code. R-Bs are applied in some
open source software (OSS) projects and distributions to allow verification that the distrib-
uted binary has been built from the released source code. The use of R-Bs has been advo-
cated in software maintenance and R-Bs are applied in the development of some OSS secu-
rity applications. Nonetheless, industry application of R-Bs appears limited, and we seek
to understand whether awareness is low or if significant technical and business reasons
prevent wider adoption. Through interviews with software practitioners and business man-
agers, this study explores the utility of applying R-Bs in businesses in the primary and sec-
ondary software sectors and the business and technical reasons supporting their adoption.
We find businesses use R-Bs in the safety-critical and security domains, and R-Bs are valu-
able for traceability and support collaborative software development. We also found that
R-Bs are valued as engineering processes and are seen as a badge of software quality, but
without a tangible value proposition. There are good engineering reasons to use R-Bs in
industrial software development, and the principle of establishing correspondence between
source code and binary offers opportunities for the development of further applications.

Keywords Reproducible builds · Software integrity · Software engineering · Open source
software

1 Introduction

In his Turing Award Lecture in 1984, Ken Thompson described an attack on a computer
system using a compromised compiler that injects malicious code into applications, and
can also be engineered to cover its own tracks (Thompson, 1984). Known as “Trusting
Trust”, the attack, if performed well, can be undetectable. At the core of the attack is the
notion that users of software are required to trust that the software creator has delivered

 * Simon Butler
 simon.butler@his.se

Extended author information available on the last page of the article

http://orcid.org/0000-0002-6215-3753
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-022-09607-z&domain=pdf

 Software Quality Journal (2023) 31:687–719

1 3

688

an executable binary that operates only as claimed, and does not perform any hidden or
malicious actions. Trusting trust is a problem that has fascinated some computer scientists
and security experts, e.g. Wheeler (2005, 2009), who have tried to find solutions to the
problem.

Most software is provided to users, in the wider sense, as software as a service (SaaS) solutions
or in precompiled binaries. SaaS users rely on software running on remote systems over which
they have little control, and limited information about exactly what software is deployed to pro-
vide the service (Tapas et al., 2019). In the case of precompiled binaries of operating systems
and applications, most users download executable files and run them directly on their computers
(de Carné de Carnavalet et al., 2014; Lamb & Zacchiroli, 2021). Users of proprietary software
are required to trust the software supplier has distributed a binary that does not contain malicious
code, despite there being extensive evidence that the integrity and quality of distributed software
can be compromised (e.g. Edge (2019); Greenberg (2017, 2018); Smith (2011); GReAT AMR
(2019); Gallagher and Greenwald (2014); Ohm et al. (2020); Ramakrishna (2021)). Open source
software (OSS) can provide the opportunity for software users to verify the claimed correspond-
ence between the source code and the distributed binary, because OSS projects create and dis-
tribute binaries of software built from specific revisions of source code which are also available.
A reproducible build (R-B) allows the user of the software to build the binary independently of
the software provider (Ren et al., 2018, 2019; de Carné de Carnavalet et al., 2014; Reproducible
Builds Project, 2019a; Lamb & Zacchiroli, 2021). The user is then able to perform a bitwise com-
parison of the two binaries to verify that they are identical and that the distributed binary is indeed
built from the source code in the way the provider claims. Applied in this manner, R-Bs function
as a canary, a mechanism that indicates when something might be wrong, and offer an improve-
ment in security over running unverified binaries on computer systems. The key property of a
R-B is that it establishes correspondence between source code and binary. Potentially, such a sim-
ple property can be applied to support a wide range of software development activities including
those that depend on source code audit, such as software quality assurance, supply chain integrity,
and automation to support software licence compliance processes (van der Burg et al., 2014; Kuhn
et al., 2020).

The use of R-Bs is gaining traction with some OSS distributions and projects. The
Debian Linux project is a leader in the area with some 90–93% of packages built repro-
ducibly (Ren et al., 2018; Levsen et al., 2019). Alpine Linux (Alpine Linux, 2020),
Arch Linux (Vinet & Griffin, 2022), FreeBSD (Piotrowski, 2018), GNU Guix (2019),
NixOS (2020) and the Yocto Project (2021) also provide R-Bs. Despite there being
security, integrity (Lamb & Zacchiroli, 2021), and software quality benefits to R-Bs
(Potvin & Levenberg, 2016; Bazel, 2020), adoption appears to have been slow and it
remains unclear the extent to which R-Bs might become more widely used. Indeed, some
Linux distributions have previously claimed they do not need to provide R-Bs because
they have transparent and trustworthy development processes (Bressers, 2016). However,
in doing so software suppliers continue to expect users to trust them without providing
a means to verify that they are trustworthy, and sometimes with disastrous outcomes
such as the attack on SolarWinds (Ramakrishna, 2021; Egts & Hellekson, 2021; Lamb &
Zacchiroli, 2021).

Software engineering practitioners have suggested additional uses and benefits of R-Bs.
Martin Fowler, for example, sees applications in the long-term maintenance of software to
support debugging of earlier product releases installed at customer sites (Fowler, 2010).
While others have also argued that R-Bs can lead to more efficient build processes as bina-
ries are only recreated when there is a functional change, rather than as the consequence of
a change in a volatile quality such as a file time stamp (de Carné de Carnavalet et al., 2014;

Software Quality Journal (2023) 31:687–719

1 3

689

Ren et al., 2018, 2019). Further, some OSS projects where security is a very significant
concern use R-Bs during the release process, where multiple developers build the software
using a “recipe” that defines how to create a virtual machine, or container, as a clean envi-
ronment within which to run the build process. The resulting binary is then digitally signed
by each developer and the results compared (Bitcoin Project, 2022; Tor Project, 2022).
Only when a consensus is achieved amongst developers that it is possible to build bitwise
identical binaries independently is the binary released by the project.

The academic literature on R-Bs has largely focused on the technical challenges
(de Carné de Carnavalet et al., 2014; Ren et al., 2018, 2019; Shi et al., 2021), on sup-
ply chain integrity in OSS (Lamb & Zacchiroli, 2021), and on specific implementations of
R-Bs such as Guix (Courtès & Wurmus, 2015; Courtès, 2017), NixOS (Dolstra et al., 2010)
and in-toto (Torres-Arias et al., 2019). The grey or practitioner literature1 contains a
range of views on R-Bs and some practitioners have identified additional applications of
the techniques. There, however, has been limited research on the application and value of
R-Bs in an industry context. This article explores the perceptions and applications of R-Bs
in businesses in both the primary and secondary software sectors2 in Sweden and Europe.
The investigation is focused on the following three research objectives:

O1: To understand the level of awareness of reproducible builds within software-
intensive businesses.

O2: To identify technical and business factors relevant to the use of reproducible builds.
O3: To identify use cases for reproducible builds in a variety of technical domains and

business contexts.

To meet the objectives we undertake two main phases of investigation, described in
detail in Sect. 3. The first phase consists of discussions between the authors on the topic
of R-Bs, and the relevance of the practice to their business. In particular we focus on the
business, managerial and technical aspects of R-Bs relevant to the companies represented
by the authors. The second phase of the investigation consists of analysis of interviews
with practitioners about their understanding of the role the application of R-Bs might play
in their work, and the opportunities and challenges they present both for themselves and for
the software industry.

The following section describes current work on R-Bs and proposed solutions to the
practical problems. Detail on the potential applications beyond trust identified by practi-
tioners is also included, as are counter arguments of practitioners unconvinced by the
approach or the need for it. Section 3 describes the research approach used in this work.
Our findings are reported in Sect. 4 and discussed in Sect. 5. Finally, we summarise the
contributions made by this paper in Sect. 6 before drawing conclusions and suggesting
areas for future work.

1 We use the term practitioner literature in this article and consider it to be synonymous with grey litera-
ture.
2 Businesses in the primary software sector develop and sell software and software services. Businesses
in the secondary software sector develop software components and incorporate them in other products
(Ågerfalk et al., 2005).

 Software Quality Journal (2023) 31:687–719

1 3

690

2 Background and literature review

The motivation for the development of R-Bs has its roots in the need to verify correspond-
ence between published source code and distributed binaries to provide an indication that
additional code has not been inserted into the executable file during creation of the binaries
(Reproducible Builds Project, 2019b; Porup, 2016; de Carné de Carnavalet et al., 2014).
An example of the problem being addressed can be found in Thompson’s description of
how a compiler might be compromised so that it inserts malicious code into a computing
system in a way that is difficult to detect. Thompson summarises his experience and its
implications as follows:

The moral is obvious. You can’t trust code that you did not totally create yourself. (Espe-
cially code from companies that employ people like me.) No amount of source-level
verification or scrutiny will protect you from using untrusted code. (Thompson, 1984)

Given the volume and complexity of software that companies and individuals execute on
computing devices today — e.g. cloud systems, desktop, gaming devices, mobile phones,
and increasingly embedded systems in household devices — it is impossible for the user
to create the code themselves. Consequently, computer users obtain much of their software
from external sources either directly from the software provider or via a software distribu-
tor. A further complication is the pace at which revisions are made and programs updated
on computers, which would require a similarly paced scrutiny process by software users.
Largely, software users are forced into the position of trusting software distributors and
providers, with only limited mechanisms to scrutinise the executable software (e.g. virus
checkers and checksums), and with neither evidence nor methods to establish whether
the software providers are trustworthy. Furthermore, software providers face the similar
challenges to verify that their tool chains are trustworthy and reliable (Thompson, 1984;
Xiao, 2015; Kang et al., 2015; Shaulov, 2016), particularly as supply chain attacks are
seen as a relatively low cost mechanism for the distribution of malicious code, and are
increasing in frequency (Ohm et al., 2020). A recent illustration is the large-scale sup-
ply chain attack on SolarWinds in 2020, which placed malicious payloads in versions of
the Orion network management software that was subsequently downloaded by customers
(Ramakrishna, 2021). The nature of the security breach and the relevance of R-Bs were
summarised as:

...it appears that the source code wasn’t compromised, and the distribution sys-
tem wasn’t compromised. Instead, the build system was compromised. This is
EXACTLY the kind of attack that is countered by reproducible builds. Thus, the
recent SolarWinds subversion is a very good argument for why it’s important to
have reproducible builds (and to verify builds using reproducible builds).(David A.
Wheeler in a message to the Reproducible Builds Project mailing list 2020-12-183
(original emphasis).)

The Reproducible Builds Project defines an R-B as:

A build is reproducible if given the same source code, build environment and build
instructions, any party can recreate bit-by-bit identical copies of all specified arti-
facts. (Reproducible Builds Project, 2019a)

3 https:// lists. repro ducib le- builds. org/ piper mail/ rb- gener al/ 2020- Decem ber/ 002109. html

https://lists.reproducible-builds.org/pipermail/rb-general/2020-December/002109.html

Software Quality Journal (2023) 31:687–719

1 3

691

2.1 Implementing reproducible builds

A key challenge for the software provider lies in creating a build environment and tooling
that the user can replicate easily and independently, and that does not introduce nonde-
terministic artefacts into the binary. There are many sources of nondeterminism or vari-
ability in build environments that can be propagated to executable files, including time
stamps and file paths, and variations in file sorting orders in different operating system
locales that influence the order of compilation and linking and thereby the structure of the
binary (Linderud, 2019). Indeed, de Carné de Carnavalet et al. (2014) argue that an impor-
tant source of challenges for those trying to secure the supply chain is that the tools —
compilers, linkers, build tools — have not been designed with the intention of creating
reproducible output. The finding remains current and relevant according to practitioners
interviewed by Enck and Williams (2022). There is then a twofold problem when trying to
create a reproducible build: firstly the causes of nondeterminism in a build process must be
identified, and secondly solutions that eliminate or control the causes of nondeterminism
need to be found (Ren et al., 2018, 2019, 2022; Shi et al., 2021). Tools and techniques are
being developed to support the identification of variance in build processes. For example,
reprotest (Reproducible Builds 2022) can be used to build a software project using two
different environments. The two binaries can then be examined with diffoscope (Reproduc-
ible Builds Project, 2022), a tool that performs a recursive diff4 on archive files, to iden-
tify possible sources of variability. Another approach traces system calls in the operating
system during the build process to identify causes of variability or nondeterminism (Ren
et al., 2019), which in turn can be leveraged to create patches to make software builds
reproducible (Ren et al. 2022).

One source of variability in binaries has been the addition of variable timestamps, typi-
cally the time of compilation, by compilers and build tools. The Reproducible Builds pro-
ject developed the SOURCE_DATE_EPOCH specification (Lamb & Luo, 2017) allowing a
build time to be specified for compilation that is defined for the build and is independent
of the system clock. A number of open source compilers and build tools, including GCC
(2020), implement the standard. Additional methods are needed to control variability in
some programming languages and build tools. Maven, for example, has recently imple-
mented a plugin to make builds reproducible, but there are some constraints the user must
adhere to for the build to be reproducible (Apache Maven, 2022). Another approach,
adopted by Microsoft, is to replace timestamps with hashed values (Chen, 2018). How-
ever, not all programming languages and build tools have inbuilt support for reproducibil-
ity (Enck & Williams, 2022). A more recent approach has explored mechanisms to mitigate
stochastic operating system behaviour to support deterministic execution (Navarro Leija
et al., 2020).

Blaze (Ivanković et al., 2019) is a build tool developed by Google that implements R-Bs. It
is also available as an OSS version named Bazel (2020). The motivation for Blaze and Bazel
lies in the efficient use of computing resources. Google maintains a monolithic source code
repository containing all its source code in which changes in one codebase trigger rebuilds in
projects for which the project is a dependency (Potvin & Levenberg, 2016). Both Blaze and
Bazel implement R-Bs for multiple programming languages so that the tools build only soft-
ware components that have been changed in a meaningful way (Potvin & Levenberg, 2016).

4 diff is a command line program that outputs the differences between files.

 Software Quality Journal (2023) 31:687–719

1 3

692

Binary Authorization for Borg (BAB) is used by Google to demonstrate the integrity of appli-
cations uploaded by customers and deployed to their Borg cloud service to protect against
tampering by staff (Google Cloud, 2020). Tapas et al. (2019) identify the need for and pro-
pose schemes to verify securely software deployed to users in SaaS systems. The proposed
solutions rely on reproducibility, and on the use of Merkle trees5 to support verification of
artefacts, including orchestration configuration and binaries (Tapas et al., 2019). Google have
also developed systems to support build verification of libraries for the Go programming lan-
guage, for example, that rely on Merkle trees to provide provenance (Hurst, 2021).

de Carné de Carnavalet et al. (2014) identify limitations to R-Bs, particularly with leg-
acy OSS and closed source dependencies, and reason that a verifiable build, such as the
approach described by Hurst (2021), where build differences can be accounted for, may be
a necessary, pragmatic solution in some circumstances. Shi et al. (2021) developed a sys-
tematic approach to creating verifiable builds that was successfully applied in large-scale
commercial software systems. The approach resulted in 100% of build artefacts in three
large-scale systems at Huawei being verifiable (Shi et al., 2021).

2.2 Applications of reproducible builds

R-Bs have further applications in software development and deployment. OSS projects often
provide both compiled binaries and the source code from which the binary is claimed to have
been built, and, thus, may provide the opportunity to apply R-Bs. Some security software pro-
jects, including Bitcoin Core and the Tor browser, use R-Bs to support their release process by
establishing that multiple, distributed developers are independently able to reproduce bitwise
copies of the release candidate binary (Bitcoin Project, 2022; Tor Project, 2022; de Carné de
Carnavalet et al., 2014). The intention is to eliminate a single point of failure, or point of
attack, from the release process for secure software (Perry, 2013).

Fowler (2010) identified the value of R-Bs in software maintenance especially in con-
tinuous integration (CI) processes where software is released frequently. Fowler argues
that being able to reproduce precisely the binaries deployed to the customer’s site at some
arbitrary point in the past is invaluable support for debugging and fault resolution. The
NixOS (Dolstra et al., 2010) and Guix projects (Courtès, 2017, 2013) are Linux package
managers designed to allow the user to reproduce software configurations. Both NixOS and
Guix implement the functional specification of systems, where packages and their immuta-
ble dependencies are specified recursively, and a software build is considered to be a pure
function, i.e. “a package’s build function is assumed to always produce the same result”
(Courtès, 2017). Courtès and Wurmus (2015) describe Guix-HPC (2020) a system for
reproducing computational environments on computing clusters. Guix-HPC is designed to
support the replication of computational experiments by the user in large multi-user sys-
tems, to support reproducible science (Courtès & Wurmus, 2015). However, it is important
to note that there are further computational problems that may need to be resolved to make
scientific findings reproducible (Wang et al., 2020). More widely, both Guix and NixOS, in
combination with the Software Heritage project (Software Heritage, 2019; Rousseau et al.,
2020), are also laying the foundation of reproducible computing environments to support
long-term software maintenance (Courtès, 2019).

5 The cryptographic data structure underpinning blockchain.

Software Quality Journal (2023) 31:687–719

1 3

693

Another approach, called DetTrace, implements a container for applications that
controls sources of nondeterminism arising from the operating system at runtime
(Navarro Leija et al., 2020). Consequently DetTrace allows software to execute deter-
ministically and can, thus, build software reproducibly. Perhaps more importantly,
DetTrace supports the deterministic execution of machine learning applications lead-
ing to repeatable and reproducible experiments in AI (Navarro Leija et al., 2020).

Recently, Bitcoin Core have started to use Guix to support their build process
(Dong, 2019). That Guix is reproducible reduces the amount of trust the project needs to
have in upstream systems and dependencies (Dong, 2019). Bitcoin Core has an acute con-
cern about confidence in their reputation as software developers, which is related to secu-
rity and to the quality of their software not least because Bitcoin transactions cannot be
revoked. Given the value of the Bitcoin market there are significant incentives for malicious
actors to compromise the software6. Dong is clear that R-Bs are one tool that supports a
transparent and secure build process (Dong, 2019).

The challenges of managing third-party intellectual property (TPIP) in the software bill
of materials (SBoM) (Riehle & Harutyunyan, 2019) and the SBoM of containers such as
Docker (Hemel, 2020; Courtès, 2020), including licence compliance, can also be addressed
by using R-Bs. Riehle and Harutyunyan (2019) outline the challenges of managing open
source licence compliance in the SBoM where there is a mixture of proprietary and open
source licensed components in a single product. A further problem is that there can be many
versions of source code publicly available in multiple repositories and that there is there-
fore a broader concern of provenance in the long-term maintenance of software (Rousseau
et al., 2020). The SBoM of a sample of seven OSS packages was investigated by van der
Burg et al. (2014) who found a variety of inconsistencies and incompatibilities between the
licences used in components. A challenge identified is that not all source code files distrib-
uted form part of the compiled software deliverable, thus the detection of licence compli-
ance requires a detailed understanding of the build process used (van der Burg et al., 2014).
Technologies such as SPDX (SPDX Workgroup, 2021) can be used in metadata to specify
the licence or licences used by each dependency in the SBoM and the Open Source Tool-
ing Group (OSTG) and Automated Compliance Tooling (ACT) (ACT, 2020) are develop-
ing solutions that use a combination of R-Bs and SPDX to automate licence compliance
checks — licence clearance (Riehle & Harutyunyan, 2019) — in continuous integration (CI)
through correspondence between the source code audited for licence compliance and the
binaries created and integrated during the build process (Geyer-Blaumeiser, 2019). Further-
more, the use of R-Bs can contribute to securing CI pipelines by providing assurance that
only audited SBoM components are integrated into the distributed software (Jacomet, 2020).

Courtès (2020) argues that containers, such as Docker, are often not created transpar-
ently, and that containers are not always reproducible. Variability in containers arises, for
example, when the recipe or script building the container, or the startup script in the con-
tainer itself, downloads packages from a software distributions’ repository using a pack-
age manager such as dnf or apt. Consequently, a container specified and tested on one
day can be a different binary, with potentially different and inconsistent behaviour, when
deployed some time later following an update to any of the required packages in the distri-
butions’ repository introducing additional challenges for long-term software maintenance.

6 At the time of Perry et al. (2014) there was a market capitalisation of 4 billion USD for Bitcoin, and, at
the time of writing, it is around two orders of magnitude greater. https:// www. block chain. com/ en/ charts/
market- cap

https://www.blockchain.com/en/charts/market-cap
https://www.blockchain.com/en/charts/market-cap

 Software Quality Journal (2023) 31:687–719

1 3

694

A further concern is that containers are software distributions that result from compila-
tion processes and it can be difficult to understand the SBoM deployed in containers, and
accordingly the software licensing of containers has been highlighted by Hemel (2020)
as legally problematic. Zerouali et al. (2019) also identify the security implications of
containers where the user is uncertain what software has been built in to the container,
or is downloaded and executed. Guix supports the creation of binary reproducible con-
tainers (Courtès, 2020). Another approach that secures the entire supply chain and the
SBoM is taken by in-toto (Secure Systems Lab, 2022) which provides mechanisms to
specify aspects of the software development process for components at each stage in the
chain that can be verified in the following and subsequent steps using R-Bs (Torres-Arias
et al., 2019).

2.3 Wider application of reproducible builds

Current applications of R-Bs are largely within a software development teams, both within
companies and in distributed teams. The Reproducible Builds project consider how R-Bs
might be used by a consumer such as an end user of software with limited technical knowl-
edge, or someone who might lack the time to be able to rebuild distributed software. Indi-
vidual OSS projects often provide both compiled binaries and the source code from which
the binary is claimed to have been built, and thus provide the opportunity to apply R-Bs to
verify the claim. Similarly, Linux distributions publish both binaries and source code. One
anticipated mechanism is that a user might be offered an indication that m of n rebuilders
confirm that a given binary is a reproducible before installing it (Nesbitt & Pounds, 2019;
Levsen, 2016), i.e. that there is a degree of consensus amongst a group of rebuilders that
the claim a given build is reproducible is correct. The proposition depends on there being
a sufficiently large pool of rebuilders, in terms of numbers or quality, for the user to con-
sider m of n to be meaningful in terms of trustworthiness. Chris Lamb of the Reproducible
Builds project argues that a diversity of locations, legal jurisdictions, and computing sys-
tems is a desirable quality amongst rebuilders, so that the consensus reached on a particular
build has the broadest possible provenance (Nesbitt & Pounds, 2019). What might motivate
a diverse community of rebuilders is open to speculation. One reason may be a common
need for security as illustrated by Perry et al. (2014)’s account of development of the Tor
browser where a distributed group of rebuilders other than the developers add a layer of
confidence to the claim that a given build is reproducible. The use cases for R-Bs identified
in the academic and practitioner literature are summarised in Table 1.

The practitioner literature focuses on the challenges of implementing R-Bs, as well as
identifying use cases. Some OSS projects, especially some security applications, Linux dis-
tributions and FreeBSD perceive threats to their reputations and have invested in develop-
ing R-Bs. Meanwhile, some OSS projects remain sitting on the fence or have been dismiss-
ive of the value of R-Bs. While technical aspects of the problem are being addressed and
the value of R-Bs is clear to some practitioners and businesses, there is limited research
literature that addresses how R-Bs are perceived within businesses that develop and deploy
software.

Software Quality Journal (2023) 31:687–719

1 3

695

Ta
bl

e
1

 U
se

 c
as

es
 fo

r r
ep

ro
du

ci
bl

e
bu

ild
s r

ep
or

te
d

in
 th

e
ac

ad
em

ic
 a

nd
 p

ra
ct

iti
on

er
 li

te
ra

tu
re

U
se

 C
as

e
D

es
cr

ip
tio

n
R

ef
er

en
ce

s

In
te

lle
ct

ua
l P

ro
pe

rt
y

M
an

ag
em

en
t

R-
B

s o
f a

ud
ite

d
so

ur
ce

 c
od

e
to

 su
pp

or
t l

ic
en

ce
 c

le
ar

an
ce

 in
 c

om
pl

ex
 S

B
oM

G
ey

er
-B

la
um

ei
se

r (
20

19
)

Re
pr

od
uc

ib
le

 S
B

oM
 fo

r c
on

ta
in

er
s

C
ou

rtè
s (

20
20

)
R

ep
ro

du
ci

bl
e

Sc
ie

nt
ifi

c
C

om
pu

tin
g

B
itw

is
e

re
pr

od
uc

ib
le

 c
om

pu
ta

tio
na

l e
nv

iro
nm

en
ts

 to
 re

pl
ic

at
e

ex
pe

rim
en

ts
.

C
ou

rtè
s a

nd
 W

ur
m

us
 (2

01
5)

R
ep

ro
du

ci
bl

e
Sy

st
em

s
Re

pr
od

uc
ib

le
 L

in
ux

 d
ist

rib
ut

io
ns

N
ix

O
S

(2
02

0)
, G

N
U

 G
ui

x
(2

01
9)

So
ftw

ar
e

Bu
ild

 E
ffi

ci
en

cy
U

se
 o

f d
ep

en
de

nc
y

re
so

lu
tio

n
to

 re
bu

ild
 o

nl
y

w
he

n
ne

ce
ss

ar
y

Po
tv

in
 a

nd
 L

ev
en

be
rg

 (2
01

6)
So

ftw
ar

e
M

ai
nt

en
an

ce
B

itw
is

e
re

pl
ic

at
io

n
of

 d
ep

lo
ye

d
so

ftw
ar

e
to

 su
pp

or
t f

au
lt

re
so

lu
tio

n.
Fo

w
le

r (
20

10
)

Su
pp

ly
 C

ha
in

 S
ec

ur
ity

Ve
rifi

ca
tio

n
of

 R
-B

 c
la

im
 in

 si
ng

le
 su

pp
ly

 c
ha

in
 st

ep
Re

pr
od

uc
ib

le
 B

ui
ld

s P
ro

je
ct

 (2
01

9b
),

de
 C

ar
né

 d
e

C
ar

na
va

le
t e

t a
l.

(2
01

4)
, R

en
 e

t a
l.

(2
01

8)
, P

er
ry

(2

01
3)

, L
ev

se
n

(2
01

6)
Ve

rifi
ca

tio
n

of
 a

ll
ste

ps
 in

 su
pp

ly
 c

ha
in

To
rr

es
-A

ria
s e

t a
l.

(2
01

9)
D

ev
el

op
m

en
t o

f c
on

se
ns

us
 R

-B
 a

m
on

gs
t d

ist
rib

ut
ed

 d
ev

el
op

er
s,

pr
io

r t
o

re
le

as
e

Pe
rr

y
(2

01
3)

, D
on

g
(2

01
9)

Se
cu

re
 d

ep
lo

ym
en

t o
f c

us
to

m
er

 so
ftw

ar
e

in
 c

lo
ud

 c
om

pu
tin

g
sy

ste
m

s.
G

oo
gl

e
C

lo
ud

 (2
02

0)

 Software Quality Journal (2023) 31:687–719

1 3

696

3 Research approach

In this investigation, we adopt an action-case approach (Braa & Vidgen, 1999; Lundell &
Gamalielsson, 2017) to explore the uptake and possible use cases of R-Bs in primary and
secondary software sector businesses. The research was conducted in two main phases. The
initial phase consisted of discussions between the co-authors with the purpose of under-
standing how reproducible builds are and might be used within the companies represented
by six of the co-authors, as well as seeking to understand the business cases for adopting
and using R-Bs. The second phase of the research consisted of interviews with practition-
ers from businesses and organisations developing and applying R-Bs.

We used our networks to identify individuals, both decision-makers and practitioners,
who had experience of R-Bs in their work, or who had considered, or were in the process
of considering, using R-Bs. Where possible we were introduced to potential interview-
ees through the networks. We also identified other individuals active in R-Bs communi-
ties or advocates for R-Bs within OSS projects, and where we were unable to contact them
through our networks, we made a direct approach by email, inviting them to participate in
an interview.

Interviews were conducted as open dialogues, in English by the first author, a native Eng-
lish speaker, by email, online conferencing, or telephone according to the interviewee’s pref-
erence. The interviews explored the interviewees’ knowledge and experiences of R-Bs, and
the business and technical grounds for decisions they had made, and the business and techni-
cal use cases for R-Bs. The interviewer used a list of questions to guide the conduct of each
interview (see Appendix B). Only one interview was conducted by email. The interviewee
was very expansive, so required little prompting to discuss their work and ideas.

Interviews were transcribed by the first author, and the transcript anonymised. Each
anonymised transcript was reviewed and approved by the interviewee. Interviewees were
also invited to expand on points made during the interview. A brief synopsis was also
agreed characterising the interviewee’s role and business context in abstract terms (see
Table 3) as well as a synopsis of the interview including quotes, identified by the first
author, that might be used in publications. The intention of asking the interviewees to
review the anonymised transcripts and synopses was to take a step towards ensuring that
the transcription accurately reflected the interviewees’ views, and to reduce researcher bias.

There was one exception to the process described. One interviewee is responsible for
aspects of their employer’s software security and was interviewed by managers within the
business to ensure sensitive information was not disclosed during the interview. The first
author was given written notes of the interview and was able to discuss the interview with
the managers who had conducted it. Both managers are software practitioners with exten-
sive experience (in excess of 20 years) and are familiar with the interviewee’s work. The
interviewee was able to respond to follow-up questions submitted via the interviewers.

Interviewees were all experienced software practitioners with a minimum of five years
industrial experience. Companies employing interviewees — the six represented by the
authors, and six others based in Europe — ranged in size from small (<5 employees) to
companies with multiple divisions and thousands of employees.

The anonymised interview transcripts were analysed by the first author using the-
matic analysis (Braun & Clarke, 2006). The academic and practitioner literature explored
in the preceding section, and the investigation undertaken amongst the authors reported
in Sect. 4.1 was used to develop semantic themes before the interviews were conducted.
Themes on the applications of R-Bs and the challenges of implementation (see Table 2),

Software Quality Journal (2023) 31:687–719

1 3

697

Ta
bl

e
2

 S
em

an
tic

 th
em

es
 re

la
te

d
to

 th
e

ap
pl

ic
at

io
ns

 a
nd

 im
pl

em
en

ta
tio

n
of

 R
-B

s d
er

iv
ed

 fr
om

 a
ca

de
m

ic
 a

nd
 p

ra
ct

iti
on

er
 li

te
ra

tu
re

, a
nd

 in
ve

sti
ga

tio
n

fo
r O

1

G
ro

up
in

g
Th

em
e

D
es

cr
ip

tio
n

A
pp

lic
at

io
n

C
od

e-
au

di
t-d

ep
en

de
nc

y
Th

e
us

e
of

 R
-B

s t
o

su
pp

or
t d

ep
en

de
nc

y
re

so
lu

tio
n.

C
od

e-
au

di
t-i

nt
eg

rit
y

Th
e

us
e

of
 R

-B
s t

o
es

ta
bl

is
h

a
co

nn
ec

tio
n

be
tw

ee
n

so
ur

ce
 a

nd
 b

in
ar

y.
C

od
e-

au
di

t-l
eg

al
U

se
 o

f R
-B

s a
s e

vi
de

nc
e

of
 th

e
so

ur
ce

 c
od

e
us

ed
 in

 a
 p

ar
tic

ul
ar

 b
in

ar
y.

C
od

e-
au

di
t-s

af
et

y
Th

e
us

e
of

 R
-B

 to
 a

ud
it

co
de

 d
ep

lo
ye

d
in

 sa
fe

ty
-c

rit
ic

al
 e

nv
iro

nm
en

ts
/c

on
te

xt
s.

Lo
ng

-te
rm

-m
ai

nt
en

an
ce

A
pp

lic
at

io
n

of
 R

-B
s t

o
su

pp
or

t s
of

tw
ar

e
m

ai
nt

en
an

ce
 in

 th
e

lo
ng

er
 te

rm
 (>

10
 y

ea
rs

).
Re

pr
od

uc
ib

le
-s

ci
en

ce
Th

e
us

e
of

 R
-B

s t
o

su
pp

or
t r

ep
ro

du
ci

bi
lit

y
of

 sc
ie

nt
ifi

c
re

su
lts

.
Sc

rip
tin

g-
la

ng
ua

ge
s

Th
e

ap
pl

ic
at

io
n

of
 R

-B
s t

o
th

e
di

str
ib

ut
io

n
of

 li
br

ar
ie

s i
m

pl
em

en
te

d
in

 sc
rip

tin
g

la
ng

ua
ge

s.
So

ftw
ar

e-
de

ve
lo

pm
en

t-t
ra

ce
ab

ili
ty

Th
e

us
e

of
 tr

ac
ea

bi
lit

y
in

 so
ftw

ar
e

en
gi

ne
er

in
g

pr
oc

es
se

s,
re

ga
rd

le
ss

 o
f t

he
 u

se
 o

f R
-B

s.
Im

pl
em

en
ta

tio
n

C
ha

lle
ng

e-
ex

te
rn

al
Th

at
 im

pl
em

en
ta

tio
n

of
 R

-B
s i

s c
on

str
ai

ne
d

or
 p

re
ve

nt
ed

 b
y

fa
ct

or
s o

ut
si

de
 th

e
bu

si
ne

ss
’s

 c
on

tro
l.

C
ha

lle
ng

e-
in

te
rn

al
Th

at
 e

xi
sti

ng
 c

om
pa

ny
 in

te
rn

al
 p

ro
ce

ss
es

 a
re

 su
ffi

ci
en

t,
or

 in
tro

du
ce

 c
ha

lle
ng

es
 th

at
 c

an
no

t e
as

ily
 b

e
re

so
lv

ed
.

C
ha

lle
ng

e-
te

ch
ni

ca
l

Th
at

 th
e

im
pl

em
en

ta
tio

n
of

 R
-B

s a
ris

es
 fr

om
 te

ch
ni

ca
l s

ou
rc

es
 in

cl
ud

in
g

to
ol

in
g.

 Software Quality Journal (2023) 31:687–719

1 3

698

and the motivations for their use — including business, security and technical motiva-
tions (see Table 6 in Appendix A). The themes were used to support the theoretic thematic
analysis of the interviews, thereby facilitating the identification of novel applications of
R-Bs or motivations for their use. Synopses of the anonymised interview transcripts and
the thematic analysis were discussed by the authors to develop the findings and analysis
(McDonald et al., 2019). The evolved results were also subject to additional scrutiny in an
iterative process involving researchers and practitioners from the businesses represented by
the authors during in-company workshops and as part of four full-day workshops (Lundell
& Gamalielsson, 2017).

4 Findings

4.1 O1: Business awareness of R‑Bs

The six businesses represented by the authors are based in Sweden and operate in the
primary and secondary software sectors developing solutions mostly in the high perfor-
mance computing (HPC), internet of things (IoT), safety-critical systems, and security
domains. As a group of businesses we, with one exception, do not currently use R-Bs in
our work. Awareness of R-Bs was mixed within the group of authors at the beginning of
this research, with the greater knowledge amongst those working in the safety-critical and
security domains.

We identified three areas in which R-Bs are or may be of value as day-to-day software
engineering practices within the six businesses. The first is the verification of software
binaries distributed by OSS projects. Much of the OSS used in systems we develop is built
from source, in some cases we are building on the software before contributing revisions
upstream, or there is a need to audit the source code for reasons including licensing and
security. The second is the practical value of R-Bs in software development, particularly
when working with complex and safety-critical systems, R-Bs can contribute to certifica-
tion processes and reduce the need for code audits. The third is the value of a verifiable
process where we distribute OSS. This is not just in the first sense, but potentially offers
business value as a demonstration of the integrity of internal software processes in the
development of security applications.

Table 3 Interviewee roles and
technical domains in which they
operate

Identifier Role Domain

Managerial Technical

I
01

✓ ✓ Embedded Systems
I
02

✓ Safety-Critical Systems
I
03

✓ Research
I
04

✓ ✓ Research
I
05

✓ ✓ Web Systems
I
06

✓ ✓ Embedded Systems
I
07

✓ ✓ Safety-Critical Systems
I
08

✓ ✓ Safety-Critical Systems

Software Quality Journal (2023) 31:687–719

1 3

699

Importantly, the fundamental property of a R-B — correspondence between source code
and binary — has a wide range of potential applications. We encounter areas of work, par-
ticularly in safety-critical and complex, multi-component systems, where traceability and
software provenance are useful tools to ensure that only audited software is deployed and
that systems consisting of versions of software known to work together are assembled in
tested configurations and combinations. An example is a train that may contain 30 to 40
interconnected computers, some of which are components of the safety-critical functions
of the train, whereas other components are more related to the business and social aspects
of managing a train, such as ticketing systems and CCTV. One of us (Brax) was able to
identify more than 200 applications running on one train during a recent assignment.

Component safety-critical systems are typically tested in a laboratory setting using a
system that simulates the inputs to the safety-critical system under test so that the software
can be exercised to ensure that it meets or continues to meet the certification requirements.
Of considerable concern is the impact on this process of managing configurations of mul-
tiple computing devices each with its own combinations of hardware, firmware, operating
system, libraries and applications, all of which will change over time in each device. Cur-
rently, many testing systems are configured manually, but there are strong arguments for
using automation and being able to reproduce deployed software reliably through the appli-
cation of R-Bs is a potential solution to the problem.

The development of aviation software of software for flight safety-critical applications is
governed by the RTCADO-178C guidelines (RTCA, 2011). RTCADO-178C:

provides the aviation community with guidance for determining, in a consistent man-
ner and with an acceptable level of confidence, that the software aspects of airborne
systems and equipment comply with airworthiness requirements. (RTCA, 2011)

Compliant software processes are developed by companies and certified on a per-project
basis (Pothon & Ochem, 2017). Correspondence between source code and binary is a fun-
damental requirement of DO-178C which extends to reproducible test environments to
support the software maintenance. Given audited and tested source code that meets the
standard, then a R-B might be used to meet the requirement that accurate copies of certified
binaries can be recreated (RTCA, 2011, Chapter 7.2.7.c). To fulfil the requirements of DO-
178C not only product binaries need to be saved, but also the hardware, software tools and
build environment used during the development needs to be documented, saved or stored.

The aeronautics division at Saab use R-Bs to meet the requirements of RTCADO-178C.
One requirement is that it must be possible to build a new binary again and trust all pre-
vious verification, test and statements made in the documentation (RTCA, 2011, Chap-
ter 8.3.f). Metadata is stored identifying the versions of source code used in builds, as
well as records of checksums calculated for the binary files created. The reproducible build
process then creates bitwise identical binary copies of previous builds, that correspond to
audited source code. Saab also use R-Bs to support some of their software development
processes in other divisions where the adoption and use of R-Bs as best practice has been
led by software practitioners.

Commonly used arguments for R-Bs to be implemented as part of the process for
securing the supply chain in OSS apply to PrimeKey who offer services and software in
the security domain focused on public key infrastructure (PKI). PrimeKey lead a num-
ber of OSS projects and see business value in providing a verifiable correspondence
between delivered binaries and audited, secure source code for some customers. As with
any OSS project, vulnerabilities are not just restricted to the build tool chains, but also the
developer accounts. Consequently an ideal process would consist of source code audit

 Software Quality Journal (2023) 31:687–719

1 3

700

which is then built using an automated R-B. Currently, customers are not asking for R-Bs
as part of the software development process, but R-Bs can be seen as a way of adding value
for customers with a high-level business process perspective of security. PrimeKey have
experimented with R-Bs — an initiative led by developers — but found support for R-Bs in
Maven7 was insufficiently mature at the time.

In summary, amongst six businesses in the primary and secondary software sectors
there is experience of using R-Bs in production in one company, and an understanding of
potential applications and business value in two more. In the case of PrimeKey tooling was
an obstacle to implementing R-Bs.

4.2 O2: Relevant technical and business factors

Interviewees reported a mixture of motivations to use R-Bs, as well as challenges or obsta-
cles to their implementation. The majority of motivations stated were technical, and some
interviewees, including I

01
 see the value of R-Bs to their workflow, both as a way of being

able to verify the correspondence between binaries and source code from suppliers and as a
mechanism to improve traceability of the code they create, package and deploy to custom-
ers. Considering the use of R-Bs from the perspective of a consumer of software, I

01
 sum-

marised that matter succinctly:

...the guarantee of reproducible builds would make me feel safer when I get software
from somebody else.

I
01

 also summarised the application of R-Bs in the relationship with customers from two
perspectives: practical and legal. The traceability facilitated by R-Bs supports software
maintenance:

...for me it is quite important to be able to know what actually happened and trace
back to the source code. I

01

And, further, that as well as being a source of evidence to support engineering, I
01

 made
the point that:

...reproducible builds is very important in forensics - when you have legal issues
about code ...

I
08

 described using Debian Linux as the starting point for a secure OSS supply chain within a
business that develops safety-critical software. Debian was chosen because of the implementa-
tion of R-Bs and the provision of metadata to support the process. The business is then able
to rebuild the distribution for itself, package by package, establishing trust in the supply chain
upstream. As part of the process of creating the internal distribution the business undertakes
additional code audit steps using static analysis, as well as performing licence clearance —
checking for licence statements in source code and other artefacts — and looking for export-
controlled technologies. The code audit establishes the provenance, licensing and security of
the SBoM in the Linux distribution, and allows the business to deploy a trusted platform with a
known SBoM for internal development. While this method might seem costly, and is perhaps
only possible — at the level of a Linux distribution — for a large company, I08 identified addi-
tional engineering and business benefits that we will return to below.

7 https:// maven. apache. org/

https://maven.apache.org/

Software Quality Journal (2023) 31:687–719

1 3

701

Both I
07

 and I
08

 identified the challenge of developing trust in upstream developers. For
I
07

 a problem was that OSS projects make revisions to functionality that are acceptable to
the project. Software development teams taking OSS into a secure or safety-critical envi-
ronment then have to audit and review revisions to source code in bug fixes and new fea-
tures before being able to integrate the code into their products, according to I

07
 . A concern

I
08

 expressed was the difficulty of estimating when to start evaluating revisions to source
code to allow for system upgrades in the upstream distribution to be incorporated in the
local Linux distribution. A task made more demanding by working with complex depend-
ency trees in both the current version of the upstream distribution and the development
branch that will become the next revision. I

08
 also reported that a key technical benefit

of developers using a mirrored, trusted Linux distribution is that there is better control of
internal software builds in product development, which leads to fewer problems for both
developers and end users, and reduced maintenance costs.

Interviewees also identified obstacles to using R-Bs. In the context of bitwise reproduc-
ibility, I

02
 stated that:

...it would be great to have reproducibility for us, but not mandatory for us in our
context. I would not consider that ...it is more important to have traceability.

I
02

 went on to say that it would be “...too much of a burden for us to move to reproducible
builds.” As well as the effort of implementing R-Bs and retrofitting them to existing build
systems and technical obstacles to implementing R-Bs in some programming languages
(see Sect. 2), some interviewees expressed concerns that the value to customers was lim-
ited, and thus there was a limited business case for using R-Bs. Indeed I

04
 argued that:

...the use of reproducible builds within a proprietary software development environ-
ment may be good from an engineering standpoint for developers in that company,
but it has no tangible impact on users of the software.

I
03

 was similarly sceptical, arguing that some offerings based on reproducible builds may work
with proprietary software, but generally the threat model is so diverse and at so many different
levels — hardware, firmware, operating system, etc. — that applications of R-Bs are not obvious.

There is, as I
04

 observed, a difference between business models used by proprietary soft-
ware and open source software. I

04
 went on to say:

Similarly, for free software companies that publish container images of their software
(Docker, Flatpak, etc.), I would argue that providing provenance information that can
be used to rebuild the images should be a good commercial argument.

I
04

 also expressed the opinion that R-Bs would become and integral part of conventional
software development practice, saying, “I think reproducible builds will become the norm
for developers, just like version control.” The concern for many (similar to the views
expressed in Sect. 4.1) is that the value proposition — how the benefits of a product are
perceived by the customer — is not clear in financial terms and is more intangible. I

05
 , for

example, argued that R-Bs might be seen as a mark of quality, implying that a software
provider used good engineering practices. Similarly, I

06
 argued that reproducibility is a key

characteristic of professionalism in the embedded systems domain.
A key challenge for R-Bs also identified by interviewees is that of awareness. Not just

that businesses buying software and services may not be aware of the value of R-Bs, as I
01

argued, but I

05
 also suggested that some practitioners may know about R-Bs and under-

stand it as a good engineering practice, without seeing a business application.

 Software Quality Journal (2023) 31:687–719

1 3

702

4.3 O3: Use cases for R‑Bs

In the latter part of the background (Sect. 2) we summarised the use cases for R-Bs found
in the practitioner literature (see Table 1). The interviews explored the known use cases
and their application in businesses, uses of R-Bs developed by businesses, and possible
future use of R-Bs (see Table 5).

I
03

 argues that a key functionality of R-Bs is that of dependency resolution, and that it is
clearly achievable given the example of Guix-HPC. I

03
 further stated that software licence

audits are supported by dependency resolution, and that support for dependency resolution
in docker containers is desirable.

The complexity of security in cloud applications was also highlighted by I
05

 . As noted
in Sect. 2, Google use reproducible builds to guard against tampering with customer appli-
cations. Cloud providers, according to I

05
 , are also concerned about the provenance of the

binaries they use, and consistency of deployed platforms. I
04

 considers the security applica-
tions of R-Bs as one that will attract potential users.

Where R-Bs were applied to establish supply chain security, interviewees also reported
that R-Bs were often also applied to support the integrity of systems deployed to custom-
ers and traceability. I

02
 has considerable experience in delivering reproducibility to support

long-term maintenance, highlighting the need to take snapshots of their builds to support
long-running projects, often implemented and executing on legacy systems:

...we can freeze the context ...it is important for our customers in [the] aerospace
industry where they have running projects for ten years or twenty years.

The company has developed a non-R-B solution that I
02

 describes as meeting their
requirements:

...we can reproduce a build completely from any time in the past and that is impor-
tant for us ...for that we add traceability information in our binaries that are generated
so we track exactly what has been used to do a build.

I
07

 works in a similar safety-critical area to I
02

 and also discussed the application of R-Bs in
long-term maintenance. Each internal release of deployed software needs to be maintained
for thirty years, and I

07
 framed the problem, similarly to I

01
 and I

02
 , in terms of support for

traceability. Teams managed by I
07

 introduced R-Bs as part of a series of gradual changes
intended to improve to the business’s software development process. I

07
 attributed some of

the benefits observed directly to the application of R-Bs including an increase in the effi-
ciency of build processes. A reason given by I

07
 was that increased scrutiny of code during

the process of modularisation resolved a significant amount of technical debt. The teams
also found that dependency management was simplified by the use of R-Bs and I

07
 high-

lighted that long-term maintenance is much easier to support.
In Sect. 4.2 we reported I

08
 ’s work to rebuild Debian reproducibly to establish a trusted

Linux distribution for use within the business. An additional advantage I
08

 identified con-
cerns collaboration with external partners. I

08
 ’s organisation can exchange project source

code, specify the build system, and supply a checksum for the binary to external compa-
nies. Knowing that their internal Linux is built reproducibly from the upstream distribu-
tion, they can be confident that external partners can easily, and inexpensively, replicate the
build system and environment for the collaborative project. Consequently, partners in any
collaboration can, firstly, build software projects to create bit-for-bit identical executables
and, secondly, understand if there is a difference in the build platforms should the R-B fail.

Software Quality Journal (2023) 31:687–719

1 3

703

Another interviewee, I
01

 , identified R-Bs as a mechanism for establishing the integrity
of deployed systems. Currently, I

01
 implements system integrity checks in embedded sys-

tems at boot time, so that incompatible configurations of hardware and software fail safely.
I
01

 sees that R-Bs can be used to implement a more secure mechanism for ensuring that a
fully tested software configuration is deployed, and as a means of being able to reproduce,
debug, and deploy debugged systems to customers should problems arise. Traceability
through R-Bs in this context allows the system developer to be certain what software and
hardware were deployed in the event of any legal claim involving the system, and thereby
its creator.

Considering the breadth of purposes to which R-Bs may be applied, I
03

 made the point
that R-Bs are challenging to implement and binary reproducible builds are unlikely to be
universally guaranteed. They can, however, be essential in specific, critical applications,
including bitcoin, for example.

When asked about the future for R-Bs, I
05

 drew a parallel with the early development of
distributed version control systems (DVCS), pointing out that DVCS was initially created to
meet specific use cases and the way in which the technology is applied now could not have
easily been conceived of at the time. There were obvious business and engineering reasons
to use version control, but the reasons to the switch to a distributed version control system
were less clear. Similarly with R-Bs, there are some, like I

04
 , who think that R-Bs will

become a conventional software engineering practice, but, like I
05

 , expect that some future
applications of the technique will be surprising.

4.4 Summary of findings

In the introduction to this paper we identified three objectives for the research that focus on
business awareness of R-Bs, the technical and business factors that affect adoption and use,
and the use cases. We briefly summarise our findings for each objective.

4.4.1 O1: Business awareness of R‑Bs

Within the six companies represented by the authors we found awareness of R-Bs greatest
within businesses working in the safety-critical and security domains. Within those com-
panies the application of R-Bs has been largely instigated and led by engineering staff, and
applied in specific workflows. Most notably to support the certification of a software devel-
opment process used in avionics. Awareness extends beyond the companies applying R-Bs
and two other companies have either experimented with using R-Bs or are considering
future application of R-Bs in their work. We conclude from this small sample, that there
is awareness amongst businesses of R-Bs as a software engineering technique, and that it
is mostly the technical and engineering staff, particularly in companies in the security and
safety-critical domains, that have knowledge of R-Bs.

4.4.2 O2: Relevant technical and business factors

Interviewees perceived R-Bs as good engineering practice that are of value to the business
applying them (see Table 4). Apart from R-Bs being good engineering practice and perhaps
having some value as a badge of quality, there appears to be limited business motivation in
terms of adding value to the product that a customer might pay for. The motivation to use
R-Bs arises from engineering concerns, as a means of supporting software development

 Software Quality Journal (2023) 31:687–719

1 3

704

Ta
bl

e
4

 S
um

m
ar

y
of

 re
le

va
nt

 b
us

in
es

s a
nd

 te
ch

ni
ca

l f
ac

to
rs

 id
en

tifi
ed

 b
y

in
te

rv
ie

w
ee

s

Fa
ct

or
D

es
cr

ip
tio

n
In

te
rv

ie
w

ee
(s

)

Bu
sin

es
s F

ac
to

rs
Va

lu
e

B
us

in
es

s v
al

ue
A

pp
lic

at
io

n
of

 R
-B

s h
as

 a
 v

al
ue

 fo
r t

he
 b

us
in

es
s.

I
0
1
 , I

0
4
 , I

0
6

C
us

to
m

er
 v

al
ue

Th
e

ap
pl

ic
at

io
n

of
 R

-B
s h

as
 a

 v
al

ue
 (b

en
efi

t)
fo

r t
he

 c
us

to
m

er
.

I
0
5
 , I

0
8

En
gi

ne
er

in
g

va
lu

e
Th

at
 th

e
ap

pl
ic

at
io

n
of

 R
-B

s h
as

 a
 v

al
ue

 a
s a

n
en

gi
ne

er
in

g
pr

oc
es

s.
I
0
3
 , I

0
4
 , I

0
5
 , I

0
7
 , I

0
8

A
w

ar
en

es
s

B
us

in
es

s a
w

ar
en

es
s

Th
at

 p
ra

ct
iti

on
er

s w
ith

in
 a

 c
om

pa
ny

 m
ay

 n
ot

 p
er

ce
iv

e
R-

B
s a

s s
om

et
hi

ng
 w

ith
 b

us
in

es
s

va
lu

e.
I
0
5

C
us

to
m

er
 aw

ar
en

es
s

Th
at

 c
us

to
m

er
s m

ay
 n

ot
 u

nd
er

st
an

d
w

ha
t a

n
R-

B
 is

 n
or

 w
hy

 it
 m

ig
ht

 u
se

d.
I
0
1

C
os

t
C

os
t o

f i
m

pl
em

en
ta

tio
n

Re
tro

fit
tin

g
R-

B
s t

o
ex

ist
in

g
bu

ild
 sy

ste
m

 is
 c

os
tly

I
0
2

Te
ch

ni
ca

l F
ac

to
rs

B
ui

ld
 to

ol
s

B
ui

ld
 e

ffi
ci

en
cy

Th
e

ap
pl

ic
at

io
n

of
 R

-B
s i

m
pr

ov
es

 th
e

effi
ci

en
cy

 o
f t

he
 so

ftw
ar

e
bu

ild
 p

ro
ce

ss
.

I
0
7
 , I

0
8

Pr
og

ra
m

m
in

g
la

ng
ua

ge
 &

 b
ui

ld

sy
ste

m
 li

m
ita

tio
ns

N
ot

 a
ll

pr
og

ra
m

m
in

g
la

ng
ua

ge
s a

nd
 b

ui
ld

 sy
ste

m
s s

up
po

rt
R-

B
s

I
0
2

Se
cu

rit
y

D
ist

rib
ut

ed
 d

ev
el

op
m

en
t

R-
B

s c
an

 b
e

ap
pl

ie
d

as
 p

ar
t o

f a
 se

cu
re

 d
ev

el
op

m
en

t o
r d

ep
lo

ym
en

t p
ro

ce
ss

.
I
0
1

D
ep

lo
ym

en
t

R-
B

s c
an

 b
e

us
ed

 to
 su

pp
or

t a
 se

cu
re

 d
ep

lo
ym

en
t p

ro
ce

ss
.

I
0
1

Su
pp

ly
 c

ha
in

Pr
ov

id
e

as
su

ra
nc

e
fo

r s
of

tw
ar

e
ta

ke
n

in
to

 a
 b

us
in

es
s.

I
0
1
 , I

0
7
 , I

0
8

Tr
ac

ea
bi

lit
y

G
en

er
ic

R-
B

s c
an

 b
e

us
ed

 to
 im

pl
em

en
t t

ra
ce

ab
ili

ty
I
0
1
 , I

0
2

D
ep

lo
ye

d
co

nfi
gu

ra
tio

ns
R-

B
s c

an
 b

e
ap

pl
ie

d
to

 su
pp

or
t s

of
tw

ar
e

m
ai

nt
en

an
ce

.
I
0
1
 , I

0
3
 , I

0
4
 , I

0
7

Ev
id

en
ce

R-
B

s a
s a

 so
ur

ce
 o

f e
vi

de
nc

e
in

 le
ga

l d
is

pu
te

s
I
0
1

Li
ce

nc
e

cl
ea

ra
nc

e
R-

B
s s

up
po

rt
lin

ki
ng

 o
f a

ud
ite

d
co

de
I
0
3
 , I

0
7
 , I

0
8

Software Quality Journal (2023) 31:687–719

1 3

705

where assurances are required that there is a deterministic relationship between the source
code and the binary. Return on investment for businesses appears to be a consequence of
increased efficiency for developers, improvements in engineering quality, and potential
advantages in software maintenance. Amongst the interviewees there was also an aware-
ness of the challenges of implementing R-Bs, including cost, that can inhibit adoption,
particularly where an existing process achieves related outcomes and gains from adopting
R-Bs would be small.

4.4.3 O3: Use cases for R‑Bs

A R-B has the underlying property of correspondence between the source code and the
binary. Consequently there are likely to be a wide range of possible use cases that can rely
on such a simple and generic principle; indeed one interviewee reasoned it is impossible to
foresee the potential applications of R-Bs. From the academic and practitioner literature we
identified the use cases given in Table 1, and interviewees discussed many of the same use
cases (see Table 5). Through the interviews reported and within the companies represented
by the authors, we identified the following use cases in addition to those given in Table 1
and Table 5:

• Certification of development process — the application of reproducible builds within
a software development project to meet the requirements of a safety-critical, or other,
standard or certification body.

• Collaboration — having established trust in a Linux distribution through rebuilding it
reproducibly allows a business to collaborate confidently with partners using the pub-
licly available distribution of the platform at no additional cost to collaborators.

In addition, the use of R-Bs to establish the integrity of a deployed software configura-
tion at runtime was described by an interviewee and considered by one of the authors. We
have not described this as a separate use case, rather seeing it as an extension of existing
approaches to use R-Bs to implement traceability during software development, for exam-
ple for licence clearance.

5 Discussion

The parallel drawn by one interviewee between the applications and uptake of distributed
version control systems (DVCS) and that of reproducible builds is helpful from both tech-
nical and business perspectives. The sense in which the observation was made concerned
the difficulty of predicting future technical applications of R-Bs. There may also be simi-
larities from a business perspective: DVCS is not something that adds value to a product,
and neither does it seem from interviewees’ responses that R-Bs will add value directly.
As with DVCS, it appears that R-Bs are an engineering process that improves the soft-
ware development process, and have an economic benefit through efficiency gains, as well
as improvements in software quality and integrity. However, as some interviewees noted,
the cost of implementing R-Bs may be too great, but in some domains R-Bs may become
standard practice given the need for traceability.

 Software Quality Journal (2023) 31:687–719

1 3

706

Ta
bl

e
5

 U
se

 c
as

es
 fo

r R
-B

s d
is

cu
ss

ed
 b

y
in

te
rv

ie
w

ee
s

U
se

 C
as

e
D

es
cr

ip
tio

n
In

te
rv

ie
w

ee
(s

)

In
te

lle
ct

ua
l P

ro
pe

rt
y

M
an

ag
em

en
t

R-
B

s o
f a

ud
ite

d
so

ur
ce

 c
od

e
to

 su
pp

or
t l

ic
en

ce
 c

le
ar

an
ce

 in
 c

om
pl

ex
 S

B
oM

I
0
7
 , I

0
8

Re
pr

od
uc

ib
le

 S
B

oM
 fo

r c
on

ta
in

er
s

I
0
4

So
ftw

ar
e

Bu
ild

 E
ffi

ci
en

cy
U

se
 o

f d
ep

en
de

nc
y

re
so

lu
tio

n
to

 re
bu

ild
 o

nl
y

w
he

n
ne

ce
ss

ar
y

I
0
7

So
ftw

ar
e

M
ai

nt
en

an
ce

B
itw

is
e

re
pl

ic
at

io
n

of
 d

ep
lo

ye
d

so
ftw

ar
e

to
 su

pp
or

t f
au

lt
re

so
lu

tio
n.

I
0
1
 , I

0
2

R-
B

 u
se

d
to

 su
pp

or
t d

ep
lo

ye
d

sy
ste

m
 in

te
gr

ity
 c

he
ck

I
0
1

Su
pp

ly
 C

ha
in

 S
ec

ur
ity

Ve
rifi

ca
tio

n
of

 R
-B

 c
la

im
 in

 si
ng

le
 su

pp
ly

 c
ha

in
 st

ep
I
0
2
 , I

0
3
 , I

0
4
 , I

0
7
 , I

0
8

D
ev

el
op

m
en

t o
f c

on
se

ns
us

 R
-B

 a
m

on
gs

t d
ist

rib
ut

ed
 d

ev
el

op
er

s,
pr

io
r t

o
re

le
as

e
I
0
3

Se
cu

re
 d

ep
lo

ym
en

t o
f c

us
to

m
er

 so
ftw

ar
e

in
 c

lo
ud

 c
om

pu
tin

g
sy

ste
m

s.
I
0
4
 , I

0
5

C
ol

la
bo

ra
tio

n
U

se
 o

f r
ep

ro
du

ci
bl

y
bu

ilt
 L

in
ux

 d
ist

rib
ut

io
n

to
 fa

ci
lit

at
e

R-
B

s i
n

co
lla

bo
ra

tiv
e

so
ftw

ar
e

de
ve

lo
p-

m
en

t
I
0
8

Software Quality Journal (2023) 31:687–719

1 3

707

The process of rebuilding a Linux distribution to establish trust in the supply chain as
described by I

08
 requires an investment of resources that are likely only to be available to

larger businesses. However, it brings benefits not only to the company, but also to those
companies that work with it as collaborators or subcontractors. Having verified the Debian
builds for itself, the company is able to establish that its collaborators and subcontractors
are using the same distribution when they are able to reproduce binaries of collaborative
projects bit-for-bit. There is reciprocity because collaborators are equally able to confirm
that the company is using the trusted distribution and build tools it claims to, so, despite
the investment being made by the larger business, the relationship may be more symmet-
rical than first appears. Indeed, it might be argued that a reproducibly built Linux distribu-
tion, such as Debian, where there are sufficient trusted rebuilders, would allow developers
and companies to collaborate and establish trust in the collaboration by being able to build
bitwise identical binaries from the source code being collaborated on.

Interviewees also discussed long-term maintenance scenarios where software has a
working lifespan of decades. In one case, though not using bitwise reproducible builds,
the need was to support a range of systems so that each software build was documented
and reproducible. In another case, and also the certified development process described in
Sect. 4.1, R-Bs are already being used in industry to support long-term maintenance. We
speculate that the availability of distributions such as Guix and NixOS that apply reproduc-
ibility to support the deployment of reproducible systems, as well as Debian will lead to the
use of R-Bs in long-term software maintenance becoming commonplace. When coupled
with the distribution of trust in reproducible distributions, there may be further opportuni-
ties for long-term software maintenance, perhaps, for example, being able to accurately and
confidently recreate legacy software and subsequently maintain it, for example, to maintain
long-lived engineering artefacts, or read archived documentation.

As noted earlier (Sect. 2), software supply chain attacks have led to practitioners identi-
fying build environment security, software auditability and reproducibility as areas in need
of urgent attention (Enck and Williams 2022). There is interest in industry in reproducibil-
ity for software security and provenance (e.g. Chen (2018); Shi et al. (2021); Hurst (2021)),
but the emphasis is on the software development process. The value, or potential value, to
end users of software outside the development process is articulated less often. I04 argues
that there is good commercial reason for vendors to provide provenance information for
container or other images of their software so that they can be rebuilt. We would argue
that the need for software provenance and transparency is great and that the use of R-Bs
and other mechanisms to support provenance is becoming imperative. Tapas et al. (2019)
identify the need for transparency and provenance in SaaS systems so that users are aware
of what software is deployed for them to use. The authors identify security and privacy
threats amongst their motivating examples, and we would add the reliability of the soft-
ware delivered via SaaS, particularly where the software user has legal obligations, such
as accounting software where accuracy and consistency are required8, or privacy obliga-
tions such as those under the GDPR (European Council 2016). Certainly there is a need for
provenance systems for SaaS to include all dependencies of the running system. Regula-
tory obligations for reproducibility and transparency in software can further develop as the
use of AI increases. There are strong arguments advanced in support of transparent and
interpretable AI systems (Rudin 2019) and the development of legislation and regulations

8 The Horizon scandal in the UK provides an illustration of an unscrupulous software supplier
(Peachey, 2022).

 Software Quality Journal (2023) 31:687–719

1 3

708

for AI in the US (Johnson 2020) and the European Union (European Commission 2021)
is starting to support interpretable AI. The use of R-Bs in aircraft certification we give in
Sect. 4 illustrates the potential for the application of R-Bs in software provenance for AI
systems, though further mechanisms would need to be developed to support reproducibility
of training sets, machine learning models, and system behaviour.

A challenge during this research has been the limited theoretical modelling of R-Bs which
has made reasoning about R-Bs less than straightforward, and may be an obstacle to the iden-
tification and development of further applications. As a work uncovering practical applications
and industry attitudes, such a task is beyond the scope of this article. However, modelling R-Bs,
formally or semi-formally, is a topic for future work. For example, such modelling could sup-
port a better understanding of the costs and benefits of collaborative use case described in the
preceding section. While it is clear that there is a, perhaps unexpected, benefit to verifying that
a Linux distribution is reproducible, two questions arise. The first is: whether the benefits to the
company investing time and effort on verifying the Linux distribution is reproducible outweigh
the costs? The second question is: whether there is a pattern in this use case that can be applied
in other situations? A formal or semi-formal model could help support such reasoning, and per-
haps support the discovery of further applications of R-Bs.

From the use cases reported in the practitioner literature and uncovered during this
research, some relevant dimensions or elements of a model might be inferred. One dimen-
sion of a model might reflect, at an abstract level, why the R-B is being used. R-Bs are
used to ‘capture’ source code state in a code audit. The purpose the R-B serves might be
to ensure only audited code is used in a software build to support licence clearance, or that
the R-B is used to establish trust in the software supply chain with users.

Another dimension to consider is who uses the R-B. In the use case illustrated by Debian
Linux the user of the R-B is the user of the distribution. In long-term maintenance and
software traceability scenarios, for example, the consumer of the R-B is the software devel-
opment team, as it is in the cases of the Tor browser and Bitcoin Core during their initial
build. The latter instances illustrate that when may also be a consideration for any model;
both in terms of a milestone and the time available before that point in time. Tor and Bit-
coin Core, for example, use a distributed process to establish a consensus amongst developers
that the build is reproducible before the software is released. After release the R-B can then
be used to build trust by establishing that a user can create a bitwise copy of the binary
from the source code. In these cases and that of Debian Linux there is, consequently, more
than one group for whom the R-B has significance at different times. Furthermore, a dis-
tributed software development process, such as that used in Tor or Bitcoin Core, the initial
time frame for rebuilding, so that the result is relevant for the developers, will be shorter in
comparison to that for verifying a distribution.

An additional dimension for any model appears to be the number of rebuilders required
for an R-B to be considered to have achieved a desired outcome. In some cases, such as
long-term software maintenance, it may be sufficient that the R-B is successful, i.e. that the
software can be rebuilt reproducibly. In such cases, the notion of independent rebuilding
used to support trust in the software supply chain is less important, though of course any
rebuilder in the future will, of necessity, be independent of the original builder.

Threats to validity With any empirical study there are threats to validity. We consider
threats to construct validity and external validity. Threats to internal validity are not con-
sidered because no claims for causality are made, and statistical conclusion validity is not
discussed because no statistical inference is used. There is a threat to construct validity
from the initial semantic thematic analysis of the interviews being performed by a single
author. The threat is mitigated in two ways. Firstly, the thematic analysis was informed by

Software Quality Journal (2023) 31:687–719

1 3

709

the academic literature and, secondly, iterative discussions between the authors of inter-
view summaries and analysis were used to refine the thematic analysis. Further the study
and results have been subject to wider scrutiny at workshops involving practitioners from
the companies represented by the authors.

Threats to external validity arise from the small number of interviewees and that the
authors and interviewees are largely based in Europe. The threat to generalisation is
mitigated by the diversity of size of the software-intensive businesses represented by the
authors and the interviewees, as well as the types of industry within which they operate,
and the domains in which they develop software. Although the companies are based in
Europe, the companies, interviewees and authors also work in other jurisdictions with
operational offices, collaborators, and partners in other countries and on other continents.
Accordingly the perspectives reported can reflect current industry use of R-Bs in a wider
context. Further, the types of decision reported by interviewees concerning the technical
and business motivation to use R-Bs as well as the obstacles encountered, and the diversity
of applications appear to be relevant to software-intensive businesses. Future work might
extend the study by increasing the sample size; perhaps by conducting an online survey, for
example. Such a survey could provide a broader picture of the use of R-Bs in industry, and
could also serve as a means of identifying further interviewees.

6 Conclusions

In this article we have reported the findings of a study of the perception and use of repro-
ducible builds (R-Bs) in businesses in both the primary and secondary software sectors.
Most existing research on R-Bs is technical in nature and describes the development or
application of R-Bs in specific contexts. The paper’s chief contribution is to provide a pic-
ture of the developing use of R-Bs in industry including the use of R-Bs to support certifi-
cation processes and collaboration between businesses. We also report a range of opinions
reflecting the value of R-Bs to businesses and active domains of application, as well as the
commercial challenges and advantages of using reproducible builds.

This study makes the following contributions:

• Identification of novel applications of R-Bs used in industry;
• Evidence that businesses understand the value R-Bs contribute to their software engi-

neering and software quality processes; and
• That businesses mostly perceive R-Bs to be an intangible value proposition.

Reproducible builds are an engineering approach that have a simple principle at the core and con-
sequently appear to have many possible applications. Our study has shown that the use of R-Bs
is wider and more innovative than previously documented. Further, we found that R-Bs may be
applied to reduce software development costs for some businesses, and provide opportunities for
some ways of working. We expect increasing adoption of R-Bs as the techniques and applications
become more widely known, and the benefits to engineering processes become better understood.
To that end we suggest that future research in the area of R-Bs might explore the development of
models and possible uses of the techniques to support greater understanding and reasoning about
potential areas of application. As one interviewee observed, experience shows that we cannot pre-
dict how a particular technology may develop and might be applied; accordingly we look forward
to seeing further development of industrial applications of reproducible builds.

 Software Quality Journal (2023) 31:687–719

1 3

710

A
pp

en
di

x
A

. M
ot

iv
at

io
ns

 fo
r t

he
 u

se
 o

f r
ep

ro
du

ci
bl

e
bu

ild
s

Ta
bl

e
6

 S
em

an
tic

 th
em

es
 c

ap
tu

rin
g

m
ot

iv
at

io
ns

 fo
r t

he
 u

se
 o

f R
-B

s d
er

iv
ed

 fr
om

 a
ca

de
m

ic
 a

nd
 p

ra
ct

iti
on

er
 li

te
ra

tu
re

, a
nd

 in
ve

sti
ga

tio
n

fo
r O

1

G
ro

up
in

g
Th

em
e

D
es

cr
ip

tio
n

Bu
sin

es
sM

ot
iv

at
io

ns
En

gi
ne

er
in

g
Th

at
 a

 b
us

in
es

s p
er

ce
iv

es
 a

 d
ire

ct
 e

ng
in

ee
rin

g
be

ne
fit

 to
 u

si
ng

 R
-B

s.
Re

pu
ta

tio
n

A
 b

us
in

es
s s

ee
s t

he
 u

se
 o

f R
-B

s a
s s

om
et

hi
ng

 th
at

 is
 re

pu
ta

tio
na

l,
e.

g.
 th

e
ap

pl
ic

at
io

n
of

 R
-B

s i
s a

 m
ar

k
of

in

te
gr

ity
.

Va
lu

e-
bu

yi
ng

Th
at

 th
e

us
e

of
 R

-B
s a

dd
s v

al
ue

 to
 a

 p
ro

du
ct

 b
ei

ng
 b

ou
gh

t.
Va

lu
e-

se
lli

ng
Th

at
 th

e
us

e
of

 R
-B

s a
dd

s v
al

ue
 to

 a
 p

ro
du

ct
 b

ei
ng

 so
ld

.
Se

cu
ri

ty
M

ot
iv

at
io

ns
A

no
m

al
y

de
te

ct
io

n
R-

B
s t

o
de

te
ct

 a
no

m
al

ie
s i

n
so

ftw
ar

e
bu

ild
s.

Ex
te

nt
-o

f-
im

pa
ct

R-
B

 u
se

 m
ot

iv
at

ed
 b

y
po

ss
ib

le
 e

xt
en

t o
f s

ec
ur

ity
 c

om
pr

om
is

e,
 e

.g
. B

itc
oi

n.
Re

pu
ta

tio
n

M
ot

iv
at

io
n

ar
is

es
 fr

om
 p

er
ce

iv
ed

 c
on

se
qu

en
ce

s o
f a

tta
ck

 to
 in

di
vi

du
al

 o
r c

om
pa

ny
 (o

rg
an

is
at

io
na

l)
re

pu
ta

-
tio

n.
Sc

op
e-

ve
ct

or
-d

ev
el

op
er

R-
B

 m
ot

iv
at

ed
 b

y
se

cu
rit

y
th

re
at

 to
 d

ev
el

op
er

, o
r r

el
at

ed
 to

 th
e

po
te

nt
ia

l o
f d

ev
el

op
er

 c
om

pr
om

is
e.

Sc
op

e-
ve

ct
or

-s
of

tw
ar

e
R-

B
 m

ot
iv

at
ed

 in
 te

rm
s o

f t
he

 se
cu

rit
y

th
re

at
 to

 th
e

so
ftw

ar
e,

 e
.g

. s
up

pl
y

ch
ai

n
se

cu
rit

y.
Tr

us
t

M
ot

iv
at

io
n

fo
r R

-B
 in

 te
rm

s o
f e

st
ab

lis
hm

en
t o

f t
ru

st.
Te

ch
ni

ca
lM

ot
iv

at
io

ns
B

ui
ld

-e
ffi

ci
en

cy
U

se
 o

f R
-B

 is
 m

ot
iv

at
ed

 b
y

ga
in

s i
n

bu
ild

 e
ffi

ci
en

cy
, e

.g
. B

az
el

.
So

ftw
ar

e-
m

ai
nt

en
an

ce
Th

e
us

e
of

 R
-B

 is
 m

ot
iv

at
ed

 b
y

a
ne

ed
 to

 su
pp

or
t s

of
tw

ar
e

m
ai

nt
en

an
ce

 p
ro

ce
ss

es
, e

.g
. F

ow
le

r (
20

10
) a

nd

G
ui

x.
Sy

ste
m

-in
te

gr
ity

SB
oM

 in
te

gr
ity

 a
s r

ea
so

n
fo

r a
pp

ly
in

g
R-

B
s.

Tr
ac

ea
bi

lit
y

in
 a

n
in

te
gr

al
 c

om
po

ne
nt

 o
f t

he
 m

ot
iv

at
io

n.
To

ol
-c

er
tifi

ca
tio

n
A

 to
ol

 o
r t

he
 b

eh
av

io
ur

 o
f a

 to
ol

 u
se

d
in

 a
 sa

fe
ty

-c
rit

ic
al

 e
nv

iro
nm

en
t m

ay
 n

ee
d

to
 b

e
ce

rti
fie

d
to

 su
pp

or
t

w
or

k
in

 th
at

 e
nv

iro
nm

en
t.

Software Quality Journal (2023) 31:687–719

1 3

711

Appendix B. Interview protocol

Interviews were conducted using the following eight questions. Question 1 was always
asked at the beginning of the interview, and question 8 was always the final question. Ques-
tion 2 is a prompt for the interviewer to follow up Question 1, if the second part was not
answered or as reminder to encourage the interviewee to expand on their answer. Ques-
tions 3–7 were used to remind the interviewer of topics to try to cover during the interview,
and questions when asked were introduced in the context of the conversation as far as pos-
sible, and not as an abrupt change of direction. The research objective(s) that responses to
each question are expected to contribute to are indicated.

1. Can you describe your work and how you use reproducible builds? (O2 & O3)
2. How do you use reproducible or deterministic build processes? (O2 & O3)
3. What challenges do you face:

(a) with the build process? (O2)
(b) with other parties upstream and downstream in the supply chain? (O2)

4. Why do you use reproducible builds? (O2 & O3)
5. What other use cases do you see? (O3)
6. Do you see demand from your “customers”? (O2)
7. Do you think there is a business case or business demand for the use of reproducible

builds? (O2 & O3)
8. Is there anything that you think I should have asked you about? (O2 & O3)

Acknowledgements The authors are grateful for the stimulating collaboration and support from colleagues
and partner organisations. We would also like to thank all those who kindly took part in the interviews
reported in this article.

Funding Open access funding provided by University of Skövde. This research has been financially sup-
ported by the Swedish Knowledge Foundation (KK-stiftelsen) and participating partner organisations in the
LIM-IT project.

Availability of data and material Not applicable

Code availability Not applicable

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

http://creativecommons.org/licenses/by/4.0/

 Software Quality Journal (2023) 31:687–719

1 3

712

References

ACT. (2020). Automated compliance tooling. https:// autom ateco mplia nce. org/, Retrieved: 01 Jul 2022.
Ågerfalk, P., Deverell, A., Fitzgerald, B., et al. (2005). Assessing the role of OSS in the European secondary

software sector: A voice from industry. In: Proceedings of the 1st International Conference on Open
Source Software, pp 82–87.

Alpine Linux. (2020). Alpine Linux. URL https:// alpin elinux. org/, Retrieved: 01 Jul 2022.
Apache Maven. (2022). Configuring for reproducible builds. https:// maven. apache. org/ guides/ mini/ guide-

repro ducib le- builds. html, Retrieved: 01 Jul 2022.
Bazel. (2020). Bazel — a fast, scalable, multi-language and extensible build system. URL https:// bazel.

build/, Retrieved: 01 Jul 2022.
Bitcoin Project. (2022). Bitcoin core. URL https:// bitco in. org/ en/ bitco in- core/, Retrieved: 01 Jul 2022.
Braa, K., & Vidgen, R. T. (1999). Interpretation, intervention and reduction in the organizational laboratory:

A framework for in-context information systems research. Accounting, Management and Information
Technologies, 9(1), 25–47. https:// doi. org/ 10. 1016/ S0959- 8022(98) 00018-6

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology,
3(2), 77–101. https:// doi. org/ 10. 1191/ 14780 88706 qp063 oa

Bressers, J. (2016). Trusting, trusting trust. http:// sober secur ity. blogs pot. com/ 2016/ 05/ trust ing- trust ing-
trust. html, Retrieved: 01 Jul 2022.

Chen, R. (2018). Why are the module timestamps in Windows 10 so nonsensical? https:// devbl ogs. micro soft.
com/ oldne wthing/ 20180 103- 00/?p= 97705, Retrieved: 30 Jun 2020.

Courtès, L. (2013). Functional package management with Guix. In: Proceedings of ELS 2013 - 6th Euro-
pean Lisp Symposium, pp 4–14. https:// europ ean- lisp- sympo sium. org/ static/ proce edings/ 2013. pdf#
page= 10

Courtès, L. (2017). Code staging in GNU Guix. In: Proceedings of the 16th ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences. Association for Computing
Machinery, New York, NY, USA, GPCE 2017, pp 41–48. https:// doi. org/ 10. 1145/ 31360 40. 31360 45

Courtès, L., & Wurmus, R. (2015). Reproducible and user-controlled software environments in HPC with
Guix. In: Euro-Par 2015: Parallel Processing Workshops. Springer International Publishing, Cham, pp
579–591. https:// doi. org/ 10. 1007/ 978-3- 319- 27308-2_ 47

Courtès, L. (2019). Connecting reproducible deployment to a long-term source code archive. https://
guix. gnu. org/ blog/ 2019/ conne cting- repro ducib le- deplo yment- to-a- long- term- source- code- archi ve/,
Retrieved: 01 Jul 2022.

Courtès, L. (2020). Guix: Unifying provisioning, deployment, and package management in the age of con-
tainers. https:// fosdem. org/ 2020/ sched ule/ event/ guix/, [Video] Retrieved: 01 Jul 2022.

de Carné de Carnavalet, X., & Mannan, M. (2014). Challenges and implications of verifiable builds for
security-critical open-source software. In: Proceedings of the 30th Annual Computer Security Applica-
tions Conference. ACM, New York, NY, USA, ACSAC ’14, pp 16–25. https:// doi. org/ 10. 1145/ 26642
43. 26642 88

Dolstra, E., Löh, A., & Pierron, N. (2010). NixOS: A purely functional Linux distribution. Journal of Func-
tional Programming, 20(5–6), 577–615. https:// doi. org/ 10. 1017/ S0956 79681 00001 95

Dong, C. (2019). Bitcoin build system security. https:// www. youtu be. com/ watch?v= I2iSh mUTEl8, [Video]
Retrieved: 01 Jul 2022.

Edge, J. (2019). A backdoor in a popular Ruby gem. URL https:// lwn. net/ Artic les/ 785386/, Retrieved: 01
Jul 2022.

Egts, D., & Hellekson, G. (2021). Dave & Gunnar show episode 212: Security requires thinking (his mon-
key, his circus). https:// dgshow. org/ 212, Retrieved: 01 Jul 2022.

Enck, W., & Williams, L. (2022). Top five challenges in software supply chain security: Observations from
30 industry and government organizations. IEEE Security & Privacy, 20(2), 96–100. https:// doi. org/ 10.
1109/ MSEC. 2022. 31423 38

European Commission. (2021). Proposal for a regulation of the european parliament and of the council lay-
ing down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain
union legislative acts. https:// eur- lex. europa. eu/ legal- conte nt/ EN/ TXT/? uri= CELEX: 52021 PC0206,
Retrieved: 01 Jun 2022.

European Council. (2016). Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing Directive 95/46/ec (General Data Protection Regula-
tion). https:// eur- lex. europa. eu/ eli/ reg/ 2016/ 679/ oj, Retrieved: 30 Jun 2021.

Fowler, M. (2010). ReproducibleBuild. https:// marti nfowl er. com/ bliki/ Repro ducib leBui ld. html, Retrieved:
01 Jul 2022.

https://automatecompliance.org/
https://alpinelinux.org/
https://maven.apache.org/guides/mini/guide-reproducible-builds.html
https://maven.apache.org/guides/mini/guide-reproducible-builds.html
https://bazel.build/
https://bazel.build/
https://bitcoin.org/en/bitcoin-core/
https://doi.org/10.1016/S0959-8022(98)00018-6
https://doi.org/10.1191/1478088706qp063oa
http://sobersecurity.blogspot.com/2016/05/trusting-trusting-trust.html
http://sobersecurity.blogspot.com/2016/05/trusting-trusting-trust.html
https://devblogs.microsoft.com/oldnewthing/20180103-00/?p=97705
https://devblogs.microsoft.com/oldnewthing/20180103-00/?p=97705
https://european-lisp-symposium.org/static/proceedings/2013.pdf#page=10
https://european-lisp-symposium.org/static/proceedings/2013.pdf#page=10
https://doi.org/10.1145/3136040.3136045
https://doi.org/10.1007/978-3-319-27308-2_47
https://guix.gnu.org/blog/2019/connecting-reproducible-deployment-to-a-long-term-source-code-archive/
https://guix.gnu.org/blog/2019/connecting-reproducible-deployment-to-a-long-term-source-code-archive/
https://fosdem.org/2020/schedule/event/guix/
https://doi.org/10.1145/2664243.2664288
https://doi.org/10.1145/2664243.2664288
https://doi.org/10.1017/S0956796810000195
https://www.youtube.com/watch?v=I2iShmUTEl8
https://lwn.net/Articles/785386/
https://dgshow.org/212
https://doi.org/10.1109/MSEC.2022.3142338
https://doi.org/10.1109/MSEC.2022.3142338
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://martinfowler.com/bliki/ReproducibleBuild.html

Software Quality Journal (2023) 31:687–719

1 3

713

Gallagher, R., & Greenwald, G. (2014). How the NSA plans to infect ‘millions’ of computers with malware. https://
thein terce pt. com/ 2014/ 03/ 12/ nsa- plans- infect- milli ons- compu ters- malwa re/, Retrieved: 25 Oct 2021.

GCC. (2020). The C preprocessor: Section 13 environment variables. URL https:// gcc. gnu. org/ onlin edocs/
cpp/ Envir onment- Varia bles. html, Retrieved: 01 Jul 2022.

Geyer-Blaumeiser, L. (2019). Ensuring open source compliance using Eclipse Foundation technology.
https:// github. com/ Open- Source- Compl iance/ Shari ng- creat es- value/ blob/ master/ Prese ntati ons/ 2019_
10_ 22_ Eclip seCon Europe_ Ensur ingOp enSou rceCo mplia nce. pdf, Retrieved: 01 Jul 2022.

GNU Guix. (2019). GNU Guix — GNU’s advanced distro and transactional package manager. https:// guix.
gnu. org/, Retrieved: 01 Jul 2022.

Google Cloud. (2020). Binary authorization for Borg: How Google verifies code provenance and imple-
ments code identity. https:// cloud. google. com/ secur ity/ binary- autho rizat ion- for- borg, Retrieved: 01 Jul
2022.

GReAT AMR. (2019). Operation shadowHammer: A high profile supply chain attack. https:// secur elist.
com/ opera tion- shado whamm er-a- high- profi le- supply- chain- attack/ 90380/, Retrieved: 01 Jul 2022.

Greenberg, A. (2017). Software has a serious supply-chain security problem. https:// www. wired. com/ story/
cclea ner- malwa re- supply- chain- softw are- secur ity/, Retrieved: 01 Jul 2022.

Greenberg, A. (2018). A mysterious hacker group is on a supply chain hijacking spree. URL https:// www.
wired. com/ story/ barium- supply- chain- hacke rs/, Retrieved: 01 Jul 2022.

Guix-HPC. (2020). Guix-HPC reproducible software deployment for high-performance computing. https://
hpc. guix. info/, Retrieved: 01 Jul 2022.

Hemel, A. (2020). Docker containers for legal professionals. URL https:// www. linux found ation. org/ wp-
conte nt/ uploa ds/ Docker- Conta iners- for- Legal- Profe ssion als- White paper_ 042420. pdf, Retrieved: 01 Jul
2022.

Hurst, R. (2021). Verifiable design in modern systems. URL https:// secur ity. googl eblog. com/ 2021/ 07/ verifi able-
design- in- modern- syste ms. html, Retrieved: 29 Jun 2022.

Ivanković, M., Petrović, G., Just, R., et al. (2019). Code coverage at google. In: Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. Association for Computing Machinery, New York, NY, USA,
ESEC/FSE 2019, pp 955–963. https:// doi. org/ 10. 1145/ 33389 06. 33404 59

Jacomet, L. (2020). Protecting yourself against attacks through the build. URL https:// jfokus. se/ jfoku s20/
talks/ 302, [Video] Retrieved: 01 Jul 2022.

Johnson, E. (2020). H.R.6216 - national artificial intelligence initiative act of 2020. URL https:// www. congr ess.
gov/ bill/ 116th- congr ess/ house- bill/ 6216, Retrieved: 01 Jun 2022.

Kang, Y., Chen, Z., & Wei, R. (2015). XcodeGhost S: A new breed hits the US. https:// www. firee ye. com/
blog/ threat- resea rch/ 2015/ 11/ xcode ghost_s_ a_ new. html, Retrieved: 25 Oct 2021.

Kuhn, B. M., McAffer, J., Sills, M., et al. (2020). Does careful inventory of licensing bill of materials have
real impact on FOSS license compliance? URL https:// fosdem. org/ 2020/ sched ule/ event/ debate_ licen se_
compl iance/, [Video] Retrieved: 01 Jul 2022.

Lamb, C., & Luo, X. (2017) SOURCE_DATE_EPOCH specification. https:// repro ducib le- builds. org/ specs/
source- date- epoch/, Retrieved: 01 Jul 2022.

Lamb, C., & Zacchiroli, S. (2021). Reproducible builds: Increasing the integrity of software supply chains.
IEEE Software, 39(2), 62–70. https:// doi. org/ 10. 1109/ MS. 2021. 30730 45

Levsen, H. (2016). Beyond reproducible builds. making the whole free software ecosystem reproducible and
then https:// archi ve. fosdem. org/ 2016/ sched ule/ event/ repro ducib le_ ecosy stem/, [Video] Retrieved:
01 Jul 2022.

Levsen, H., et al. (2019). Overview of various statistics about reproducible builds. URL https:// tests. repro ducib le-
builds. org/ debian/ repro ducib le. html, Retrieved: 01 Jul 2022.

Linderud, M. (2019). Reproducible builds: Break a log, good things come in trees. Master’s thesis, Univer-
sity of Bergen, http:// bora. uib. no/ handle/ 1956/ 20411

Lundell, B., & Gamalielsson, J. (2017). Collaborative research involving small companies: Experiences
from co-production of knowledge for research and practice through use of an action case approach. In:
2017 IEEE/ACM 4th International Workshop on Software Engineering Research and Industrial Prac-
tice (SER IP), pp 24–30. https:// doi. org/ 10. 1109/ SER- IP. 2017.4

McDonald, N., Schoenebeck, S., & Forte, A. (2019). Reliability and inter-rater reliability in qualitative
research: Norms and guidelines for CSCW and HCI practice. Proceedings of the ACM on Human-
Computer Interaction 3(CSCW). https:// doi. org/ 10. 1145/ 33591 74

Navarro Leija, O.S., Shiptoski, K., Scott, R.G., et al. (2020). Reproducible containers. In: Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming Languages and Oper-
ating Systems(ASPLOS ’20). ACM, New York, NY, USA. https:// doi. org/ 10. 1145/ 33733 76. 33785 19

https://theintercept.com/2014/03/12/nsa-plans-infect-millions-computers-malware/
https://theintercept.com/2014/03/12/nsa-plans-infect-millions-computers-malware/
https://gcc.gnu.org/onlinedocs/cpp/Environment-Variables.html
https://gcc.gnu.org/onlinedocs/cpp/Environment-Variables.html
https://github.com/Open-Source-Compliance/Sharing-creates-value/blob/master/Presentations/2019_10_22_EclipseConEurope_EnsuringOpenSourceCompliance.pdf
https://github.com/Open-Source-Compliance/Sharing-creates-value/blob/master/Presentations/2019_10_22_EclipseConEurope_EnsuringOpenSourceCompliance.pdf
https://guix.gnu.org/
https://guix.gnu.org/
https://cloud.google.com/security/binary-authorization-for-borg
https://securelist.com/operation-shadowhammer-a-high-profile-supply-chain-attack/90380/
https://securelist.com/operation-shadowhammer-a-high-profile-supply-chain-attack/90380/
https://www.wired.com/story/ccleaner-malware-supply-chain-software-security/
https://www.wired.com/story/ccleaner-malware-supply-chain-software-security/
https://www.wired.com/story/barium-supply-chain-hackers/
https://www.wired.com/story/barium-supply-chain-hackers/
https://hpc.guix.info/
https://hpc.guix.info/
https://www.linuxfoundation.org/wp-content/uploads/Docker-Containers-for-Legal-Professionals-Whitepaper_042420.pdf
https://www.linuxfoundation.org/wp-content/uploads/Docker-Containers-for-Legal-Professionals-Whitepaper_042420.pdf
https://security.googleblog.com/2021/07/verifiable-design-in-modern-systems.html
https://security.googleblog.com/2021/07/verifiable-design-in-modern-systems.html
https://doi.org/10.1145/3338906.3340459
https://jfokus.se/jfokus20/talks/302
https://jfokus.se/jfokus20/talks/302
https://www.congress.gov/bill/116th-congress/house-bill/6216
https://www.congress.gov/bill/116th-congress/house-bill/6216
https://www.fireeye.com/blog/threat-research/2015/11/xcodeghost_s_a_new.html
https://www.fireeye.com/blog/threat-research/2015/11/xcodeghost_s_a_new.html
https://fosdem.org/2020/schedule/event/debate_license_compliance/
https://fosdem.org/2020/schedule/event/debate_license_compliance/
https://reproducible-builds.org/specs/source-date-epoch/
https://reproducible-builds.org/specs/source-date-epoch/
https://doi.org/10.1109/MS.2021.3073045
https://archive.fosdem.org/2016/schedule/event/reproducible_ecosystem/
https://tests.reproducible-builds.org/debian/reproducible.html
https://tests.reproducible-builds.org/debian/reproducible.html
http://bora.uib.no/handle/1956/20411
https://doi.org/10.1109/SER-IP.2017.4
https://doi.org/10.1145/3359174
https://doi.org/10.1145/3373376.3378519

 Software Quality Journal (2023) 31:687–719

1 3

714

Nesbitt, A., & Pounds, A. (2019). The manifest – Episode 14: Debian and reproducible builds with Chris
Lamb. https:// manif est. fm/ 14, [Audio] Retrieved: 01 Jul 2021.

NixOS. (2020). NixOS Linux. https:// nixos. org/, Retrieved: 01 Jul 2022.
Ohm, M., Plate, H., Sykosch, A., et al. (2020). Backstabber’s knife collection: A review of open source

software supply chain attacks. In: Proceedings of The 17th Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA). Springer International Publishing, Cham,
LNCS, pp 23–43. https:// doi. org/ 10. 1007/ 978-3- 030- 52683-2_2

Peachey, K. (2022). Post office scandal: What the horizon saga is all about. URL https:// www. bbc. com/
news/ busin ess- 56718 036, Retrieved: 30 Jun 2022.

Perry, M. (2013). Reproducible builds: Part one: Moving beyond single points of failure for software distribution.
URL https:// blog. torpr oject. org/ deter minis tic- builds- part- one- cyber war- and- global- compr omise, Retrieved:
01 Jul 2022.

Perry, M., Schoen, S., & Steiner, H. (2014). Reproducible builds: Moving beyond single points of failure
for software distribution. https:// media. ccc. de/v/ 31c3_-_ 6240_-_ en_-_ saal_ g_-_ 20141 22714 00_-_
repro ducib le_ build s_-_ mike_ perry_-_ seth_ schoe n_-_ hans_ stein er, [Video] Retrieved: 01 Jul 2022.

Piotrowski, M. (2018). ReproducibleBuilds. https:// wiki. freeb sd. org/ Repro ducib leBui lds, Retrieved: 01
Jul 2022.

Porup, J. M. (2016). How to make Linux more trustworthy. https:// arste chnica. com/ infor mation- techn ology/ 2016/
12/ how- to- make- linux- more- trust worthy/, Retrieved: 01 Jul 2022.

Pothon, F., & Ochem, Q. (2017). AdaCore Technologies for DO-178C/ED-12C. AdaCore. http:// www.
adaco re. com/ gnatp ro- safety- criti cal/ avion ics/ do178c/

Potvin, R., & Levenberg, J. (2016). Why Google stores billions of lines of code in a single repository.
Commun ACM, 59(7), 78–87. https:// doi. org/ 10. 1145/ 28541 46

Ramakrishna, S. (2021). New findings from our investigation of sunburst. https:// orang ematt er. solar winds.
com/ 2021/ 01/ 11/ new- findi ngs- from- our- inves tigat ion- of- sunbu rst/, Retrieved: 01 Jul 2022.

Ren, Z., Jiang, H., Xuan, J., et al. (2018). Automated localization for unreproducible builds. In: Proceed-
ings of the 40th International Conference on Software Engineering, ICSE 2018. ACM, New York,
NY, USA, pp 71–81. https:// doi. org/ 10. 1145/ 31801 55. 31802 24

Ren, Z., Liu, C., Xiao, X., et al. (2019). Root cause localization for unreproducible builds via causality
analysis over system call tracing. In: Proceedings of the 34th IEEE/ACM International Conference
on Automated Software Engineering. IEEE Press, ASE ’19, p 527-538. https:// doi. org/ 10. 1109/
ASE. 2019. 00056

Ren, Z., Sun, S., Xuan, J., et al. (2022). Automated patching for unreproducible builds. In: 2022 IEEE/
ACM 44th International Conference on Software Engineering (ICSE), pp 200–211. https:// doi. org/
10. 1145/ 35100 03. 35101 02

Reproducible Builds. (2022). reprotest. https:// salsa. debian. org/ repro ducib le- builds/ repro test, Retrieved:
01 Jul 2022.

Reproducible Builds Project. (2019a). Definitions. https:// repro ducib le- builds. org/ docs/ defin ition, Retrieved: 25
Oct 2021.

Reproducible Builds Project. (2019b). Reproducible builds – a set of software development practices
that create an independently verifiable path from source to binary code. https:// repro ducib le- builds.
org/, Retrieved: 25 Oct 2021.

Reproducible Builds Project. (2022). diffoscope: In-depth comparison of files, archives, and directories.
https:// diffo scope. org/, Retrieved: 01 Jul 2022.

Riehle, D., Harutyunyan, N. (2019). Open-source license compliance in software supply chains. In:
Fitzgerald B, Mockus A, Zhou M (eds) Towards Engineering Free/Libre Open Source Software
(FLOSS) Ecosystems for Impact and Sustainability: Communications of NII Shonan Meetings.
Communications of NII Shonan Meetings, Springer Singapore, Singapore, chap 5, p 83–95. https://
doi. org/ 10. 1007/ 978- 981- 13- 7099-1_5

Rousseau, G., Di Cosmo, R., & Zacchiroli, S. (2020). Software provenance tracking at the scale of
public source code. Empirical Software Engineering, 25(4), 2930–2959. https:// doi. org/ 10. 1007/
s10664- 020- 09828-5

RTCA. (2011). DO-178C – Software Considerations in Airborne Systems and Equipment Certification.
RTCA Incorporated.

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature Machine Intelligence, 1, 206–215. https:// doi. org/ 10. 1038/
s42256- 019- 0048-x

Secure Systems Lab. (2022). in-toto: A framework to secure the integrity of software supply chains.
https:// in- toto. io/, Retrieved: 01 Jul 2022.

https://manifest.fm/14
https://nixos.org/
https://doi.org/10.1007/978-3-030-52683-2_2
https://www.bbc.com/news/business-56718036
https://www.bbc.com/news/business-56718036
https://blog.torproject.org/deterministic-builds-part-one-cyberwar-and-global-compromise
https://media.ccc.de/v/31c3_-_6240_-_en_-_saal_g_-_201412271400_-_reproducible_builds_-_mike_perry_-_seth_schoen_-_hans_steiner
https://media.ccc.de/v/31c3_-_6240_-_en_-_saal_g_-_201412271400_-_reproducible_builds_-_mike_perry_-_seth_schoen_-_hans_steiner
https://wiki.freebsd.org/ReproducibleBuilds
https://arstechnica.com/information-technology/2016/12/how-to-make-linux-more-trustworthy/
https://arstechnica.com/information-technology/2016/12/how-to-make-linux-more-trustworthy/
http://www.adacore.com/gnatpro-safety-critical/avionics/do178c/
http://www.adacore.com/gnatpro-safety-critical/avionics/do178c/
https://doi.org/10.1145/2854146
https://orangematter.solarwinds.com/2021/01/11/new-findings-from-our-investigation-of-sunburst/
https://orangematter.solarwinds.com/2021/01/11/new-findings-from-our-investigation-of-sunburst/
https://doi.org/10.1145/3180155.3180224
https://doi.org/10.1109/ASE.2019.00056
https://doi.org/10.1109/ASE.2019.00056
https://doi.org/10.1145/3510003.3510102
https://doi.org/10.1145/3510003.3510102
https://salsa.debian.org/reproducible-builds/reprotest
https://reproducible-builds.org/docs/definition
https://reproducible-builds.org/
https://reproducible-builds.org/
https://diffoscope.org/
https://doi.org/10.1007/978-981-13-7099-1_5
https://doi.org/10.1007/978-981-13-7099-1_5
https://doi.org/10.1007/s10664-020-09828-5
https://doi.org/10.1007/s10664-020-09828-5
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://in-toto.io/

Software Quality Journal (2023) 31:687–719

1 3

715

Shaulov, M. (2016). Bridging mobile security gaps. Network Security, 2016(1), 5–8. https:// doi. org/ 10.
1016/ S1353- 4858(16) 30006-X

Shi, Y., Wen, M., Cogo, F. R., et al. (2021). An experience report on producing verifiable builds for
large-scale commercial systems. IEEE Transactions on Software Engineering pp 1. https:// doi. org/
10. 1109/ TSE. 2021. 30926 92, (Early access)

Smith, J. K. (2011). Security incident on Fedora infrastructure on 23 jan 2011. https:// lists. fedor aproj ect.
org/ piper mail/ annou nce/ 2011- Janua ry/ 002911. html, Retrieved: 01 Jul 2022.

Software Heritage. (2019). Software Heritage. https:// www. softw arehe ritage. org/, Retrieved: 25 Oct
2021.

SPDX Workgroup. (2021). Software Package Data Exchange. https:// spdx. org/, Retrieved: 01 Jul 2022.
Tapas, N., Longo, F., Merlino, G., et al. (2019). Transparent, provenance-assured, and secure software-

as-a-service. In: 2019 IEEE 18th International Symposium on Network Computing and Applica-
tions (NCA), pp 1–8. https:// doi. org/ 10. 1109/ NCA. 2019. 89350 14

Thompson, K. (1984). Reflections on trusting trust. Communications of the ACM, 27(8), 761–763.
https:// doi. org/ 10. 1145/ 358198. 358210

Tor Project. (2022). Tor project: Anonymity online. https:// www. torpr oject. org/, Retrieved: 01 Jul 2022.
Torres-Arias, S., Afzali, H., Karthik Kuppusamy, T., et al. (2019). in-toto: Providing farm-to-table guar-

antees for bits and bytes. In: 28th USENIX Security Symposium, USENIX Security 2019. USENIX
Association, pp 1393–1410. https:// www. usenix. org/ system/ files/ sec19- torres- arias. pdf

van der Burg, S., Dolstra, E., McIntosh, S., et al. (2014). Tracing software build processes to uncover
license compliance inconsistencies. In: Proceedings of the 29th ACM/IEEE International Confer-
ence on Automated Software Engineering. Association for Computing Machinery, New York, NY,
USA, ASE ‘14, pp 731–742. https:// doi. org/ 10. 1145/ 26429 37. 26430 13

Vinet, J., & Griffin, A. (2022) Arch Linux. https:// www. archl inux. org/, Retrieved: 01 Jul 2022.
Wang, J., Kuo, T., Li, L., et al. (2020). Assessing and restoring reproducibility of Jupyter notebooks. In:

Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering.
Association for Computing Machinery, New York, NY, USA, ASE ’20, pp 138–149. https:// doi. org/
10. 1145/ 33248 84. 34165 85

Wheeler, D. A. (2005). Countering trusting trust through diverse double-compiling. In: 21st Annual
Computer Security Applications Conference (ACSAC’05), pp 13–48. https:// doi. org/ 10. 1109/
CSAC. 2005. 17

Wheeler, D. A. (2009). Fully countering trusting trust through diverse double-compiling. PhD thesis,
George Mason University

Xiao, C. (2015). More details on the XcodeGhost malware and affected iOS apps. https:// unit42. paloa ltone tworks.
com/ more- detai ls- on- the- xcode ghost- malwa re- and- affec ted- ios- apps/, Retrieved: 01 Jul 2022.

Yocto Project. (2021) Reproducible builds. https:// wiki. yocto proje ct. org/ wiki/ Repro ducib le_ Builds,
Retrieved: 01 Jul 2022.

Zerouali, A., Mens, T., Robles, G., et al (2019) On the relation between outdated Docker containers,
severity vulnerabilities, and bugs. In: 2019 IEEE 26th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER), pp 491–501.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Simon Butler received a PhD in computing from The Open University
in 2016. He is an associate senior lecturer at the University of Skövde
and is a member of the Software Systems Research Group. His
research interests include software engineering, open source software,
program comprehension, software development tools and practices,
and software maintenance.

https://doi.org/10.1016/S1353-4858(16)30006-X
https://doi.org/10.1016/S1353-4858(16)30006-X
https://doi.org/10.1109/TSE.2021.3092692
https://doi.org/10.1109/TSE.2021.3092692
https://lists.fedoraproject.org/pipermail/announce/2011-January/002911.html
https://lists.fedoraproject.org/pipermail/announce/2011-January/002911.html
https://www.softwareheritage.org/
https://spdx.org/
https://doi.org/10.1109/NCA.2019.8935014
https://doi.org/10.1145/358198.358210
https://www.torproject.org/
https://www.usenix.org/system/files/sec19-torres-arias.pdf
https://doi.org/10.1145/2642937.2643013
https://www.archlinux.org/
https://doi.org/10.1145/3324884.3416585
https://doi.org/10.1145/3324884.3416585
https://doi.org/10.1109/CSAC.2005.17
https://doi.org/10.1109/CSAC.2005.17
https://unit42.paloaltonetworks.com/more-details-on-the-xcodeghost-malware-and-affected-ios-apps/
https://unit42.paloaltonetworks.com/more-details-on-the-xcodeghost-malware-and-affected-ios-apps/
https://wiki.yoctoproject.org/wiki/Reproducible_Builds

 Software Quality Journal (2023) 31:687–719

1 3

716

Jonas Gamalielsson received a PhD from Heriot Watt University in
2009. He is a senior lecturer at the University of Skövde and is a mem-
ber of the Software Systems Research Group. He has conducted
research related to free and open source software in a number of pro-
jects, and his research is reported in publications in a variety of inter-
national journals and conferences.

Björn Lundell received a PhD from the University of Exeter in 2001, and
leads the Software Systems Research Group at the University of Skövde.
Professor Lundell’s research contributes to theory and practice in the
software systems domain, in the area of open source and open standards
related to the development, use, and procurement of software systems.
His research addresses socio-technical challenges concerning software
systems, and focuses on lock-in, interoperability, and longevity of sys-
tems. Professor Lundell is active in international and national research
projects, and has contributed to guidelines and policies at national and
EU levels.

Christoffer Brax received the MSc degree from the University of
Skövde in 2000, and a PhD from Örebro University in 2011. He is a
consultant with Combitech AB working in systems engineering,
requirements management, systems design and architecture, and IT
security. Christoffer has 18 years experience as a systems engineer.

Software Quality Journal (2023) 31:687–719

1 3

717

Anders Mattsson received the MSc degree from Chalmers University
of Technology, Sweden, in 1989 and a PhD in software engineering
from the University of Limerick, Ireland in 2012. He has almost 30
years experience in software engineering and is currently R&D man-
ager for Information Products and owner of the software development
process at Husqvarna AB. Anders is particularly interested in strength-
ening software engineering practices in organizations. Special interests
includes software architecture and model-driven development in the
context of embedded real-time systems.

Tomas Gustavsson received the MSc degree in Electrical and Com-
puter Engineering from KTH Royal Institute of Technology in Stock-
holm in 1994. He is co-founder and current CTO of PrimeKey Solu-
tions AB. Tomas has been researching and implementing public key
infrastructure (PKI) systems for more than 24 years, and is founder and
developer of the open source enterprise PKI project EJBCA, contribu-
tor to numerous open source projects, and a member of the board of
Open Source Sweden. His goal is to enhance Internet and corporate
security by introducing cost effective, efficient PKI.

Jonas Feist received the MSc degree in Computer Science from the
Institute of Technology at Linköping University in 1988. He is senior
executive and co-founder of RedBridge AB, a computer consultancy
business in Stockholm.

 Software Quality Journal (2023) 31:687–719

1 3

718

Bengt Kvarnström received the MSc degree in Applied Physics and
Electrical Engineering from LiU Institute of Technology in Linköping
in 1981. Prior to retiring in late 2021, he was a senior systems engineer
at Saab Aeronautics and leader of the group responsible for the Saab
Processes, Methodology and Tools for software development.

Erik Lönroth holds an MSc in Computer Science and is an executive at
Dwellir AB. Formerly the Technical Responsible for the high perfor-
mance computing area at Scania CV AB, he led the technical develop-
ment of four generations of super computing initiatives at Scania and
their supporting subsystems. Erik frequently lectures on development
of super computer environments for industry, open source software
governance and HPC related topics.

Authors and Affiliations

Simon Butler1 · Jonas Gamalielsson1 · Björn Lundell1 · Christoffer Brax2 ·
Anders Mattsson3 · Tomas Gustavsson4 · Jonas Feist5 · Bengt Kvarnström6 ·
Erik Lönroth7

 Jonas Gamalielsson
 jonas.gamalielsson@his.se

 Björn Lundell
 bjorn.lundell@his.se

 Christoffer Brax
 christoffer.brax@combitech.com

 Anders Mattsson
 anders.mattsson@husqvarnagroup.com

 Tomas Gustavsson
 tomas.gustavsson@primekey.com

 Jonas Feist
 jonas.feist@redbridge.se

 Bengt Kvarnström
 bengt@kvarnstrom.eu

http://orcid.org/0000-0002-6215-3753

Software Quality Journal (2023) 31:687–719

1 3

719

 Erik Lönroth
 erik@dwellir.com

1 School of Informatics, University of Skövde, Högskolevägen, Box 408, SE-541 28 Skövde,
Sweden

2 Combitech AB, Universitetsvägen 14, SE-580 15 Linköping, Sweden
3 Husqvarna AB, Drottninggatan 2, SE-561 82 Huskvarna, Sweden
4 PrimeKey Solutions AB, Plan A8, Sundbybergsvägen 1, SE-171 73 Solna, Sweden
5 RedBridge AB, Gamla Brogatan, SE-111 20 Stockholm, Sweden
6 Saab AB, Bröderna Ugglas Gata, SE-581 88 Linköping, Sweden
7 Scania CV AB, Vagnmakarvägen 1, SE-151 87 Södertälje, Sweden

	On business adoption and use of reproducible builds for open and closed source software
	Abstract
	1 Introduction
	2 Background and literature review
	2.1 Implementing reproducible builds
	2.2 Applications of reproducible builds
	2.3 Wider application of reproducible builds

	3 Research approach
	4 Findings
	4.1 O1: Business awareness of R-Bs
	4.2 O2: Relevant technical and business factors
	4.3 O3: Use cases for R-Bs
	4.4 Summary of findings
	4.4.1 O1: Business awareness of R-Bs
	4.4.2 O2: Relevant technical and business factors
	4.4.3 O3: Use cases for R-Bs

	5 Discussion
	6 Conclusions
	Appendix A. Motivations for the use of reproducible builds
	Appendix B. Interview protocol
	Acknowledgements
	References

