

MANUFACTURING KNOWLEDGE
MANAGEMENT USING A VIRTUAL
FACTORY-BASED ONTOLOGY
IMPLEMENTED IN A GRAPH
DATABASE

Master Degree Project in Virtual Product Realization
Two years Level 30 ECTS
Spring term 2022

Mehran Ghorbani

Supervisor: Amos Ng

Examiner: Sunith Bandaru

 i

Abstract

Ontology-based technologies like Semantic Web and Knowledge Graphs are promising for knowledge

management in manufacturing industries. In the literature there are abundant of publications related to

using ontologies to represent and capture knowledge in manufacturing. Many of them cover the use of

ontologies for managing knowledge in different aspects of Product Lifecycle Management (PLM).

Nevertheless, very few of them cover how ontologies can be used with virtual factory models, data

and information as well as the knowledge generated from using these models and their corresponding

engineering activities. An “extension” of existing ontologies is badly needed as digital, virtual models

in terms of simulation and digital twins have become more popular in the industry. Without such an

extended knowledge management process and system, it is difficult to re-use the artefacts and

knowledge generated from the expensive and valuable virtual engineering activities. Relying on the

cutting-edge graph database technologies and what they can offer regarding knowledge management,

and also recent developments in the domain ontology field, an extended knowledge management

implementation, specifically designed for virtual engineering has been done. Moreover, a clear

roadmap for establishment of knowledge bases around production systems armed with Virtual Factory

(VF) and Multi-Objective Optimization (MOO) processes has been provided. This, includes defining

key elements of manufacturing procedures, constructing an ontology, defining data structure in

preferably a graph database, and accessing valuable historical (provenance) data regarding different

engineering entities and/or activities.

Keywords: Knowledge Management, Ontology, Graph database, Graph theory, Virtual Factory,

Knowledge-Driven Optimization

 ii

Acknowledgements

Hereby, I would like to express my gratitude to my supervisor Prof. Amos Ng for his constant supervision. I am

grateful for his scientific advices and believe this was a great chance for me to learn from him and I hope I have

made the best out of this valuable opportunity. Also, I would like to thank Prof. Manfred Jeusfeld, Dr. Richard

Senington, and Dr. Sunith Bandaru for their valuable inputs throughout the project development process. Last

but not least, I would like to thank my wife Shirin for her immense kindness and constant support in this journey.

Vienna, June 2022

Mehran Ghorbani

 iii

Certificate of Authenticity

Submitted by Mehran Ghorbani to the University of Skövde as a Master Degree Thesis at the School of

Engineering.

I certify that all material in this Master Thesis Project which is not my own work has been properly referenced.

Mehran Ghorbani

 iv

Table of Contents
1 Introduction ... 10

1.1 Background .. 10

1.2 Goals .. 10

1.3 Limitations ... 11

1.4 Ontology and OWL ... 11

1.5 The RDF Language ... 14

1.6 Graph Theory and Databases ... 15

2 Literature Review .. 17

2.1 Virtual Factory... 17

2.2 Knowledge Management ... 18

2.3 Ontology .. 19

3 Frame of References .. 22

3.1 OWL .. 22

3.2 Graph Database ... 23

4 Research Approach and Methodology .. 25

5 Material and Model Improvement ... 28

5.1 The VFKDO Framework ... 28

5.2 Ontology Creation and the Provenance Data Model ... 30

5.3 Importing the Ontology to Graph Database .. 34

5.4 Importing real-world provenance data from VFKDO-based projects to the ontology graph 39

5.5 Connecting the ontology graph to the provenance data ... 42

6 Results and Discussion .. 47

6.1 Application example: ... 47

6.1.1 Modelling and Simulation ... 48

6.1.2 Optimization .. 49

6.1.3 Knowledge Representation .. 51

6.2 Knowledge Graph Use Cases .. 53

 v

7 Conclusion and Future Work ... 56

 vi

Table of Figures

Figure 1-1. Ontology of the google example implemented in the Protégé software. ... 15

Figure 3-1. An example of data representation in a relational data model vs. graph data model…………………………………..24

Figure 4-1. Application of the design science methodology by Wieringa (2014) in this project ... 27

Figure 5-1.A general framework for Knowledge-Driven Optimize (Bandaru, et al., 2017). .. 29

Figure 5-2.Schematic representation of the VF-KDO framework which bases the ontology. ... 31

Figure 5-3.An entity activity sequence describing two activities regarding designing a cutting model and running

simulation (Morshedzadeh, 2021). ... 32

Figure 5-4.Protégé user interface. IRI, the Entity tab and the main class have been marked in the figure. 32

Figure 5-5.Assigning “rdfs: label” type of annotation to the “Activity” class ... 33

Figure 5-6. VFKDO object property hierarchy created in Protégé ... 34

Figure 5-7. Further descriptions of the “Contains” object property; The triple implies that MOO dataset contains

solutions .. 35

Figure 5-8. Neo4j starting interface, arrows on the left and right respectively show how to add a new project and a new

local DBMS. ... 36

Figure 5-9. The Graph Apps icon on the left side and a list of installed plugins on the right side of the screen.38Figure 5-9.

The Graph Apps icon on the left side and a list of installed plugins on the right side of the screen. 38

Figure 5-11. The first step of the mapping process. After choosing the desired project, the graph database will be

retrieved automatically. .. 39

Figure 5-12. Establishing a JDBC connection using the ETL tool in Neo4j. .. 40

Figure 5-13.Data source and destination point of the mapping process. ... 41

Figure 5-14. Final steps of the importing process. .. 42

Figure 5-15. Word cloud representing data labels in the project data imported to the graph database. 43

Figure 5-16. Some of the methods from the project data and their allocations in the ontology class hierarchy. 45

Figure 6-1 Part of the robot cell optimization project knowledge graph. The brown nodes represent Owl objects, grey

nodes entities, yellow nodes activities, dark blue nodes purpose, light blue nodes tool, and green nodes actor.. 53

Figure 6-2. Model of the robot cell used in the study (Schmidt et al., 2022) .. 54

Figure 6-3. Single point crossover; the vertical line depicts the crossover point and the genes as of the point are

swapped .. 50

Figure 6-4. Best solutions considering objective functions “f” and “g” are marked in black which create the Pareto-

front. ... 51

Figure 6-5. Illustration of simulated performance of the robot in four different scenarios based on different input sets.

Solutions IV and I are on the Pareto-front (Schmidt et al., 2022). .. 54

Figure 6-6. SBO (Step 3) which consists of result visualization and improvement. ... 54

Figure 6-7. The action (Making decision) is shown in brown in the middle. Location, actor, tool, and entities are

connected to the node. The blue circles represent the ontology and the grey nodes are the connected entities; selected

solution model, selected solution view and KD view. ... 55

 vii

Figure 6-8 The SBO (Simulation -Based Optimization) activity and its provenance data along with its surrounding

ontology. ... 54

Figure 6-9. Comparison between the usage of SPEA2 and NSGA-II as two evolutionary algorithms. The light blue and the

green nodes represent ontology where EMO algorithm trains and uses Meta Model and is a subclass of Metaheuristics.

Also, the activities are all an instance of the Optimization class as expected. The used entities are shown in grey, the

tools in green, and actors in dark blue. ... 55

Index of Tables

Table 1-1. Web Ontology Language vocabulary (McGuinness & Van Harmelen, 2004) ... 13

Table 1-2. Interpretation of OWL syntaxes (Uschold, 2018) ... 14

Table 5-1. The list of activities and their associated used key words. ... 44

Table 5-2. Some of the entity project data nodes being classified according to their semantics. 46

 viii

Terminology

ACID
Atomicity, Consistency, Isolation, Durability, 29

AI
Artificial Intelligence, i

AR
Augmented Reality, 17

CI
Computational Intelligence, i

CRUD
Create, Read, Update, Delete, 30

DBMS
DB Management System, 29

DES
Discrete Event Simulation, 39

DSS
Decision Support System, 24

DT
Digital Twin, 17

EMO
Evolutionary Multi-Objective, 39

ERP
Enterprise Resource Planning, 17

ETL
Extraction, Transformation, Loading, 34

GA
Genetic Algorithm, 34

GDB
Graph Database, 15

IDM
Industrial Decision Making, i

JDBC
Java Database Connectivity, 35

KM
Knowledge Management, 18

MOO
Multi-Objective Optimization, i

MOO
(Multi-Objective Optimization), i

NSGA
Non-dominated Sorting Genetic Algorithm, 39

OWL
Web Ontology Language, 11

PDM
Provenance Data Model, 24

PM
Production Management, 19

PLM
Product Lifecycle Management, i

PLC
Programmable Logic Controller, 47

RDF
Resource Descriptive Framework, 11

RDFS
RDF Schema, 11

SBO
Simulation-Based Optimization, 39

SOO
Single.Objective Optimization, 35

UML
Unified Modeling Lnguage, i

URI
Uniform Resource Identifiers, 14

VF
Virtual Factory, i

VFDM
VF Data Model, 16

VFKDO
Virtual Factory Knowledge Driven Optimization, i

 ix

VF
Virtual Factory, i

VM
Virtual Manfacturing, i

VR
Virtual Reality, 17

W3C
World Wide Web Consortium, 11

XML
Extensible Markup Language, 11

XSD
XML Schema Definition, 12

 10

1 Introduction

Integration and collaboration have become vital parts of modern product development which raises the

need for efficiently distributing and re-using knowledge in a shared environment (Peng et al., 2016).

Traditionally, PLM systems are composed mainly of systems aimed at managing data regarding

products, processes and resources based on which bill of material, bill of process and bill of resource

have been considered as structural substances of PLM. Even though managing virtual models, storing

and sharing data through recent developments in this field are currently possible, conveying, editing,

tracking, and generally, management of knowledge in such systems has not been extensively discussed

(Morshedzadeh, 2021). Considering the fact that knowledge appears in a range of different shapes, and

varies from normalized numerical data in datasheets to simply experience, knowledge management

goes beyond the field of data management and if successfully applied, could provide a wide range of

decision support and a comprehensive insight for the user and decision makers. Therefore, in this

project by benefitting from ontology and graph database technologies, a knowledge base has been

generated where the possibility of tracing knowledge from activities to final decisions have been

provided. This could be highly relevant to production systems enhanced with optimization algorithms,

due to their high cost of running and variety of related knowledge which are either used or generated

by the algorithm. Even though applying Unified Modeling Language (UML) leads to defining and

visualizing class diagram structures within so-called domains, it cannot be solely used to trace

knowledge and bring information to the decision maker.

1.1 Background

Despite all the considerable benefits of Virtual Manufacturing (VM), its high computational and even

financial costs are inevitable. This also applies to complex optimization processes used in the industry.

One way to minimize this high cost is to provide the possibility to re-use some of the previous

knowledge to prevent duplications in process implementations.

1.2 Goals

The aim of this project is to construct an ontology representing the VF-KDO (Virtual Factory

Knowledge-Driven Optimization) framework. VF-KDO which is developed by Ng and Bandaru

(2020) is a new research profile that has been introduced through which, further investigations and

analysis are suggested following acquiring series of optimal results in order to extract knowledge for

 11

decision support. Applying VFKDO in industries requires competence in multiple disciplines such as

Artificial Intelligence (AI), Computational Intelligence (CI), and Industrial Decision Making (IDM)

due to the use of various methods resulting in gaining further knowledge and supporting the decision

process. Because of the multi-disciplinary nature of VFKDO, it could benefit from a knowledge graph

database by which various relationships and semantics within the framework could be clarified and

stored and data, information, and knowledge related to each activity and entity could be logged, stored,

and re-used.

In order to achieve the introduced aim of the project, following objectives have been designed which

need to be completed:

1. Building a comprehensive ontology addressing necessary elements of the framework in

addition to existing relationships between each pair of elements. This process requires

identifying super classes and primary components of the framework.

2. Importing the created ontology into a graph database while maintaining the key semantics of

the ontology.

3. Connecting an existing relational database from a VF-based project to the defined ontology in

the graph database in order to visualize both interconnections within the ontology and relations

to the project instances.

4. Providing decision support and traceability of knowledge within VF-based projects.

1.3 Limitations

This project mainly aims at constructing a knowledge base specifically about virtual factories enhanced

with data-driven procedures and the defined processes and materials do not fall within the scope of

traditional production management.

1.4 Ontology and OWL

“An ontology is a formal specification of concepts and objects within a given domain and the

relationships between them” (Gruber, 1993). Also, the same author in another paper (Gruber, 1995)

has defined ontology as a formal explicit specification of a shared conceptualization, which returns the

same definition with a more emphasis on the ontology being shared among the elements within a given

domain. Generally, there are two ways of using the term “ontology”. In case of referring to the

philosophical semantic, where the word addresses the nature and structure of reality, it is written as

Ontology (with a capital O), and in case of describing an explicit specification of a conceptualization,

 12

as a countable noun as ontology (with lower-case O) (Gruber, 1995). In philosophy, it is sometimes

used as a synonym of metaphysics and in broader sense, is the study of what might exist. The word for

the first time was coined in 1613 and was introduced to the English vocabulary later in 1712 (Smith,

2012).

As a vital substance of knowledge management, domain ontology refers to the concept of a specific

field of study and consists of three parts: domain disciplines, concept attributes, and attribute

relationship constraints (Gong et al., 2018). In another definition of ontology, addressing the computer

science point of view (Stevens et al., 2000), it concerns working model of entities and interactions,

either generally, or in a specific domain of knowledge which the latter refers to domain ontology.

Moreover, in the same research, an ideal ontology is described as one with the possibility of being re-

used and this ambition distinguishes an ontology from a database. In another study which introduces

an ontology representing knowledge regarding laptops specifications (Dhingra & Bhatia, 2015), it has

been suggested that development of an ontology requires six steps which are named as follows:

1. Determination of the scope of the ontology and its applicability

2. Identification of the key concepts and elements

3. Construction of the class hierarchy

4. Identification of relationships

5. Assurance of consistency and reasoning

6. Implementation of the ontology

In order to represent, create and modify ontologies, the W3C consortium has explicitly recommended

OWL (Web Ontology Language) which is intended to be used when the information assembled in a

document, are to be processed by applications. Based on the extended facilities of OWL for expressing

semantics of subjects and interrelationships, it provides superiority compared to XML (Extensible

Markup Language), RDF (Resource Descriptive Framework), and RDFS (RDF Schema) (McGuinness

& Van Harmelen, 2004). The OWL language provides a vast domain of features which allows the user

to express the ontology semantics, interrelationships, restrictions, and characteristics in a convenient

way. Referring to the W3C (World Wide Web Consortium) provided guideline of OWL, a

comprehensive language synopsis has been shown in Table 1.

 13

Table 1-1. Web Ontology Language vocabulary (McGuinness & Van Harmelen, 2004)

In an encyclopedic text book composed of synthesis lectures on semantic web (Uschold, 2018), the

functionality of each of the syntaxes have been clarified. Table 2 shows an example of translation of

what is meant to be included in the ontology, how they are interpreted in English and their correlative

syntaxes in OWL. The example addresses semantics regarding Google enterprise being a corporation.

As depicted in Table1, OWL highly benefits from the RDF schema since the class hierarchy, property

hierarchy, property range and domain, and class introduction are interpreted using the RDF schema.

RDF Schema
Features:

(In)Equality: Property Characteristics: Property Restrictions: Annotation
Properties:

Class
Thing,Nothing

equivalentClass ObjectProperty Restriction rdfs:label

rdfs:subClassOf equivalentPropert
y

DatatypeProperty onProperty rdfs:comment

rdf:Property sameAs inverseOf allValuesFrom rdfs:seeAlso

rdfs:subPropertyO
f

differentFrom TransitiveProperty someValuesFrom rdfs:isDefinedBy

rdfs:domain AllDifferent SymmetricProperty

AnnotationPropert
y

rdfs:range distinctMembers FunctionalProperty

OntologyProperty

Individual

InverseFunctionalPropert
y

Restricted
Cardinality:

Header
Information:

Class Intersection:: Versioning: Datatypes:

minCardinality Ontology intersectionOf versionInfo xsd datatypes

maxCardinality imports

priorVersion

cardinality

backwardCompatibleWit
h

incompatibleWith

DeprecatedClass

DeprecatedProperty

 14

In fact, OWL uses RDF for representing triples. In the next subsection a more detailed explanation of

the RDF language has been provided.

Table 1-2. Interpretation of OWL syntaxes (Uschold, 2018)

Kind of Thing to Say Example of Saying It. OWL Construct Used

1 There are individual things Google is an individual (an) owl:NamedIndividual

(an) owl:Thing

There are kinds of things Corporation is a kind of (an) owl:Class

3 An individual is an instance of a

certain kind of thing

Google is an instance of

Corporation

rdf:type

4 There are more specific and more

general kinds of things

A Corporation is a specific kind

of Legal Entity.

rdfs:subClassOf

5 There are relationships between

things

Google is a subsidiary of

Alphabet

an owl:ObjectProperty

6 Things have attributes that relate

them to literals

Google’s official name is

“Google Inc”

an owl:DatatypeProperty

Referring to the above example, the entire ontology in a graph representation is shown in Figure1. For

this purpose, Protégé (Tudorache et al., 2013) a software developed by The Stanford Center of

Biomedical Informatics Research has been used (In the section “Material and Model Development”,

the software and its applications are addressed in a more complete manner). The IRIs (Internationalized

Resource Identifiers) incorporated with each of the ontology elements, are used to ensure the

uniqueness of each substance and is automatically produced and attached to the elements when they

are created.

1.5 The RDF Language

RDF stands for Resource Description Framework and is a language representing information about

resources in the World Wide Web. By assigning Uniform Resource Identifiers (URIs) to nodes of a

database, as well as their relationships and related objects, RDF is a compatible language for

 15

representing knowledge in the format of triples consisting of subjects, predicates, and objects (Manola

et al., 2004). According to a survey study (Wylot et al., 2018), for the purpose of modelling data in

different domains and also for publishing, sharing, exchanging, and interrelating data on the internet,

RDF is being increasingly adopted. In another study (Zhang et al., 2019), RDF has been mentioned as

one of the main frameworks for knowledge representation which has formed a systematic and technical

architecture in knowledge processing and is also the standard language proposed by the W3C

consortium to describe information resources.

Figure 1-1. Ontology of the google example implemented in the Protégé software.

An RDF graph is a set of triples consisting of a subject (graph node), a predicate (edge or connection)

and an object (another graph node). In order to state the type of the connections and further clarify the

graph summary, RDF Schema (RDFS) is used (Kondylakis et al., 2019).

1.6 Graph Theory and Databases

A graph is defined as a set of points, either in plane or 3-dimentional space, which are connected

through line segments. Mathematically, a graph is demonstrated as G = (V, E) where V indicates the

number of vertices (or nodes) and E shows the number of edges (or connections) in the graph. In case

the two endpoints of an edge are designated as head and tail, the edge is called a directed edge which

 16

represents a one-way relationship (Gross & Yellen & Anderson, 2018). Apart from basic definitions

of elements and their derivatives which constitute the theory, there are different forms of graph evolved

from the initial form and are used in various applications. In a paper, applying graph theory in

cryptography, by using “Euler” graph and “Hamiltonian circuit”, safety and decryption of data in form

of messages have been provided. These terms have been in the same project defined as follows:

Euler graph: An Eulerian cycle, Eulerian circuit or Euler tour in an undirected graph is a cycle that

uses each edge exactly once. If such a cycle exists, the graph is called Eulerian or unicursal. The term”

Eulerian graph” is also sometimes used in a weaker sense to denote a graph where every vertex has

even degree.

Hamiltonian Graph: A Hamiltonian path or traceable path is a path that visits each vertex of the graph

exactly once. A graph that contains a Hamiltonian path is called a traceable graph. A graph is

Hamiltonian-connected if for every pair of vertices there is a Hamiltonian path between the two

vertices (Amudha et al., 2018).

Graph databases (GDBs) have been said to be a feasible substitute for relational databases and are

effective tools for representing data and data modeling with a focus on relationships between entities.

Also, they provide the possibility to efficiently process huge complex datasets and construct predictive

models. One of the most advanced attributes of GDBs is the technique of collaborative filtering by

which instead of analyzing item characteristics, an association of relationship attributes determine the

predictive model results. This method has been widely used in recommendation applications (Miller,

2013).

 17

2 Literature Review

In the following, research works regarding Virtual Factory and Ontology have been referenced and

reviewed in detail.

2.1 Virtual Factory

The concept of Virtual Factory for the first was introduced by Onosato and Iwata in 1993 and was

defined as executing manufacturing processes in computers as well as in the real world (Onosato and

Iwata, 1993). However, with the expansion of technology and through time, numerous other definitions

have been proposed. In a study, aiming at providing an advanced decision support (Jane et al., 2001),

VF has been defined as an integrated simulation model which mirrors subsystems of a factory as a

whole and demonstrates interconnections between the business model, communication network model,

and manufacturing process model. In the same study, it has been concluded that VF could enable

business and technical decision making to be based on results of models and simulations. Moreover,

in a research work introducing Virtual Factory Data Model (VFDM), it has been suggested that the VF

paradigm is a comprehensive tool supporting the design and management of a production environment

by addressing common issues related to product lifecycle management. Reduction of cycle times and

wastes by analyzing the virtual mock-ups, development of knowledge models and archives and their

accessibility, improvement of workers’ safety and efficiency by studying the virtual model, and

building a collaboration framework aiming at networking coworkers working on the same project are

the issues named in the study. Furthermore, in a paper addressing the concept of an integrated factory

design framework (Tolio et al.,2013), it has been suggested that multiple aspects of production

management need to be considered in order to have a functional and beneficial VF which are briefly

explained as follows:

• Handling information regarding design and operations phase as well as processes and

resources provided in a coherent concept.

• Integration of knowledge concerning different tools and techniques within different

departments and levels of details.

• Assurance of synchronization between the real model and the virtual one.

• Providing the possibility for field engineers and technicians to use and handle the simulation

model by extending the functionalities.

The named-above concepts and definitions on the subject of VF, have been focusing on its benefits

specifically on the field of PLM and data flow optimization and its positive effects on knowledge

 18

integration. However, with the raise of Digital Twin (DT), Virtual Reality (VR), and Augmented

Reality (AR) in recently published papers, there have been various associations between VF and these

new paradigms. A study introducing digital twin based integration factory simulation (Yildiz et al.,

2020), has demonstrated benefits of a multi-user VR simulation model integrated with a digital twin

concept of a turbine production factory. In this study, product, process and system are integrated

through common shared factory data which enables the synchronization between the real factory and

the virtual model. According to the evaluation of the trial, written by highly experienced digitalization

specialists, utilizing multi-user VR integrated with VF could result in decreasing the design and

development time, as well as increasing precision, accuracy and reliability of simulation models. The

use of shared data in the subject of VF has been also highlighted in another paper (Hao et al., 2018),

where a three-layer data model consisting of user interface, process management, and data

management has been introduced. As a result, small and medium-sized enterprises (SMEs) could have

the possibility to share data through a cloud-based data storage which allows them to anticipate their

costs for accomplishing new demands put from the customer´s side on the user layer. Even though

using shared data in VFs contributes considerably to ease communication and production

improvement, data generation and management have been named as the key problems in such

approaches. More explicitly, receiving huge amount of data from the real-world factory, and matching

the data structure between Enterprise Resource Planning (ERP) and manufacturing execution system

(MES) have been pointed at in a study (Terkaj et al., 2015), as the main obstacles. In order to overcome

these challenges, an ontology-based approach which supports the factory design phase has been

adopted where the synchronization between the real plant and the virtual model has been assured.

Hence, by analyzing the status of each process along with recorded status of the recent past, a more

fruitful support of maintenance was provided.

2.2 Knowledge Management

Knowledge is a mixture of information, experience, and insight and it has been considered as the most

strategic resource in organizations. There are two categories of knowledge referred to as explicit, and

tacit. Explicit knowledge is defined as a type which could be allocated in documents and databases,

whereas, the latter is defined as skills and experiences and cannot be shared easily (Tan & Wong,

2015). It is also believed that tacit knowledge could not solely exist and is dependent on and integrated

with body and mind (Collins, 1997). However, different methods have been applied in order to extract

and exploit tacit (also called as implicit) knowledge. In a study aiming at mining experts’ implicit

knowledge (Zhang & Wen, 2011), simulation modeling experts were assigned to a certain task which

 19

was creation of a table mock-up, and were asked in the meanwhile to express their thoughts loudly.

The implicit knowledge in form of voice was then divided into common process steps taken from the

experts. Ten novice students with limited knowledge of the software, carried out the 3-D drawing

process once with instructions only, and a month later, with instructions associated with the extracted

working steps. As a result, the improvement rate of design period was 42% and the new recorded

periods were significantly shortened. In another study, Jang and Li (2018) have implemented a model

by which implicit data taken from EO (Earth Observation) systems could be captured and described.

In this paper, by using object property characteristics and class description in OWL, several rules haven

been imposed to a data model describing existing relationships between different regions which are

not explicitly captured by EO systems.

Recognizing different types of knowledge helps to understand the concept of Knowledge Management

(KM), its importance and applications as well as its relevance to this thesis work. As has been

highlighted in a questionnaire-based research work (Tan & Wong,2015), knowledge management

consists of three measures namely knowledge resources, KM processes, and KM factors. Knowledge

resources concern human capital, knowledge and information capital, and intellectual property. The

first two named items could appear in both implicit and explicit form of knowledge, whereas,

intellectual property refers to a source of information which is collected, stored as data and treated

with measures of confidentiality. KM processes describe the process of gaining knowledge by the

workers, generation of new ideas, application of the created knowledge, protection, storage, and

sharing it. Finally, KM factors are named as management culture, company’s infrastructure, strategies

and plans regarding production, marketing and other challenges. After sending questionnaires querying

about the existence of the named-above measures of KM in small, medium, and large companies, the

data were collected and analyzed through structural equation modeling and according to the

conclusions, applying KM named substances in manufactories have significant and direct effects on

manufacturing performances.

2.3 Ontology

Using ontology with the specific purpose of knowledge management has become ubiquitous among

researchers and companies in the field of technology and as knowledge bases, ontologies are

compatible useful knowledge sources for feeding AI-based applications (Khadir et al., 2021).

Moreover, semantic web, biomedical engineering, information architecture, library science, and

enterprise bookmarking are other examples of ontology applications (Saber et al., 2022). The use of

ontology in power distribution systems has been proved to be efficient in a paper (Yan-hao et al., 2014)

 20

where substances of a specific power network domain and their connections were demonstrated and

stored within a knowledge database using ontology. This application initialized the construction of

ontology where fundamentals and environment for further improvements are created. These Potential

improvements have been mentioned as: (1) automatically marking of resources and adding local

knowledge resources into the network, (2) improvement of big data technology concerning the power

systems, and (3) creating finer objects within the ontology by dividing the objects and increasing the

level of detail. Moreover, Usip and Ntekop (2016) have used ontologies for optimizing university

timetables as an efficient intelligent tool. In this study, the chosen domain consists of department,

student, course, venue, lecturer, and time. In respect of the ontology complexity, first-order logic

statements have been designed following the construction of the ontology and consequently, an

optimized timetabling was achieved.

More specifically, addressing the use of ontology in PLM and Production Management (PM), Fraga

and colleagues (2020) have evaluated the performance of certain tools regarding constructing a

knowledge-base in the industry aiming at tackling interoperability challenges of PLM. In this study, a

set of technologies containing OWL as the ontology language, Protégé as the ontology modeling tool,

and Jena as the user interface software have been assessed. Nonetheless, foundational concepts and

standards concerning determination of classes, axioms, and relationships have been based on ISO

10303 and IEC 62264 in the study. These standards are developed by the International Organization

for Standardization Technical Committee 184 (ISO/TC 184) so as to create standards around data and

interoperability, integration, and automation in the industry. As a conclusion of this systematic review,

it has been revealed that employing ontology models using the above-mentioned technologies can

contribute to easing the reuse of knowledge, providing consistency and semantic disambiguation, and

integration of heterogeneous systems.

Furthermore, in a PhD dissertation intended to managing virtual factory artifacts in extended PLM

systems (Morshedzadeh, 2021), a data model has been built around provenance information regarding

activities which are labeled and recognized as “Engineering Activity”. According to the focus of the

study being virtual factory, processes such as simulation, modeling, and optimization have been

considered as engineering activities. In this data model, apart from the chain of inputs and outputs

connected to the “Engineering Activity”, various information concerning the activity itself are

appended to the database which is referred to as “Provenance Data”. In order for these information to

be systematically and at the same time comprehensively provide adequate knowledge about the

activity, a model so called 7W has been applied. The application of this model to virtual factory could

 21

answer to 7 questions regarding the agent (person or software) who created the model (who), the

location where the model was created (where), the purpose behind it (why), how is the model created

(how), the date it was created (when), what entities are used as input and/or output (what) and which

tool were used to achieve results (which).

 22

3 Frame of References

3.1 OWL

Benefitting from semantic web technology, this project tries to demonstrate its advantages and

compatibility with cutting edge data science algorithms. As previously mentioned, OWL vocabulary

consists of original OWL prefix as well as RDF, RDFS, and XSD (XML Schema Definition). XML

(Extensible Markup Language) was for the first time introduced in 1996 under the auspices of W3C

for the purpose of documentation. Apart from an association of standards regarding characters,

internet, language identification tabs, and language name codes, certain specifications were added to

the design of XML to determine its functionality. Being easily used over the internet, compatibility

with a wide range of applications, being easy to learn, and having zero optional features were some of

several goals assigned for the design of XML. Generally, an XML document consists of a list of entities

being connected to a root, associated with attributes attached as tags which are distinguished by explicit

markup (Bray et al., 1997). Even though the tree data model of XML comes with its benefits such as

simplicity and wide usage in case of data transfer, there are limitations when it comes to metadata and

semantics. These restrictions have become the main motivation behind several studies aiming at

modeling XML data from tree model to graph structure in order to extract semantics from documents

(Yang et al., 2010; Phyue et al., 2010; Bakkas et al., 2014). In this regards, The Semantic Web was

introduced with the horizon of integrating information on the web and giving them explicit meaning

as well as enhancing them with additional notations which leads to easier processes done by machines.

As mentioned in the introduction section, OWL benefits from numerous language constructs which

along with XML customized tag possibility, and RDF expressive graph structure, produces a highly

eloquent representation of information (McGuinness & Van Harmelen, 2004). In fact, OWL uses a

wide variety of markups and frameworks which increase the possibility of enhancing datasets with

metadata in different forms which are listed and briefly explained below:

• XSD: XML Schema Definition is used to declare datatypes and can be used within XML

documents. It is also used by OWL to ensure consistency and accuracy of datatypes.

• RDF: Resource Descriptive Framework is a framework benefitting from triple data structure

consisting of subject, predicate, and object where the predicate describes an act intermediating

subjects and objects.

 23

• RDFS: RDF Schema is used to describe class hierarchies, relate different classes, and explain

how subclasses are navigated to the main class. Also, comments and labels further clarifying

subjects, predicates, and objects are put in the RDFS format.

• OWL: Web Ontology Language as well as using other aforementioned languages, comes with

its own commands which are used for semantics such as property restrictions, equality, and

object property characteristics.

3.2 Graph Database

Graph databases are used for managing data in graph structures where a network of nodes and edges

are stored. In a broad perspective and according to Angles (2018), there are three main components

which determine the fundamental abstraction behind a database namely data model, query language,

and integrity rules. Data models are referred to the model which decides how data instances and

schema are transformed into graph models. Query language is a set of commands which determine

how the data is manipulated, and integrity rules define the constraints over the graph structure. Due to

the fact that the nature of graph database supports the context of networking, it has become an

important topic considering the growth of social media (Vyawahare et al., 2018). Moreover,

interconnectivity of web applications in computer science and communication-based structure of

neurones in neuroscience are only two examples of several applications which are aligned with the

graph abstraction and hence, the edges describing the type of relationships in such data could be

analysed, created, parsed, and edited more conveniently with no need for complex functions. Even

though in relational databases, the possibility of connecting data tables through defining foreign keys

is not just feasible but a common practice, there is no predefined schema suggesting the act of relating

tables, whereas in a GDB, the element connecting pairs of data nodes, is called an edge and could be

assigned attributes. This characteristic, has led GDBs to be a compatible candidate for implementing

the concept of property graphs (Angles, 2018) which refers to a set of distributed graph data containing

properties describing nodes and edges. Such data model has been known as a promising option for

managing metadata in huge scales due to their ability to represent metadata features. Depending on the

use case application, the volume of metadata could vary and it can contain arbitrary user-defined values

(Dai et al., 2015). Figure 3-1 depicts an example of data regarding a product along with its production

unit stored as both relational and graph data. In this example, the column “Product ID” is used as a

foreign key which relates two tables through the value it shares with “ID” in production unit. As shown,

the relationship or edge named as “Is_Produced_In” in the graph data model, suggests the connection

between the nodes with no need for defining a foreign key as shown in the relational database with an

 24

arrow. Moreover, any further information regarding this relationship (metadata) could be added to the

edge as characteristics whereas in the relational database, this functionality is not initially defined.

Figure 3-1. An example of data representation in a relational data model vs. graph data model

The mentioned difference between relational and graph databases is vital to be considered in the early

stage of data entrance and choosing the appropriate database system in view of the fact that applications

with several primary keys cause excessive cost of performance in relational databases due to the

joining requirement they impose, whereas in graph databases using the concept of graph traversals

through nodes and edges provides improved and optimized performance in time and occupied space.

Generally, querying complex data structures containing high count of joining tables is said to be an

expensive task in relational databases while such job is done in a faster and more straightforward way

in a GDB (Panebianco, 2014). Neo4j, MongoDB, AllegroGraph, and HyperGraph DB are some of

popular GDBs currently used for various purposes (Bhattacharyya and Chakravarty, 2020).

 25

4 Research Approach and Methodology

In this section, the chosen scientific approach for meeting the aim and objectives of the project has

been discussed and justifications concerning the compatibility between the project problem and the

approach has been provided.

Theoretical research approaches vary among positivism, pragmatism, critical realism, and

interpretivism (Säfsten & Gustavsson, 2019) which define the perception of reality (ontology) and how

to approach it towards conducting and carrying out the research process (epistemology). These

research paradigms are formed inevitably based on the concept of the research being qualitative or

quantitative. Journeying back to the definition of ontology, in qualitative scholars, defining the

perception of reality regarding the subject of the study requires a semantic approach in order to identify

the characteristics of the subject whereas in quantitative studies, there is an assumption about an

unmeasured variable which motivates the researcher to seek to identify relationships between the

variable and other parameters directly or indirectly involved with the subject. Epistemology however,

varies in different types of studies in a way that in qualitative approaches, knowledge generation is

linked to explanations justifying degrees of applicability in a ‘fuzzy’ way. On the other hand, in

quantitative studies, the field of statistics is used to produce valid knowledge around the concept of

error (Goertz and Mahoney, 2012).

Understanding the applicability and definition of research paradigm, is also vital in determination of

the appropriate research methodology to the research subject. Various research methodologies have

been introduced by Oates (2005). These methodologies include but are not limited to surveys, design

and creation, experiments, case studies, and action research. Oates suggests that design and creation is

a research methodology which focuses on artefacts and solution development while technical

developments, explanations, analysis, arguments and critical evaluation is being demonstrated. Similar

to design and creation, design science (Wieringa, 2014) aims at answering practical problems by

creating new artefacts, except when using design science, more in-depth investigation about the subject

matter and the influence of the solution is applied. Using this methodology, the research process is

improved by iteratively clarifying and solving design problems and knowledge questions (which are

explained in this section). Moreover, since design science is defined as design and investigation of

artefacts in context, the scope of generalization in such studies is middle-range and do not go beyond

the case level.

 26

In this project, a combination of an existing optimization framework containing its methods and

suggested algorithms, stakeholders influencing or being influenced by the framework, and the

relationships defining its structure compose the ontology. Also, semantic web incorporated with

cutting edge graph database technology constitute the epistemology. Identifying these paradigms helps

to base the logic behind choosing the appropriate research methodology and having a clearer grasp of

the philosophical notions which the research process is based on (Bracken, 2010).

According to the aim and objectives of this project, it is ultimately directed to creation of an artifact

mirroring an existing context and improving it by providing the possibility to clearly identify its

substances. It is also worth mentioning that the possibility to further analyze and investigate the context

could be underpinned through the creation of the artifact. This, justifies an inevitable alignment

between the nature of this project and the design science methodology and therefore this methodology

has been chosen. Using design science requires complete understanding of its components namely the

artifact in context and its design and investigation. In this methodology, a designed artifact is expected

to answer certain knowledge questions regarding the subject through investigation and may add

knowledge to the existing theories and earlier designs. Knowledge questions are directly related to the

design problem and they are distinct where knowledge questions aim at explicitly asking for

knowledge about the world and not about the ways it might be improved, whereas design problem

contributes to creating an artifact which satisfies the objectives of the study. This specific framework

has been suggested by Wieringa (2014) and its application in this project has been illustrated in figure

2. As shown in the figure, apart from the design science section and knowledge context, social context

has been included to the framework which relates to the stakeholders sponsoring the design project.

This sponsorship falls within the social aspect of the work and refers to the provided budget,

expectations, goal-setting, and obtaining the generated design. This specific design science framework

which is developed for Information Systems, also suggests that design science problems are

improvement problems, therefore, creation of an artefact cannot single-handedly result in solving any

problems, but the continuous interaction between the artefact and the problem context in order to

finally meet the requirements raised by the stakeholders.

 27

Figure 4-1. Application of the design science methodology by Wieringa (2014) in this project.

 28

5 Material and Model Improvement

In the following section, the used materials towards developing the project have been introduced, the

VFKDO framework has been in more details (than the introduction section) described and the roadmap

to creation of the final knowledge base has been explained.

5.1 The VFKDO Framework

As briefly introduced in the introduction part, VFKDO refers to applying post-optimal data mining

algorithms in order to acquire deeper insights from multi-objective optimization solutions and add

more knowledge to the process of decision making. In the early development of Knowledge-driven

optimization (Bandaru et al., 2017), it has been suggested that it is common for MOO to involve several

iterations and therefor, post-optimal analysis could lead to improving the initial optimization problem

definition by gaining more comprehension from the analysis. Moreover, another way of benefitting

from KDO, is to use the gained knowledge for the purpose of tuning hyper parameters within the MOO

algorithm and also, initializing the population of new runs. Since the generated knowledge in the

above-mentioned progressive dynamic is gained and used after the optimization results, it has been

referred to as off-line KDO. On the contrary, online KDO adverts to analyzing the results as they are

produced and imposing preferences to received streams of data in a real-time manner. The data mining

techniques in the end, either way involve the decision maker’s preferences and input and therefore

they are introduced as “interactive” data mining. The schematic representation of the KDO framework

is shown in Figure3.

 29

Figure 5-1. A general framework for Knowledge-Driven Optimize (Bandaru, et al., 2017).

Moreover, for the purpose of knowledge discovery from MOO datasets, several methods have been

suggested by the authors which are classified as Descriptive Statistics, Visual Data Mining, and

Machine Learning. The representation of results of these methods are then extracted as knowledge and

contributes to the decision making process. Also, difficulties, challenges, and considerations regarding

each of the algorithms have been in details elaborated in the paper.

As a new research profile, the use of KDO specifically in Virtual Factories was introduced as VFKDO

by Ng and Bandaru (2020). This framework adheres to customer requirements by benefitting from

results of simulations in industry. It aims at connecting the instances of the framework to the Decision

Support System (DSS) in the form of knowledge as discussed previously, while finding a cost-effective

method amongst many, in accordance with the problem description and the decision maker’s

preferences. Nonetheless, this complex framework consisting of various computational methods and

potentially huge amount of data, ought to provide the feasibility of access and management of the data

at different levels. Therefore, constructing an ontology based on existing “things” and relationships

between the entities of the framework has been recommended. Even though a complete ontology has

not been represented, a general schema of elements and relationships have been provided as shown in

figure 4. The formation of the ontology representation consists of various knowledge blocks being

interconnected through defined relationships. These elements themselves are categorized into different

sections namely Simulation-based Optimization, Machine Learning, Human Learning, Human

 30

Decision-making, Knowledge Representation and Visualization, and finally Solution Visualization

which illustrate the common methods of VFKDO. As could be noticed, there are several intersections

among these blocks which make it challenging to visually represent the entire framework and defining

solid hierarchies related to the elements and their relationships. However, this visual illustration is vital

for taking the next step which is the construction of an ontology. In the design of the VF-KDO

schematic figure, the important subject of implicit knowledge has also been taken into consideration.

On that note, a substance so-called “Preference” has been defined as a two-folded object. Firstly, the

choice of the decision maker according to their policy, status quo, and/or other circumstances related

to their decision making process. Since the decisive information about such key decision could vary

through time, the expert’s knowledge with updated information determines the preferred solution(s)

among many. Multi-Objective Optimization (MOO) dataset in this case, refers to the outcome of

running optimization algorithms that ultimately provide the decision maker with a series of optimal

solutions. Secondly, when defining the KDO algorithm, the optimization engineer uses their preference

for choosing the ideal related procedures. Moreover, any extra remarks or experiences that have been

considered as re-usable important knowledge are suggested to be stored as “Reports/Notes”. Even

though this could be arguable if this information should be categorized as explicit or implicit, since

there is no predefined consolidated format for such info, implicit knowledge has been chosen as the

suitable tag for it in the creation of ontology.

5.2 Ontology Creation and the Provenance Data Model

Apart from a comprehensive list of methods and tools that shape VFKDO, an extensive knowledge

and complete understanding of the existing “semantics” within the domain of the subject matter is

highly required. This insight, leads to detecting common types of relationships and storing aligned

object properties in the early stage of the ontology design. Since ontology design is highly incorporated

with class hierarchy definition, it is required to determine super-classes and subclasses.

 31

Figure 5-2. Schematic representation of the VF-KDO framework which bases the ontology.

For addressing this requirement in this study, a Provenance Data Model (PDM) has been applied. In

this model (Morshedzadeh et al., 2018) the chain of knowledge flows across certain entities and

activities. The word Provenance according to Oxford English Dictionary is the place of origin or

earliest known history of something and moving along the definition, it aims at storing historical data

around a specific subject matter and providing ability to trace back certain chain of procedures. Figure

5 shown an example of applying this data model to a cutting simulation process. In accordance with

the scope of this project, engineering processes such as modeling, simulation, and optimization are

identified as activities. On the other hand, entities refer to inputs/outputs related to the activities and

can be data, datasets, knowledge in various forms. Additionally, so as to extend the provenance data,

inspired from Zachman’s framework (Zachman, 1999) answers to seven questions regarding the

engineering activity are added to the model. These questions which are known as 7w, include “What”

entities are the input/output, “Who” preformed the step, “When” was it executed, “Where” was it

executed, “How” was the e.g. design of experiment (or any other used methods), “Why” was it

executed (referring to the purpose of the action), and “Which” tool was used.

 32

Figure 5-3. An entity activity sequence describing two activities regarding designing a cutting model and
running simulation (Morshedzadeh, 2021).

Construction of the VE ontology has been done based on a concept that is a combination of the VF-

KDO framework and the provenance data model. The Protégé software for this purpose has been

chosen due to its flexibility, visual interface availability, and being open source. After installation of

the software, in order for the user to have a broader view of the ontology, OntoGraf plugin has been

also installed. A plain empty project in Protégé should appear as shown in Figure 6. As mentioned

earlier, each ontology element comes with a unique IRI code which is stored by default in the search

tab of the software.

Figure 5-4. Protégé user interface. IRI, the Entity tab and the main class have been marked in the figure.

 33

Identification of the key concepts and elements of the ontology has been already done through

choosing a model similar to 7w. On that note, Actor, Activity, Location, Method, Purpose, and Tool

respectively stand for Who, What, Where, How, Why, and which and along with Entity compose the

list of super-classes. The main class which is by default named “owl: Thing” includes the entire

ontology and corresponds to the mentioned IRI in the figure. Adding the super-classes could be done

by right-clicking on the main class and choosing the “Add subclass…” option. Thereafter, the new

super-class will be generated by assigning a name to it. After creating the classes, it is important to

define an annotation since the ontology objects will be labelled initially and automatically as

“owl__Class” in the graph database and therefore assigning annotations and specially “rdfs: label”

type would help to identify them easier in the upcoming steps. In this project, for avoiding confusions,

each class has been given labels with their exact class names. By applying the same procedure to the

remainder of the activity types, super-classes have been created.

Figure 5-5. Assigning “rdfs: label” type of annotation to the “Activity” class

Based on previous studies about the VFKDO framework, provenance management system, and applied

projects using these concepts, sub-classes have been assigned (Ng & Bandaru, 2020; Morshedzadeh,

2021). After creation of the entire class hierarchy, the object property tree structure was added. As

shown in figure 8, this structure is created within the “Object properties“ tab. As previously mentioned,

object properties define the relationships between classes and it is also possible to construct them in

hierarchies. As an example, in a conventional family ontology, a father could have a relationship with

 34

his child defined as “[:is_father_of]” while this object property itself could be a sub property of

“[:is_parent_of]. Moreover, each object property has to be associated with a domain and a range which

set the subject and the object of the triple. As shown in figure 9, apart from domain and range, OWL

suggests complementary descriptions regarding the predicate. As well as classes, it is important to

assign “rdfs:label” annotation to the object properties for the same reason.

Figure 5-6. VFKDO object property hierarchy created in Protégé

Another useful feature of the Protégé software, is automatic reasoning. This option allows the user to

run logical reasoning rules on the existing semantics and detect inconsistencies among them. The

option is located as a ribbon on the top of the screen. Also, in order to have a visual overview of the

generated ontology, the OntoGraph tab provides this possibility.

5.3 Importing the Ontology to Graph Database

Due to the fact that ontologies and graph databases both support triple-based data structures, there is

high compatibility between these technologies. Neo4j as a Java-based open source graph database that

provides high reliability, security, and availability, has been chosen for this project. The reliability of

Neo4j has been concluded for its ACID (atomicity, consistency, isolation, durability) behavior.

 35

Atomicity refers to the database remaining unchanged in case a part of a transaction fails. Consistency

means that the process of data transfer comes with no data loss. Isolation guarantees that certain data

being processed by a transaction, cannot be accessed by other operations and durability refers to the

result of operations being saved even in case of system failures (Miller, 2013).

Figure 5-7. Further descriptions of the “Contains” object property; the triple implies that MOO dataset
contains solutions

After installing the software (version 4.4.3 in this project), on the left bar, by choosing the “Project”

icon, a list of projects will appear. As shown in figure 10, by clicking on the “New” button, a new

project will be created. Inside the project description panel on the right side, under the “Add”

dropdown, and by choosing local DBMS (Database Management System), a new local graph database

will be added. Then by assigning password and a name to the local DBMS, and clicking on the “Create”

button, it will be ready to use. Thereafter, the database needs to be started and then opened. Since

Neo4j uses CQL (Cypher Query Language), it is required to learn its syntax and function structures.

Cypher is a declarative language and is designed for retrieving data from graphs. In the below, a short

introduction to CQL by going through CRUD (Create, Read, Update, Delete) operations has been

provided:

 36

1. Create: Adding data in Cypher takes place similar to INSERT function in SQL, though the key

word for calling this function is CRAETE. Running the below syntax leads to creating a node,

with “Teacher” label and name of “Alex” as attribute:

Create(n:Teacher {name: ’Alex’})

Figure 5-8. Neo4j starting interface, arrows on the left and right respectively show how to add a new project
and a new local DBMS.

Since CQL is a graph query language and relationships are inevitable reasons for using graph

databases, create option is not bound to creating nodes. In order to create relationships, the

same syntax can be applied. The syntax below creates the same “Teacher” node as well as a

“Student” node and a relationship between them named as “Teaches_To”:

 Create(n:Teacher {name:’Alex’})-[r:Teaches_To]-> (m:Student {name:’Kim’})

Also worth mentioning that for further elaborating the type of relationships, there could be

specific attributes attached. For example, an attribute defined as {subject:’Mathematics’}

means that the teacher teaches mathematics to that certain student.

2. Read: The MATCH syntax in CQL is the command for retrieving data according to the queried

label and optionally attribute, if ran along with the RETURN function. Following the above

example, reading the created node can be done by running either of the below syntaxes:

Match(n:Teacher {name:’Alex’})

Return n

Or:

 37

Match(n:Teacher)

Where n.name = ‘Alex’

Return n

As could be noticed, in the second syntax the clause Where has been used which is common

among querying languages and adds conditionality to the querying command (Pay attention to

the equal sign instead of the colon sign when using the where clause). Either way, it is important

to ask cypher to return the called items after specifying the match between the desired data and

existing ones in the database.

3. Update: In case a node already exists and it is required for its attribute(s) to be updated, the

SET command can be applied as shown in the given example:

Match(n:Teacher {name:’Alex’})

Set n.birthday = date (‘1992-10-28’)

Return n

This, returns the existing node while it is updated with a new attribute being birthday. Running

the same command on an existing attribute results in updating the attribute and deleting the

previous records.

4. Delete: Deleting data is another commonly-used CRUD-based operations and can be used to

remove nodes, relationships, and attributes. As explained earlier and according to the fact that

Neo4j is ACID-compliant, nodes cannot be deleted as long as there is a relationship attached

to them. On that note, deleting a relationship can be done using the DELETE command:

Match(n:Teacher {name:’Alex’})-[r:Teaches_To]-> (m:Student {name:’Kim’})

Delete r

To delete a node, the same procedure is used except when using the delete function, the letter

assigned for the node (n or m) should be entered. In order to delete a node and its direct

relationships, the command DETACH can be used:

Match(n:Teacher {name:’Alex’})

Detach Delete n

Finally, for the purpose of deleting a property, REMOVE can be used on the property, or also

SET could be used to set the value to null.

 38

Match(n:Teacher {name:’Alex’}) Remove n.birthday Or:

Match(n:Teacher {name:’Alex’})

Set n.birthday = null

This given quick guide to the CQL operators and syntaxes could contribute to having a clearer

overview towards how Neo4j works in general.

After the creation of DBMS is done, it is time to start importing the ontology. Aiming to do so, a plugin

so-called Neosemantics has been recommended by Neo4j and can be installed by hovering over the

graphs app panel on the left and choosing Graph Apps Gallery and then choosing Neosemantics on the

list of applications. As shown in figure 11, a list of installed plugins could always be seen on the right

side of the screen.

Figure 5-9. The Graph Apps icon on the left side and a list of installed plugins on the right side of the screen.

By starting the database and opening it, the querying environment will appear which is shown in figure

12. Since Neosemantics is being used in the project, its configuration is a necessary step before using

it. This could be done by running the syntax below:

Call n10s.graphconfig.init();

After initializing the configuration, another requirement needs to be met before importing the ontology.

As explained previously, RDF uses URIs to differentiate and preserve uniqueness of subjects,

predicates, and objects and it is vital for these URIs to be unique. Therefore, a constraint needs to be

created on the ontology elements so as to ensure this uniqueness. As the importing procedure has been

defined, these elements will be labeled also as Resource (weather class or object property) and the

constraint creation needs to be applied to every node with this label. The code below results in creation

of the constraints:

 39

Create CONSTRAINT n10s_unique_uri ON (r:Resource)

Assert r.uri IS UNIQUE;

After creating the URI constraints, by using the “rdf.import.fetch” method from the n10s library, and

providing the file’s location, the RDF serialization file can be imported to Neo4j as a graph:

CALL n10s.rdf.import.fetch("file:///D:\\Data\\VFKDO-Ontology.rdf", "RDF/XML");

The location of the file could either be on a local machine or on the internet and in the latter case

“http:///” must replace “file:///” in the beginning of the address. Also, the serialization used in the file

needs to be mentioned in the end separated with a comma. After the ontology being imported, in order

to visualize the graph, the same syntax could be used except for the “import” method which needs to

be replaced by “preview”:

CALL n10s.rdf.preview.fetch("file:///D:\\Data\\VFKDO-Ontology.rdf", "RDF/XML");

Figure 12 shows a part of the generated graph. As shown in the figure, both classes and object

properties are treated as nodes in the graph and the connection between domains and ranges are defined

by “rdfs__domain” and “rdfs__range” while the object property stands between them.

Figure 5-10. A part of the ontology. MOODataset is a subclass of Dataset; Optimization formulation defines

MOODatset; and MOO_Dataset contains solution.

5.4 Importing real-world provenance data from VFKDO-based
projects to the ontology graph

Provenance data concerning a previously done optimization project that benefitted from the VFKDO

framework have been used in this section. The data was modeled in the Manage Links PMS and by

 40

using foreign keys in the relational database, relationships between classes (Activity, Entity, Location,

…) have been defined. After the data in .sql format was downloaded, a database in Microsoft SQL

Server Management Studio name “Synergy” was created and the SQL files were imported to the

Synergy database. In order to map and integrate various databases to a graph database, Neo4j comes

with a built-in ETL (Extraction, Transformation, Loading) tool. The whole process has been explained

below in a step-wise manner:

1. Installation of the ETL tool; as well as Neosemantics, it could be downloaded from Graph Apps

Gallery. In order to start the mapping process, after starting the plugin, the first page appears

as shown in figure 13.

Figure 5-11. The first step of the mapping process. After choosing the desired project, the graph database will
be retrieved automatically.

2. By clicking on the “ADD CONNECTION” button on the lower left, a new page as shown in

figure 14 will appear. In this step, a JDBC (Java Database Connectivity) connection needs to

be configured. JDBCs provide possibility to access data sources from relational database to

spreadsheets. Before going further in this step, it is required to have downloaded the JDBC

driver specifically for SQL Server (since being the data source).

3. For establishing a connection, the required items need to be correctly addressed. After choosing

a name for the connection, since the entire project is being done on a local machine, localhost

needs to be chosen. Thereafter, by choosing the correct type of data source, the port will be

automatically adjusted. In this case, mssql and port 1433 are the suitable choices. In the next

step, it is vital to enter the correct name of the data source which is already named “Synergy”

in SQL Server. Then, the JDBC downloaded file needs to be uploaded. Even though a

connection URL will be created as the items are filled, avoiding encryption could avoid

 41

confronting security alerts. For this purpose, at the end of the URL “encryption=false” could

be added.

Figure 5-12. Establishing a JDBC connection using the ETL tool in Neo4j.

4. After the connection is made, by choosing the data source and the desired graph database as

shown in figure 15, mapping process starts.

Figure 5-13. Data source and destination point of the mapping process.

5. The next step involves exploring and validating the metadata before finally importing it. Nodes

and relationships can be chosen and edited as shown on the upper part of figure 16. Finally,

after saving the mapping results, the data can be imported.

 42

Figure 5-14. Final steps of the importing process.

5.5 Connecting the ontology graph to the provenance data

After importing the ontology and the project data into the same graph database, in order to create

connections between corresponding nodes of each side, key words from the project data were listed

and recognized and according to the matching semantics, connections were created. For having a

general understanding about common words used in the project data nodes, a word cloud is generated

which is shown in figure 17. The reason this type of representation has been chosen is that regardless

of the frequency of these labels being used, it is important for the connections to be made. Moreover,

according to the nature of VFKDO, it is assumed that activities related to modeling, simulation,

optimization, and knowledge discovery are initially recognized. However, the label of a node cannot

necessarily indicate the semantic. For example, “Simulation-Base Optimization” consists both of the

words simulation and optimization, but cannot be categorized as a simulation activity. Therefore, the

need for an ocular check on the data and manually validating its nature is inevitable.

 43

Figure 5-15. Word cloud representing data labels in the project data imported to the graph database.

After going through the labels and gaining general understanding about the activities, certain key

words have been used to authenticate and categorize them accordingly. Table 3 shows the used key

words, a few examples, and also percentage of the categories within the entire set of activities.

 44

Table 5-1. The list of activities and their associated used key words.

Ontology Sub-
class

Key word Example Percentage

Optimization

optimization

 SOO of Tool Indexing
 SBO (step1)

 Multi-objective optimization

•

22%

MOO

SBO

SOO

Simulation DES Discrete Event Simulation for
cranckshaft production

 DES of cranckshaft Line 1

25%

simulation

Modeling Modelling Modeling for station 30 16%

Design

Knowledge
Extraction

Knowledge Knowledge-driven activity 10%

Other - Input generation
 Import assembly to Teamcenter

17%

The explained sets of relationships were created using the below command:

match(m:owl__Class),(n:Activity)

where m.rdfs__label='Simulation' and (n.label contains 'DES' or n.label contains

'(?i)simulation')

create (n)-[r:instanceOf]->(m)

The rest of the relationships were created using the same procedure according to table 3 for

optimization, modeling, and knowledge extraction. After the relationships were created, the remainder

of the activities which did not fall within any of the given classes, were considered as a subclass of

activity in general and were connected to the “Activity “ class using the command below:

match(m:owl__Class),(n:Activity)

 45

where m.rdfs__label='Activity' and not (n.label contains 'DES' or n.label contains

‘(?i)simulation' or n.label contains ‘SOO’ or n.label contains ‘SBO’ or n.label contains

‘MOO’ or n.label contains ‘(?i)optimization or n.label contains ‘(?i)modeling’ or n.label

contains ‘(?i)design or n.label contains ‘(?i)knowledge’)

create (n)-[r:instanceOf]->(m)

Regarding the other ontology classes, apart from a few exceptions, relationships needed to be built

manually and based on the semantics of the nodes. For example, the method “NSGA II” refers to non-

dominated Sorting Genetic Algorithm and is an Evolutionary Multi-Objective (EMO) algorithm. Even

though the EMO class exists in the class hierarchy, string search cannot find and relate this node to the

relevant ontology node. Therefore, by running manual queries, such connections are created. Figure

18 shows some of the used methods in the project data and their manually-detected classes in the

ontology. The entity class also consists of various nodes concerning different procedures many of

which are named as unknown codes and numbers. Therefore, in a similar procedure, the entity nodes

were also checked manually and relationships were created based on their semantics. The list of data

nodes and their relevant ontology class is provided in table 4.

Figure 5-16. Some of the methods from the project data and their allocations in the ontology class hierarchy.

 46

Table 5-2. Some of the entity project data nodes being classified according to their semantics.

Project data node Ontology class Project data node Ontology class

KRG Meta model MetaModel RBF Meta model MetaModel

New Parameters HyperParameters Process solutions Solution
(Purpose)

Variables and Objectives Dataset Optimization settings HyperParameters

SOO settings;1 HyperParameters Optimum process
parameters

HyperParameters

S1 ObjectiveSpace.PNG View SOO settings;1 HyperParameters

2D drawing;1 View Optimization results;1 Dataset

Magazine animation;1 View S1 ObjectiveSpace.PNG;1 View

 47

6 Results and Discussion

The attachment of the project data nodes to the ontology was done to produce traceability of knowledge

within the knowledge base. Even though not all the data nodes were labeled with maximum level of

detail, the possibility to trace and store certain knowledge has been provided. This subjective

knowledge could alter according to the needs of the user and could be queried in many different ways.

Since the project is specifically design for VF-base processes enhanced with MOO and KD algorithms,

and using the mentioned techniques often comes with high efforts and expenses, by properly labeling

and providing provenance data concerning the outcome of these methods, the need for re-running these

algorithms, re-creating the virtual models, and re-using KD methods could be minimized or even

eliminated. Moreover, domain ontologies could help to increase search efficiency within the subject

matter by storing descriptive knowledge regarding the details of relationship and class hierarchy

between different classes and instances. Implementing such ontologies in graph databases results in

the possibility to merge different data and enlarge the ontology as well as to query and extract nodes,

paths, and existing structures among them. Regarding the VFKDO graph knowledge base, this query

could be around a certain activity, which gives the provenance data and their stand in the domain

ontology, a method, which gives the knowledge about for which activities has the method been used

the most (or the least), the actor, which clarifies who has done which activities or used which methods

the most during their time of performance and much deeper insights. Properly labeling the data in this

regards, eases the process and allows us to retrieve data from the database with more details. For

example, algorithms such as NSGA-II and SPEA2 do exist in the graph database, however, they had

not been labeled as EMO algorithms and there is no previous knowledge about the allocation of EMO

in the process specification of the VFKDO framework in the same database. After merging the

ontology and the project data, querying EMO and its direct or indirect network results in gaining

knowledge about the used EMO algorithms, people involved with them, the used and produced inputs

and outputs, the time that the relevant activities were carried out, the location where they were

implemented, and the reason for using them. Also worth mentioning that the vast domain of the gained

insights is due to the combination of the VFKDO framework and the PMS where the basis for this

construction has been built around the 7w method.

6.1 Application example:

A complete knowledge representation of three projects in an ontology structure has been generated in

this project namely Optimization of tool index positioning (Amouzgar et al., 2020), simulation-based

 48

optimization of machining process (Amouzgar et al., 2018), and robot cell optimization (Schmidt et

al., 2022). As an example, the steps of the robot cell project shown in the knowledge graph are briefly

explained below. Figure 6-1 shows some of the activities, entities, and other nodes representing items

related to the project.

Figure 6 -1. Part of the robot cell optimization project knowledge graph. The brown nodes represent Owl
objects, grey nodes entities, yellow nodes activities, dark blue nodes purpose, light blue nodes tool, and green

nodes actor.

6.1.1 Modelling and Simulation

The aim of the project is to reduce the area occupied by an industrial robot cell in a case study,

consisting of a robot, two connection areas to conveyors for input and output material, two CNC

machines and a dedicated marking station, as well as minimizing the energy consumption of the

industrial robot, minimizing the peak energy level, and also the cycle time of the task. All the

mentioned objectives are defined in a computer model and the performance of the robot cell is assessed

after running optimization on the modelled simulation.

The modelling of the robot cell is done using RobotStudio (Connolly, 2009) where the robotic cell is

orchestrated by a Programmable Logic Controller (PLC) and the robot is steered by a robot controller.

The model of the cell used in the study is shown in figure 6 -2. The process simulation mirrors the

process of transportation of the parts from and to the station through conveyors and the motion of the

robot arm moving the parts within the cell area.

 49

Figure 6-2. Model of the robot cell used in the study (Schmidt et al., 2022)

6.1.2 Optimization

As could be noticed, there are three SBO steps defined in the knowledge graph which form and

complete the optimization process. In this case, since the used algorithm for finding the optimal

solutions is a version of genetic algorithm (explained below), it raises the need for an initial population

generation. For this purpose, Latin Hypercube Sampling (LHS) (Loh, 1996) has been chosen and

implemented. In this sampling method, in contrast to simple random-based ones, the algorithm

stratifies on all input dimensions simultaneously meaning that cumulative curves in different

dimensions are equally divided and samples are chosen from within the stratifications. In other words,

the algorithm divides the subspace of each vector Si where i = 1,2,…,N by M=n separated subsets of

equal probability of Ωik where k = 1,2,…,M.

With a broad range of applicability, metaheuristic algorithms have been used in various fields from

politics to engineering. Such algorithms are mainly categorized as single solution and population-based

where the former attempts to improve one solution around the problem objectives by applying local

search and the latter uses multiple candidate solution in the optimization process. One of the

commonly-used population-based metaheuristic algorithms is Genetic Algorithm (GA) which is

inspired by biological evolution (Katoch et al., 2021). As mentioned above, population generation is a

step in the process of GA development and the convergence of optimal solutions is carried out on the

named population. The remaining steps of the computation process in GA is briefly elucidated below:

 50

6.1.2.1 Selection

During this process, it is determined if a particular potential solution will be chosen and considered for

further steps of the algorithm or not. There are several selection techniques proposed e.g. Roulette

Wheel and Tournament while each come with their own pros and cons. These techniques vary in

different ways. Roulette Wheel selection is a method in which the individuals are given a portion of a

whole, proportional to their fitness value. This means that the better response to the problem

formulation leads to a better chance for being chosen. The Tournament technique uses stochastically

chosen individuals to compete based on their fitness value and lets the winning potential solutions to

the next steps.

6.1.2.2 Crossover

Crossover is the process of combining information of the selected individuals and creation of offspring.

The information being carried by the parents is also referred as chromosomes. This combination

process can be implemented through various methods including but not limited to single-point, two-

point, k-point, and uniform. In single-point crossover, the information starting from a randomly

selected point are exchanged as shown in figure 6-3. The same procedure applies to two-point

crossover except there are two points determining the exchanging segments. In uniform crossover, no

partial information trades take place, though it is randomly decided if a part of a chromosome (also

known as a gene) is swapped with the other partner.

Figure 6-3. Single point crossover; the vertical line depicts the crossover point and the genes as of the point
are swapped.

6.1.2.3 Mutation

Mutation operator helps to maintain diversity as the generations reproduce. This operator is activated

on individuals on a random basis according to a given probability. Common mutation techniques are

 51

Displacement Mutation; which exchanges genes within the chromosome string, and Simple Inversion;

which reverses the segment between two particular points within a chromosome.

6.1.2.4 Replacement

After implementing the aforementioned GA steps, the new generation of offspring produces the new

population for the next round of running the algorithm. This process repetitively is carried out as many

rounds as defined by the specialist (Katoch, 2021).

6.1.3 Knowledge Representation

As population-based multi-objective problems are solved through providing series of optimal

solutions, the argument for choosing the best of best solution still exists even after the optimization

process is over. Solutions which are better than all others at least in one objective, form a front in a

two or three dimensional space, which is known as Pareto-front (Bandaru et al., 2017). As a simple

representation, figure 6-4 illustrates solutions in a 2D plot objective space where the marked points

shape a Pareto-front and are best solutions in regards with at least one of the two objectives.

Figure 6-4. Best solutions considering objective functions “f” and “g” are marked in black which create the
Pareto-front.

As the robot cell example is formulated as a multi-objective problem, it is important to provide the

decision maker with a range of possible solutions which allows them to choose the best of best

solutions in accordance with their criteria. Figure 6-5 shows the generated Pareto-front from running

 52

the MOO and simulating the performance of the robot cell while adjusting the variables based on the

solutions which enriches and eases the process of decision making.

Figure 6-5. Illustration of simulated performance of the robot in four different scenarios based on different
input sets. Solutions IV and I are on the Pareto-front (Schmidt et al., 2022)

In conclusion, the three SBO steps defined in the knowledge graph, project the entire optimization

process from population initialization using the LHS method, running the optimization, and improving

the results by assessing them through realization of knowledge done by visualization. As shown in

figure 6-6, SBO step 3 is directly connected to entities labelled such as “Cell simulation”,

“Pareto_Objectives”, and “ObjectiveSpace”. Such demonstrations of knowledge has been used to

interact with the decision maker and ease the decision making process.

Figure 6-6. SBO (Step 3) which consists of result visualization and improvement

 53

6.2 Knowledge Graph Use Cases
Below, probable scenarios where knowledge within the project might be of importance and could be

retrieved, have been listed:

1. Querying a certain activity aiming at achieving knowledge about the provenance 7w questions

as well as the ontology of the results. This could be done by running a 2nd degree search on the

activity node while the second indirect connection is determined to be a labeled as

“owl__Class” which is an indication of being a part of the ontology. Figure 6-7 and 6-8 show

the result of the search about the “Making decision” activity and the “SBO (step1)” activity

respectively.

Figure 6-7. The action (Making decision) is shown in brown in the middle. Location, actor, tool, and entities
are connected to the node. The blue circles represent the ontology and the grey nodes are the connected

entities; selected solution model, selected solution view and KD view.

2. Querying certain methods in order to achieve knowledge about the classes and instances of

activities which have been implemented through using them. Moreover, other similar methods

belonging to the same class could be visualized at the same time which could be beneficial for

comparisons. Figure 20 shows the history of using NSGA-II and SPEA2 as evolutionary

algorithms and a general comparison between the associated entities and their situation in the

ontology.

 54

Figure 6-8. The SBO (Simulation -Based Optimization) activity and its provenance data along with its
surrounding ontology.

3. Querying certain methods in order to achieve knowledge about the classes and instances of

activities which have been implemented through using them. Moreover, other similar methods

belonging to the same class could be visualized at the same time which could be beneficial for

comparisons. Figure 6-9 shows the history of using NSGA-II and SPEA2 as evolutionary

algorithms and a general comparison between the associated entities and their situation in the

ontology.

 55

Figure 6-9. Comparison between the usage of SPEA2 and NSGA-II as two evolutionary algorithms. The light
blue and the green nodes represent ontology where EMO algorithm trains and uses Meta Model and is a

subclass of Metaheuristics. Also, the activities are all an instance of the Optimization class as expected. The
used entities are shown in grey, the tools in green, and actors in dark blue.

During the course of the project, an ontology has been developed and implemented in a graph database

addressing essential substances of the provenance data model. This, enabled the possibility to manage

the previously-used or previously-created knowledge within the time span of the project and refer to

these knowledge blocks in form of structured graph data. Even though querying these data and

visualizing them in Neo4j is conveniently done through using CQL, it might not be possible for every

user involved with the VFKDO project to easily use it. Also, creating a comprehensive infrastructure

for the purpose of improving PLM systems and establishing interconnections between different

subsections, requires more in-depth technical developments. On that note, a web application based on

the graph database could be developed where knowledge, data, and information through search,

analysis, and, and visualization could be accessed. This could be done by connecting the graph

database to HTML pages through an Application Programming Interface (API). This web application

could include several features provided by a traditional PLM system such as bill of material, bill of

process, bill of resource, as well as 3D virtual/real images of the production plant, production lines,

machines, and tools used in projects.

 56

7 Conclusion and Future Work

Ontologies have proven to be strong tools for sharing, storing, and visualizing knowledge. With the

growth of semantic web, the opportunity to further enrich databases with interrelations and classifying

knowledge depending on existing semantics among data points has been provide. Similarly, with the

expansion of graph databases, the produced metadata from these valuable inter-relationships could be

with higher functionality handled. Neo4j as a graph database, comes with the possibility to smoothly

transform relational databases into graphs by applying logical rules aligned with CQL principles and

at the same time import RDF-serialize documents in a completely flawless manner. As a conclusion,

Neo4j has shown outstanding performance in regards to importing data in different forms and unifying

them according to well calculated logics and reasoning.

The final generated knowledge base containing a VFKDO ontology and project sample data illustrates

formal specification of the including concepts and how they are related, as well as provenance data

model. As shown in the results section, the search function can be performed on actors, locations,

activities, entities, and any existing node which empowers the knowledge extraction action by

providing various search possibilities. The defined class hierarchy also, allows the user to choose the

search domain according to the level of detail defined in the ontology. The inference could be run on

higher levels such as super-class level, or lower levels with more specific requirements such as EMO

algorithms. Also, a combination of search conditions could easily be applied in the inference.

Conditions such as existence of a certain label in a specific distance from the main node of concern,

or existence of any type of relationships between multiple nodes (direct or indirect). On that note, prior

to development of such ontology, certain nodes were not explicitly defined as being a part of a class,

whereas, the ontology has led to having more accurate search function and more availability of data

with different labels.

As explained in section 5, the connection of the project data to the ontology was executed using string

search as well as creating relationships in a manual procedure and as mentioned, several entity nodes

within the project data, were labeled as codes and numbers addressing specific elements in either

Manage Links or TeamCenter and their content could not be realized according to their labels. Working

with data regarding previously-done projects for the purpose of constructing a knowledge base

accordingly, requires deep understanding and experience in those specific projects and every

performed activity, used method and entity. It is therefore suggested that constructing ontologies

should be done either by the people directly involved in the projects, or after a complete datasheet

 57

including the list of data and their complete description has been created. Conducting surveys could

be a practical research approach in order to collect such valuable input and improve the existing

ontology. Also, since the size of the project data was relatively small, manually processing them and

creating relationships in Neo4j was a feasible task and in case of working with big data this process

could not be beneficial in the end. This, leads to the importance of standardization. Nodes classification

and thereafter knowledge extraction could be performed in an entirely automated way, on condition

that the data is labeled in a standard way in the early steps of data generation.

Nonetheless, the current ontology has been designed for the purpose of tracking knowledge and

defining the VFKDO process flow in a detailed manner. However, using a graph database such as

Neo4j also allows us to import numerical values generated by various methods and algorithms within

the project processes. Results of mining and analysis of these data could also be stored as a subclass

of the subject and could be queried in an integrated manner with other semantics and realities about

the item.

 58

References
Angles, R. (2018, May). The Property Graph Database Model. In AMW.

Amudha, P., Sagayaraj, A. C., & Sheela, A. S. (2018). An application of graph theory in cryptography.
International Journal of Pure and Applied Mathematics, 119(13), 375-383.

Bakkas, J., Jakjoud, W., & Bahaj, M. (2014, May). Semantic mapping at the schema level of XML
documents to ontologies. In 2014 International Conference on Next Generation Networks and Services
(NGNS) (pp. 165-169). IEEE.

Bandaru, S., Ng, A. H., & Deb, K. (2017). Data mining methods for knowledge discovery in multi-
objective optimization: Part A-Survey. Expert Systems with Applications, 70, 139-159.

Bellini, P., & Nesi, P. (2018). Performance assessment of RDF graph databases for smart city services.
Journal of Visual Languages & Computing, 45, 24-38.

Bracken, S. (2010). Discussing the Importance of Ontology and Epistemology Awareness in
Practitioner Research. Worcester Journal of learning and teaching, (4).

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., & Yergeau, F. (1997). Extensible markup
language (XML). World Wide Web Journal, 2(4), 27-66.

Collins, H. M. (1997). Humans, machines, and the structure of knowledge. Knowledge management
tools, 145-163.

Dhingra, V., & Bhatia, K. K. (2015). Development of ontology in laptop domain for knowledge
representation. Procedia Computer Science, 46, 249-256. recommendation, 10(10), 2004.

Farahani, F. V., Karwowski, W., & Lighthall, N. R. (2019). Application of graph theory for identifying
connectivity patterns in human brain networks: a systematic review. frontiers in Neuroscience, 13,
585.

Fraga, A. L., Vegetti, M., & Leone, H. P. (2020). Ontology-based solutions for interoperability among
product lifecycle management systems: A systematic literature review. Journal of Industrial
Information Integration, 20, 100176.

Gong, F., Ma, Y., Gong, W., Li, X., Li, C., & Yuan, X. (2018). Neo4j graph database realizes efficient
storage performance of oilfield ontology. PloS one, 13(11), e0207595.imulations. Procedia CIRP, 93,
216-221.

Gross, J. L., Yellen, J., & Anderson, M. (2018). Graph theory and its applications. Chapman and
Hall/CRC.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge
acquisition, 5(2), 199-220.

Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing?.
International journal of human-computer studies, 43(5-6), 907-928.

 59

Hao, Y., Helo, P., & Shamsuzzoha, A. (2018). Virtual factory system design and implementation:
Integrated sustainable manufacturing. International Journal of Systems Science: Operations &
Logistics, 5(2), 116-132.

Jain, S., Choong, N. F., Aye, K. M., & Luo, M. (2001). Virtual factory: an integrated approach to
manufacturing systems modeling. International Journal of Operations & Production Management.

Khadir, A. C., Aliane, H., & Guessoum, A. (2021). Ontology learning: Grand tour and challenges.
Computer Science Review, 39, 100339.

Kondylakis, H., Kotzinos, D., & Manolescu, I. (2019). RDF graph summarization: principles,
techniques and applications. In EDBT (pp. 433-436).

Manola, F., Miller, E., & McBride, B. (2004). RDF primer. W3C recommendation, 10(1-107), 6.

McGuinness, D. L., & Van Harmelen, F. (2004). OWL web ontology language overview. W3C

Miller, J. J. (2013, March). Graph database applications and concepts with Neo4j. In Proceedings of
the southern association for information systems conference, Atlanta, GA, USA (Vol. 2324, No. 36).

Morshedzadeh, I. (2021). Managing virtual factory artifacts in extended product lifecycle management
systems (Doctoral dissertation, University of Skövde).

Morshedzadeh, I., Oscarsson, J., Ng, A., Jeusfeld, M., & Sillanpaa, J. (2018). Product lifecycle
management with provenance management and virtual models: an industrial use-case study. Procedia
CIRP, 72, 1190-1195.

Ng, H, A., & Bandaru, S. (2020, December). Virtual factories with knowledge-driven optimization as
a new research profile. In SPS2020: Proceedings of the Swedish Production Symposium, October 7-
8, 2020 (Vol. 13, p. 179). IOS Press.

Onosato, M., & Iwata, K. (1993). Development of a virtual manufacturing system by integrating
product models and factory models. CIRP annals, 42(1), 475-478.

Peng, G., Mao, H., Wang, H., & Zhang, H. (2016). BOM-based design knowledge representation and
reasoning for collaborative product development. Journal of Systems Science and Systems
Engineering, 25(2), 159-176.

Phyue, S. L., Thein, M. M., Win, T. T., & Thwin, M. M. S. (2010, June). Semantic Web Information
Retrieval in XML by mapping to RDF schema. In 2010 International Conference on Networking and
Information Technology (pp. 500-503). IEEE.

Rahayu, N. W., Ferdiana, R., & Kusumawardani, S. S. (2022). A systematic review of ontology use in
E-Learning recommender system. Computers and Education: Artificial Intelligence, 100047.

Saber, Y. M., Abdel-Galil, H., & Belal, M. A. E. F. (2022). Arabic ontology extraction model from
unstructured text. Journal of King Saud University-Computer and Information Sciences.

Schreiber, G., & Raimond, Y. (n.d.). RDF 1.1 Primer. Retrieved February 20, 2022, from
https://www.w3.org/TR/rdf11-primer/#section-Acknowledgments

Smith, B. (2012). Ontology. In The furniture of the world (pp. 47-68). Brill.

 60

Stevens, R., Goble, C. A., & Bechhofer, S. (2000). Ontology-based knowledge representation for
bioinformatics. Briefings in bioinformatics, 1(4), 398-414.

Säfsten, K., & Gustavsson, M. (2019). Forskningsmetodik: för ingenjörer och andra problemlösare.

Terkaj, W., Pedrielli, G., & Sacco, M. (2012, July). Virtual factory data model. In Proceedings of the
workshop on ontology and semantic web for manufacturing, Graz, Austria (pp. 29-43).

Terkaj, W., Tolio, T., & Urgo, M. (2015). A virtual factory approach for in situ simulation to support
production and maintenance planning. CIRP Annals, 64(1), 451-454.

Tolio, T., Sacco, M., Terkaj, W., & Urgo, M. (2013). Virtual factory: An integrated framework for
manufacturing systems design and analysis. Procedia CIRP, 7, 25-30.

Tudorache, Tania, Csongor Nyulas, Natalya F. Noy, and Mark A. Musen. "WebProtégé: A
collaborative ontology editor and knowledge acquisition tool for the web." Semantic web 4, no. 1
(2013): 89-99.

Uschold, M. (2018). Demystifying OWL for the Enterprise. Synthesis Lectures on Semantic Web:
Theory and Technology, 8(1), i-237.

Usip, P. U., & Ntekop, M. M. (2016, December). The use of ontologies as efficient and intelligent
knowledge management tool. In 2016 Future Technologies Conference (FTC) (pp. 626-631). IEEE.

Wieringa, R. J. (2014). Design science methodology for information systems and software
engineering. Springer.

Wylot, M., Hauswirth, M., Cudré-Mauroux, P., & Sakr, S. (2018). RDF data storage and query
processing schemes: A survey. ACM Computing Surveys (CSUR), 51(4), 1-36.

Yang, Y. Q., Dai, M. H., & Chen, H. (2010, April). An automatic semantic extraction algorithm for
XML document. In 2010 International Conference on Machine Vision and Human-machine Interface
(pp. 41-44). IEEE.

Yan-Hao, H., Wen-Chen, L., Bai-Qing, L., Ya-Lou, L., Xiao-Xin, Z., & Ning, A. (2014, October). The
construction of power system knowledge database based on ontology theory and semantic web
technology. In 2014 International Conference on Power System Technology (pp. 1760-1764). IEEE.

Yildiz, E., Møller, C., & Bilberg, A. (2020). Virtual factory: digital twin based integrated factory

Zachman, J. A. (1999). A framework for information systems architecture. IBM systems journal,
38(2.3), 454-470.

Zhang, F., Wang, K., Li, Z., & Cheng, J. (2019). Temporal data representation and querying based on
RDF. Ieee access, 7, 85000-85023.

Zhang, Y. H., Yi, S. P., & Wen, P. H. (2011, September). Optimization of knowledge work based on
experts' implicit knowledge mining. In 2011 IEEE 18th International Conference on Industrial
Engineering and Engineering Management (pp. 1899-1903). IEEE.

 61

Vyawahare, H. R., Karde, P. P., & Thakare, V. M. (2018, August). A hybrid database approach using
graph and relational database. In 2018 International Conference on Research in Intelligent and
Computing in Engineering (RICE) (pp. 1-4). IEEE.

A. Bhattacharyya and D. Chakravarty, "(Graph Database: A Survey)," 2020 International Conference
on Computer, Electrical & Communication Engineering (ICCECE), 2020, pp. 1-8, doi:
10.1109/ICCECE48148.2020.9223105.

Dai, D., Carns, P., Ross, R. B., Jenkins, J., Blauer, K., & Chen, Y. (2015, September). GraphTrek:
asynchronous graph traversal for property graph-based metadata management. In 2015 IEEE
International Conference on Cluster Computing (pp. 284-293). IEEE.

Panebianco, A. (2014). Simple Structures For Complex Data: Optimizing metadata storage & retrieval
using graph databases.

Amouzgar, K., Ng, A. H., & Ljustina, G. (2020). Optimizing index positions on CNC tool magazines
considering cutting tool life and duplicates. Procedia CIRP, 93, 1508-1513.

Amouzgar, K., Bandaru, S., Andersson, T., & Ng, A. H. (2018). A framework for simulation-based
multi-objective optimization and knowledge discovery of machining process. The International
Journal of Advanced Manufacturing Technology, 98(9), 2469-2486.

Schmidt, B., Sánchez De Ocãna Torroba, A., Grahn, G., Karlsson, I., & Ng, A. H. (2022). Augmented
Reality Approach for a User Interface in a Robotic Production System. In 10th Swedish Production
Symposium (SPS2022), Skövde, April 26–29 2022 (pp. 240-251). IOS Press.

Goertz, G., & Mahoney, J. (2012). Concepts and measurement: Ontology and epistemology. Social
Science Information, 51(2), 205-216.

Oates, B. J. (2005). Researching information systems and computing. Sage.

Connolly, C. (2009). Technology and applications of ABB RobotStudio. Industrial Robot: An
International Journal.

Loh, W. L. (1996). On Latin hypercube sampling. The annals of statistics, 24(5), 2058-2080.

Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000, September). A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. In International conference on
parallel problem solving from nature (pp. 849-858). Springer, Berlin, Heidelberg.

Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and

future. Multimedia Tools and Applications, 80(5), 8091-8126.

	1 Introduction
	1.1 Background
	1.2 Goals
	1.3 Limitations
	1.4 Ontology and OWL
	1.5 The RDF Language
	1.6 Graph Theory and Databases

	2 Literature Review
	2.1 Virtual Factory
	2.2 Knowledge Management
	2.3 Ontology

	3 Frame of References
	3.1 OWL
	3.2 Graph Database

	4 Research Approach and Methodology
	5 Material and Model Improvement
	5.1 The VFKDO Framework
	5.2 Ontology Creation and the Provenance Data Model
	5.3 Importing the Ontology to Graph Database
	5.4 Importing real-world provenance data from VFKDO-based projects to the ontology graph
	5.5 Connecting the ontology graph to the provenance data

	6 Results and Discussion
	6.1 Application example:
	6.1.1 Modelling and Simulation
	6.1.2 Optimization
	6.1.2.1 Selection
	6.1.2.2 Crossover
	6.1.2.3 Mutation
	6.1.2.4 Replacement

	6.1.3 Knowledge Representation

	6.2 Knowledge Graph Use Cases

	7 Conclusion and Future Work

