Cognitive Systems Research 76 (2022) 63-77

journal homepage: www.elsevier.com/locate/cogsys G

Contents lists available at ScienceDirect

Cognitive Systems Research

Check for

Where to from here? On the future development of autonomous vehicles e
from a cognitive systems perspective

Sara Mahmoud **, Erik Billing ?, Henrik Svensson ?, Serge Thill >

2 Interaction Lab, University of Skovde, 54128 Skovde, Sweden
b Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 HR Nijmegen, Netherlands

ARTICLE INFO

Keywords:

Artificial cognition
Self-driving cars
Cognitive paradigms

ABSTRACT

Self-driving cars not only solve the problem of navigating safely from location A to location B; they also have
to deal with an abundance of (sometimes unpredictable) factors, such as traffic rules, weather conditions, and
interactions with humans. Over the last decades, different approaches have been proposed to design intelligent
driving systems for self-driving cars that can deal with an uncontrolled environment. Some of them are derived
from computationalist paradigms, formulating mathematical models that define the driving agent, while other
approaches take inspiration from biological cognition. However, despite the extensive work in the field of self-
driving cars, many open questions remain. Here, we discuss the different approaches for implementing driving
systems for self-driving cars, as well as the computational paradigms from which they originate. In doing so,
we highlight two key messages: First, further progress in the field might depend on adapting new paradigms
as opposed to pushing technical innovations in those currently used. Specifically, we discuss how paradigms
from cognitive systems research can be a source of inspiration for further development in modelling driving
systems, highlighting emergent approaches as a possible starting point. Second, self-driving cars can themselves
be considered cognitive systems in a meaningful sense, and are therefore a relevant, yet underutilized resource
in the study of cognitive mechanisms. Overall, we argue for a stronger synergy between the fields of cognitive

systems and self-driving vehicles.

1. Introduction

Self-driving cars are a real world application of robotics with a
significant societal impact (Hussain, Lee, & Zeadally, 2018). They
operate in an uncontrolled environment that includes other agents
(both human and non-human). A self-driving car therefore requires a
range of capabilities such as predicting the intentions of pedestrians and
other cars, or negotiating terms between several actors. Additionally,
the vehicle is expected to provide a comfortable experience from the
passenger’s perspective. The development of self-driving cars is one of
the most challenging research areas in robotics (Campbell, Egerstedt,
How, & Murray, 2010), made more difficult by the fact that mistakes
may cost lives.

Automation in self-driving cars is often defined by the Society of
Automotive Engineers’ (SAE) levels of autonomy (Committee, 2014)
ranging from zero to five. Situations in which a car may operate
autonomously under certain conditions start at level three. At this
level, the human driver remains ready to take over when the system
fails to proceed. Level four includes the ability to autonomously drive
safely and operate well even when the system fails to hand control
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back to the human driver. However, level four vehicles are limited
by infrastructure and legislation considerations that constrain them to
operate within restricted areas. Level five represents fully autonomous
operation in all situations. Despite being an active topic of indus-
trial and academic research, there are presently no widely accepted
solutions that reach this final level.

One of the earliest recognized achievements in developing self-
driving cars was seen at the Defense Advanced Research Projects
Agency (DARPA) Urban Challenge 2007, in which the top three teams
— Boss (Urmson et al., 2008), Junior (Montemerlo et al., 2008) and
Odin (Bacha et al.,, 2008) — used knowledge graphs with a search
algorithm as a main method for developing their vehicle’s control.

By the beginning of the 21st century with the advent of deep
learning, neural networks gained significant popularity (Schmidhuber,
2015). The evolution of deep learning and convolutional neural net-
works allowed for great improvements in accuracy and performance,
especially for pattern recognition tasks (Krizhevsky, Sutskever, & Hin-
ton, 2012). However, the need for extraordinary amounts of training
data and significant computational resources, in addition to issues such
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as transparency and interpretability of their functionality, raises chal-
lenges for their deployment in real-world applications in general (Rao
& Frtunikj, 2018) and in self-driving cars in particular (Yaqoob et al.,
2019).

More recently, the need for autonomous vehicles to be able to learn
from unforeseen events and situations they may encounter, opened new
perspectives with advances in the area for reinforcement learning (RL)
and their application to autonomous vehicles (Marina & Sandu, 2017).
In particular, RL-based approaches were able to demonstrate high
performance in simulations (Grigorescu, Trasnea, Cocias, & Macesanu,
2020). At the same time, their application in real world environments
remains challenging (Rao et al., 2020), despite improvements in knowl-
edge transfer methods used for deploying agents trained in simulation
into real-world environments (Zhao, Queralta, & Westerlund, 2020).

It has also become clear that there is not likely to be a gradual
transition from driver assistance systems into a fully autonomous ve-
hicles (Hars, 2016) because driver assistance and full autonomy have
to tackle very different problems. Specifically, the former are designed
for limited settings in well-defined scenarios while a fully autonomous
cars operate in an unconstrained environment with a large degree of
uncertainty. Overall, current paradigms for the control of autonomous
cars rely either on a priori programmatic design or massive amounts
of training data. Critically, both approaches assume that it is possible
for developers and engineers to cover all possible driving situations,
whether the driving model is expressed in the a priori rules or training
datasets. Although these approaches may be sufficient for bounded tests
and limited scenarios, it does not currently offer a path to level five
of the SAE classification. As we will show in this paper, a level five
autonomous car can be considered a cognitive system in a meaningful
sense. Moreover, as others have argued (Thérisson, 2009; Thorisson &
Helgasson, 2012), developing a cognitive system that can go beyond
solving specific problems is not achieved by developing and improv-
ing certain cognitive abilities in isolation from each other. Rather, it
requires a holistic view that takes into account underlying theoreti-
cal assumptions, inspiration, motivation, requirements, methodology,
structure, and technology.

Interpreting an autonomous vehicle as a cognitive system opens
the possibility of looking towards existing cognitive systems research
and considering the degree to which progress and theoretical insights
from that domain can be applied to state-of-the-art progress in work on
autonomous cars.

More specifically, we can consider work on cognitive architectures
(which can be understood as a framework that enables the cognitive
abilities of an agent). In cognitive systems research, such architec-
tures are typically divided into three different types (Vernon, 2014):
cognitivist, emergent, and hybrid. Cognitivist architectures take a com-
putationalist, symbolic based approach according to which information
is processed according to some formal architecture provided by the
designer. Emergent architectures, on the other hand, emphasize devel-
opmental processes that lead to the emergence of an appropriate archi-
tecture; in particular one that allows a cognitive agent to learn from the
interaction with the environment and adapt to novel situations. Hybrid
approaches, meanwhile, combine aspects of computationalist systems
with aspects of emergent systems (the former often being symbolic
while the latter are subsymbolic). Most modern cognitive architectures
are hybrid in the sense that they rely on (subsymbolic) neural networks
for some aspects of their functionality and computationalist approaches
for others (Kotseruba & Tsotsos, 2020).

It is also worth highlighting Enactivism, a particular theory of cog-
nition that emphasizes that cognition is enacted in the world, and
therefore pays particular attention to the precise relationship between
a cognitive agent, other agents, the environments, and the various in-
teractions in between. While enactivism as a whole is a rather complex
subject matter (on which whole books have been written, e.g. Maturana
and Varela (1987)) that cannot be addressed in full here, we will show
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that this focus is relevant for understanding how a self-driving car
interacts with its environment.

The core purpose of this paper is therefore to discuss the utility of
examining autonomous vehicles as a cognitive system, and to identify
what kind of inspiration cognitive systems studies can offer for the
development of self-driving cars. We begin by analysing the state of
the art in the self-driving cars literature to identify how progress has
occurred so far. We highlight what kind of problems are solved (or
solvable) and where current challenges lie. We then map this work
onto different paradigms in cognitive systems research, noting that
research on self-driving vehicles is largely driven by a cognitivist
perspective. We then argue that alternative paradigms, e.g. emergent
approaches, have the potential to contribute significantly to the further
development of self-driving cars.

Lastly, we conclude by noting the potential of a symbiotic rela-
tionship between the field of self-driving cars and cognitive systems
research. Specifically, while most of the paper focuses on the contribu-
tions that cognitive systems research can bring to the development of
self-driving cars, we note that such cars can be meaningfully charac-
terized as cognitive systems in the sense of cognitive systems research,
and, as such, provide researchers within this domain with a platform on
which to test their cognitive architectures and models. In particular, a
self-driving vehicle retains the simplicity of wheeled robots in terms of
degrees of freedom, but interacts with the rich and unpredictable real
world.

2. Self-driving car systems

This section introduces self-driving car systems followed by a gen-
eral description of an architecture for the perception-decision-making
tasks that are inherent to self-driving car systems. Thus, this section
provides a general overview of the challenges faced by self-driving
car systems. More detailed discussions can be found in recent re-
views (Badue et al., 2020; Paden, Cép, Yong, Yershov, & Frazzoli, 2016;
Pendleton et al., 2017).

As with all cognitive systems operating in the real world, it is
neither feasible nor desirable to comprehensively enumerate all the
situations they might encounter (Thill & Vernon, 2017), in particular
when dealing with rare or unforeseen events. However, it is possible to
categorize the most common tasks that a vehicle will encounter. Table 1
provides a brief overview of these tasks, representing primary problems
that autonomous intelligent driving systems need to be able to solve.

When it comes to the design of intelligent driving systems, a com-
monly used architecture is the perception-decision-making architec-
ture (Badue et al., 2020) (Fig. 1), which can also be seen as a kind
of subsumption architecture in which decision making is divided into
levels of individual sub-behaviours (Brooks, 1986). This kind of archi-
tecture was used by the Stanely team (Fig. 2), the first winner of DARPA
challenge 2005 (Thrun et al., 2006), and in the “Junior” car that
finished in the top three in the 2007 DARPA challenge (Montemerlo
et al., 2008).

In a subsumption architecture, decisions are taken by hierarchically
organized individual sub-systems based on the information provided
by the perception system. Breaking down components into smaller
sub-systems helps understanding the basic tasks and behaviours that
are relevant for a self-driving car driving system. It also facilitates
modelling driving tasks such as those summarized in Table 1.

Details of such a break-down of the perception-decision-making ar-
chitecture into sub-systems can be found in thorough surveys (Levinson
et al., 2011; Yurtsever, Lambert, Carballo, & Takeda, 2019). Briefly,
however, the perception system links an agent to the environment
through different types of sensors such as cameras, LIDAR, radar, GPS
and odometers. It is thus composed of sub-systems determined by the
collected data and its usage (summarized in Table 2). Although these
sub-systems may seem well defined for a problem, many challenges
may occur in the perception system. Weather conditions, for example,
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Table 1
Examples of common driving tasks.
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Task Description

Includes

Lane keeping

Drive within the specified margins of the road.

Interpretation of road markings (Mathibela, Newman, & Posner,
2015). Estimate missing sidelines. Road speed limit.

Traffic Adapt, and adequately respond to other vehicles. Maintaining the safe distance with other vehicles. Response to
other vehicles’ behaviours (eg. sudden break or over take).

Intersection Deal with signalized and unsignalized intersections. Detect and identify traffic signs and rules. Negotiate with other
road users in unsignalized intersections.

Roundabouts Estimation of the situation to enter the Predicting the speed and the distance of incoming vehicles for

roundabout.

precise judgments of when to enter the roundabout.

Pedestrians and other non-vehicle road

Deal with non-vehicle road participants such as

Understand participant intentions. Knowledge of local

participants cyclists, pedestrians or even animals. conventions.
™
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Fig. 1. Common architecture of self-driving cars.
Source: Simplified from Badue et al. (2020).
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Fig. 2. A general description of the architecture of the first winner of the DARPA challenge 2005 named “Stanely” (Thrun et al., 2006). Reproduced with permission; John Wiley

and Sons.)

may cause difficulties in detecting obstacles or the movement of an
object in rain, snow or fog (Zang et al., 2019).

Second, after the perception system creates an internal representa-
tion of the environment and the corresponding car state, the decision
making system determines the vehicle’s next actions at different levels
of abstraction. We summarize the main levels in Table 3.
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It is worth bearing in mind that a self-driving car not only has to
deal with clearly defined tasks such as the examples in Table 1. In re-
ality, it faces a significant variety of challenging situations that eschew
classification tasks into clear categories. As an example, consider a
traffic jam at an intersection such that the reality of the traffic situation
is in violation of traffic rules. In this situation the task is to clear
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Table 2
Summary of the main sub-systems in the perception layer.
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Perception sub-system Description

Static obstacle mapping

Creating an internal representation of the static objects and their location in a created road map

Localization

Determining the location of the vehicle on an internal map. Localization can be done using LIDAR (Wolcott &

Eustice, 2015), LIDAR with cameras (Xu et al., 2017) or just cameras (Wu, Tang, & Li, 2018).

Road mapping
Yu, & Glaser, 2017).

Creating a map of the road lanes, specifying the number of lanes, lane merges and crossing lanes (Bresson, Alsayed,

Moving object tracking

Detecting and tracking moving objects such as pedestrians and other vehicles including current and future locations

(Wang, Thorpe, Thrun, Hebert, & Durrant-Whyte, 2007).

Traffic signalization detection and recognition

Detecting and recognizing traffic lights and road signs (Wali, Hannan, Hussain, & Samad, 2015).

Table 3
Summary of the main decision-making subsystems.

Decision-making sub-system Description

Route planning
external cause (Sanders & Schultes, 2007).

Determines the route from the current position to the final destination. Invoked once per trip, or when the plan changes due to an

Behavioural layer
follow the current lane.

Takes the route plan from the route planning sub-system and then decides when to stop, change lane, negotiate an intersection or

Motion planning

Takes the manoeuvre decision from the behavioural layer sub-system and produces the corresponding path trajectory to be executed.

Obstacle avoidance

Prevents collisions with objects that the perception system has detected. It can for example, reduce the velocity, carry out

emergency braking, or change lane to avoid a predicted collision with a detected object (Jain & Malhotra, 2020).

Controller

Executes the planned motion and trajectory by the vehicle’s actuators.

the traffic or the deadlock but there may not be direct instructions or
rules of how to achieve this task. The difficulty of describing and then
classifying and modelling all kinds of tasks that a self-driving car may
face leads to a need for methods that go beyond the direct modelling
from task description to component implementation. Historically, self-
driving cars research and development has seen different paradigms
for addressing these challenges. Current methods, for example, rely
heavily on the latest advances in artificial intelligence (AI) and machine
learning (ML), but previous approaches were more computationalist
(see the early DARPA winners discussed above).

Next, we therefore discuss examples of a variety of Al approaches
that implement the tasks summarized in this section.

3. Approaches to realizing self-driving car systems

This section focuses on the Al and ML techniques described in the
literature on self-driving cars. We limit this discussion to papers that
describe complete agents acting in real world settings and using Al-
based approaches for the intelligent driving systems. In other words,
we only consider work that fulfils all of the following criteria: (a) there
is an explicit aim to contribute to the field of self-driving cars, (b) the
self-driving car systems use Al techniques in their implementation, (c)
the architecture involves tasks related to the intelligent driving systems,
and (d) the systems are tested in a real world car or with real world
datasets. Our aim here is not to present a comprehensive survey of
self-driving car algorithms, but to demonstrate how Al and ML have
contributed to the development of self-driving cars, and where their
limits lie. In summary, we have identified thirteen papers, summarized
in Table 4, according to the following criteria: (1) main symbolic AI
and ML techniques used (see Sections 3.1 and 3.4), (2) type of task
used (Table 1), (3) type of sensors, and (4) whether the behaviours
are mainly derived from a given a priori knowledge base or discovered
based on training data (see Table 4 for a complete summary).

Based on the analysis of these papers, we identify four main ap-
proaches: (1) symbolic Al, (2) neural network as subsystem, (3) neural
network as end to end learning systems, and (4) reinforcement learning.
In the following subsections, we describe each approach based on a
rough chronological timeline.
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3.1. Symbolic AI

Symbolic Al, creates an explicit symbolic representation of real-
world objects. Reasoning then takes the form of symbolic operations
carried out on these explicit and interpretable representations. Sym-
bolic AI has been used in self-driving cars for different purposes, for
example, to represent each object by its attributes and behaviours for
knowledge inference (Oka et al., 1999). Notably, this approach pro-
duced the top three finishers of the DARPA challenge 2007, “Boss” (Urm-
son et al., 2008), “Junior” (Montemerlo et al., 2008), and “Odin” (Bacha
et al., 2008). The challenge included sophisticated tasks such as nav-
igation, lane change, parking and intersections. Despite differences in
their architecture designs, all three agents modelled data in knowledge
graphs with symbolic representation and used it to search the state
space for maneuver decision making. The strength of this approach thus
derives from its ability to explicitly infer knowledge from a given set
of rules and a predefined model of object representation.

3.2. Neural networks as a sub-system

Another approach to the development of self-driving cars is to allow
learning from large amounts of data (Grigorescu et al., 2020), in par-
ticular using modern deep learning methods. Presently, Convolutional
Neural Networks (CNN) (Krizhevsky et al., 2012) are widely used,
for example, to classify objects in the environment. The objects thus
identified are then passed to the decision making subsystem, which
determines actions to take (Geiger, Lenz, Stiller, & Urtasun, 2013).
For example, Chen et al. (2015) used the AlexNet CNN for affordance
detection and then a symbolic decision making system for driving
action in an urban environment with low traffic. Similarly, Al-Qizwini
et al. (2017) used the GoogLeNet CNN for affordance detection with
higher accuracy and then a symbolic decision making system for driv-
ing action. They also improved training parameters and adapted more
realistic assumptions. Another study (Kim & Canny, 2017) used neural
networks for both the perception and the decision making components.
Specifically, they used multi-step decoder as an attention system in
order to learn to define which part of the sensory image contributes to
driving learning. The attention system is followed by a long short-term
memory (LSTM) to anticipate the driving control. The defining feature
of neural networks used in this type of approach is that they are only
used as a subsystem to solve one part of the driving task, in contrast
with end-to-end architectures.
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Table 4
Summary of different approaches and architectures for developing self-driving cars intelligent driving systems.
Approach Project Architecture main Lane Traffic Pedestrians Camera Lidar GPS Distance Logical Training
components keeping sensors  reasoning data
Oka, Tashiro, and Takase (1999) Vision- Decision- v v v
Motion
Urmson et al. (2008) Perception- Motion v v v v v v v
planer- mission
planner- behavioural
Symbolic A system.
Montemerlo et al. (2008) Perception- v v v v v v v
navigation-
Behaviour.
Bacha et al. (2008) Perception-Planning- v v v v v v v
Driving
behaviours.
Chen, Seff, Kornhauser, and Xiao (2015) CNN- logical v v v v v
control.
NN as Al-Qizwini, Barjasteh, Al-Qassab, and Radha (2017) CNN + logical v v v v v v
sub-systems decision making
system.
Kim and Canny (2017) CNN- LSTM v v v v
Pomerleau (1989) NN v v v
NN as e2e  Bojarski et al. (2016) CNN v v v
Chen and Huang (2017) CNN v v v
Kendall et al. (2019) CNN- Actor Critic v v v
DRL
RL L.
Zhu et al. (2020) Actor Critic DRL v v v
Saleh, Hossny, and Nahavandi (2019) Inverse RL- LSTM v v v v

3.3. Neural networks as an end-to-end system

Neural networks have also been used as end-to-end systems for
driving agents. In such a system, the network architecture takes the
input data (usually in its raw form) and outputs driving actions. One
of the early examples of such an approach was “ALVINN” (short for
Autonomous Land Vehicle In a Neural Network), Pomerleau (1989),
which used a three layer neural network for real world road following
based on inputs from camera images. The network was trained on sim-
ulated data as snapshots images generated from real world video data.
The network was first tested in a simulation environment then it was
deployed and tested in a real vehicle. More recently, NVIDIA (Bojarski
et al,, 2016; Chen & Huang, 2017) trained a Convolutional Neural
Network (CNN) for real car driving. Real driving-data was collected
using expert drivers. This data contained image inputs from cameras
along with the corresponding driving actions of the steering wheel. A
deep neural network was then trained using this data and deployed
into a real car control environment. Although this approach shows
high performance with manageable design and implementation efforts,
it requires significant amounts of training data to be collected from
driving in many diverse situations to be able to generalize to more than
the most common traffic scenarios (Grigorescu et al., 2020).

3.4. Reinforcement learning

Reinforcement learning is a paradigm in which agents learn from
(inter)acting with an environment. In this approach, the agent senses
the world and explores different actions that can be carried out. The
consequences of these actions are evaluated (for example, based on
a reward signal), leading to learning based on positive and negative
outcomes. If such an agent is trained in simulation first, the learning
can, at least in some cases, be transferred into real situations (Sutton &
Barto, 2018). Reinforcement learning has gained recent attention after
out-performing humans in many Atari games (Mnih et al., 2013, 2015).
There are different methods for implementing reinforcement learning,
including Q-learning (Watkins & Dayan, 1992) and Actor-Critic (Konda
& Tsitsiklis, 2000) approaches.
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Reinforcement learning typically performs well in simulation envi-
ronments. However, due to the differences between the simulation and
the real world, deploying agents trained in simulation in the real world
remains challenging and the focus of ongoing research (Dulac-Arnold,
Mankowitz, & Hester, 2019).

In terms of recent work on training a self-driving car for real world
deployment, Kendall et al. (2019) demonstrated a lane following task
where the driving agent was trained using a real world dataset and a
simple reward function that returned positive feedback as long as the
agent did not cross the side of the road. The trained agent was then
tested in a modified Renault Twizy. Zhu et al. (2020) used reinforce-
ment learning to train velocity control for car following. Car following
events were extracted from the Next Generation Simulation (NGSIM)
dataset, used for both training and testing. The reward function was
optimized for safe and comfortable speed control. An actor critic net-
work was used, taking distance and velocity of both the ego car and
the following car as input and returning range-bounded acceleration as
an output.

Reinforcement learning approaches were also demonstrated in in-
teractions with pedestrians. For example, Saleh et al. (2019) modelled
an Inverse Reinforcement Learning (IRL) and bidirectional recurrent
neural network architecture (B-LSTM) for learning detecting pedestrian
intention and trajectory. The model was then evaluated on real world
dataset for pedestrian behaviour.

Computationally, reinforcement learning carries out its learning by
value function optimization in the sense that the model attempts to
optimize a control function based on a given reward function. However,
reinforcement learning is not the only optimization method for mod-
elling maximization functions and other approaches, such as, dynamic
programming, are also used in autonomous vehicle research. Lu et al.
(2019), for example, used policy iteration adaptive dynamic program-
ming to model optimal control function for steering control. A car
following example (Zhu, Dai, Huang, Sun, & Liu, 2017) used actor-
critic reinforcement learning with dynamic programming to model
acceleration decision policy. da Silva and de Sousa (2010, 2011)
used dynamic programming for motion control and path-following by
optimizing the utility function.
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Optimization techniques mainly focus on the computational algo-
rithm and equation optimization of a value or utility function regardless
of the car’s relation to the environment. These techniques can be
explicitly coupled with reinforcement learning (eg. Lu et al. (2019),
Zhu et al. (2017)) or studied independently (eg. da Silva and de Sousa
(2010, 2011)). In the remainder of this paper, we focus primarily
on reinforcement learning approaches when discussing optimizations
since it more explicitly bridges optimization techniques with biological
learning (Sutton & Barto, 2018).

Reinforcement learning, if carried out in suitable learning environ-
ments, allows the agent to explore, and learn from, the consequences
of both carrying out the same actions in different conditions (such
as driving in different weather conditions when the road is icy and
slippery or dry and stable as well as if the weather is foggy and vision
is unclear) and different actions under the same conditions (such as
different strategies for avoiding a pedestrian on a crosswalk).

On the other hand, reinforcement learning is based on trial and
error which makes it dangerous to be trained in real roads shared
with other vehicles and vulnerable road users. Allowing car accidents
for the purpose of training an algorithm is clearly not a tenable posi-
tion. Therefore, another controlled environment is needed, such as a
simulation environment to carry out the training. This is challenging
because any such simulation needs to be of high fidelity and capture,
as realistically as possible, situations the vehicle would encounter in the
real world. Otherwise, the car may not be trained properly and behave
in undesirable ways in new situations it encounters.

3.5. Current challenges

Despite the large effort from both academia and industry to develop
self-driving car systems, there still exist a number of challenges.

One way to see why these challenges exist is to consider the classes
of problems that current approaches address. The simplest scenario,
but one that is often used in current work, occurs when a well-defined
environment is given that the self-driving car needs to learn and act
in it. This is equivalent to an uncertain Markov Decision Processes
(uMDP) problem in which the agent has a full observation of the
state and what it needs to know about the environment to take the
optimum action (Bellman, 1957). There are many known solutions and
algorithms for this type of problems (Mundhenk, Goldsmith, Lusena, &
Allender, 2000).

However, the actual class of problems self-driving cars face are
not equivalent to an uMDP. In a real application, information can
be missing and other factors that the vehicle has no access to may
interact with the decision, such as weather conditions affecting vision
or occluded objects. Under such conditions, the problem to be solved
is equivalent to an uncertain Partially Observable Markov Decision
Processes (WPOMDP) (Spaan, 2012). In this type of problems, the state
of the car in the environment and the probability of the transition
function are uncertain. Unlike a computational environment where the
transition function and probabilities can be modelled and tested, a
real world transition function is more difficult to compute and verify.
Exploring the different possibilities for optimization, practical chal-
lenges aside, makes this problem ExpTime-hard (Chatterjee, Doyen, &
Henzinger, 2010).

Additionally, a self-driving car is not the only agent in a real
world environment. Rather, it acts and interacts with other agents.
This increases the complexity of the problem further into an uncertain
Partially Observable Stochastic Game (uPOSG), one of the hardest
classes of computational problems to solve (Hordk & Bosansky, 2019).
The more unknown parameters and conditions, the more intractable
the problem becomes.

Another aspect is that learning is a never ending process (Parisi,
Kemker, Part, Kanan, & Wermter, 2019). Just like humans continuously
learn and accumulate knowledge, artificial agents need to continuously
learn (Smith & Slone, 2017), even in the case of self-driving cars, as
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it is very difficult to train for and anticipate every possible scenario
in an ever-changing environment. Some have suggested addressing
the problem with continuous learning (Rusu et al., 2016) or to build
upon previous skills in the form of transfer learning (Parisotto, Ba, &
Salakhutdinov, 2015). In this, the challenge of catastrophic forgetting
(where, in continuous learning, later information modifies the network
weights such that previously learned aspects are forgotten even though
they are still relevant) remains a general problem for neural systems
that need to cope with large changing environments (Kirkpatrick et al.,
2017).

We discuss how theories from cognitive systems can help in ad-
dressing these challenges in Section 5. First, however, we discuss the
relevant paradigms in that field.

4. Cognitive paradigms and theories

While it is essential to look at how current challenges in self-
driving car development are presently addressed, it is also relevant to
investigate the underlying theory of these approaches. This is important
insofar as new solutions are not always found by improving current
techniques but, sometimes, by re-evaluating the theories and paradigms
in which the work is carried out.

There are different ways to conceptualize the relationship between
implementation and theory. For example, Guest and Martin (2020)
proposed six different layers at which computational models can be
built in psychological science with data from psychological experiments
at the bottom and frameworks (outlining general assumptions of the
nature of all the studied phenomena) at the top. The point being that
“scientific inquiry can be understood as a function from theory to data
and back again, and this function must pass through several states to
gain explanatory force” (Guest & Martin, 2020, p.5). This multi-layered
approach is not limited to the psychological sciences and we adapt this
layered model in our discussion of self-driving cars. We focus on four
layers: (starting from the bottom) Data, Implementation, Theory, and
finally Paradigm (as shown in Fig. 3).

Although the interplay between cognitive paradigm and compu-
tational implementation is commonly discussed in cognitive science
and cognitive systems research (Vernon, 2014), it has received less
attention in recent work on self-driving cars. We suggest that awareness
of different paradigms/theories and their possible influence on the
implementation/data layer provides opportunities for the development
of self-driving cars. The first steps to realize these opportunities are
to describe the relevant cognitive paradigms and theories to model
artificial cognitive agents (Section 4.1), describe the relation between
cognitive paradigms and implementation technique (Section 4.2), and
to establish a mapping between these paradigms and the approaches
used in self-driving car development discussed previously in Section 3
(Section 4.3).

4.1. Cognitive paradigms

Vernon, Metta, and Sandini (2007) identify two main classes of cog-
nitive systems: cognitivist systems and emergent systems. Hybrid systems,
which include aspects associated with both of these classes are also
possible (and in fact the dominant category at present Kotseruba &
Tsotsos, 2020); one can therefore think of this as a continuous space
whose extremes are defined by certain properties that we elaborate on
here.

Cognitivism views cognition as symbolic inference based on a knowl-
edge base and a set of rules, and is based on symbolic information
processing. Physical world objects are mapped onto internal symbols
used by the agent to represent the information about the world, and
are processed based on these representations (Newell, Shaw, & Simon,
1958). The associations between symbols define rules used by the
agent to infer information and behaviour. Using this approach, the
agent is thought to be able to infer more knowledge about the world
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through logical deduction, allowing the agent to adopt the actions that
lead to the intended goal. The knowledge-based rules determine how
the agent behaves in certain situations. Another central assumption of
cognitivism is the separation of perception and action, the idea being
a one directional flow of information according to a sense-model-plan-
act sequence in which actions are the mere output of central planning
mechanisms (Hurley, 2001).

The emergent paradigm, meanwhile, emphasizes (Maturana & Varela,
1987) self-organization through which the system is continually re-
constituting itself in real-time to maintain its operational identity
through moderation of mutual system-environment interaction and co-
determination. In a wide sense of the term, it thus emphasizes the
interactive nature of agents and includes approaches inspired by situ-
ated and embodied cognition (Ziemke, 2003), as well as different forms
of enactivism. In brief, enactivism asserts that “cognition is a process
whereby the issues that are important for the continued existence of a
cognitive entity are brought out or enacted: co-determined by the entity
as it interacts with the environment in which it is embedded” (Vernon
et al., 2007, p.157) . It places a strong emphasis on the embodiment
of the agent since the shape and structure of the agent’s body affect its
perceptions and actions (Pfeifer & Bongard, 2006). Perception is thus
not merely an input, and action not merely an output; rather they are
fundamental aspects of the cognitive mechanisms (Clark, 1997).

Vernon (2014) considers five key elements for designing a system
at the emergent end of the scale; autonomy, emergence, experience,
sense-making, and embodiment. Autonomy relates to the ability of the
agent to act and interact in an environment without being controlled by
another agent (usually, an engineer). Emergence suggest that cognition
and behaviour is not merely the outcome of a central planner, but the
result of the dynamics of the situation in which the agent acts. Sense
making refers to the relationship between the knowledge that the agent
possesses and the interaction with the environment. It suggests that
the knowledge is shaped by the interaction and it is generated by the
system itself. Embodiment refers to the coupling between the agent
and the environment. Ziemke (2003) points out that robots may be
embodied in different senses of the term, that is, system designs or
designers may differ with respect to what kind of body is required for
cognition. To mention a few alternatives, some approaches may focus
on the interaction and adaptation of the system to its environment
(the structural coupling with the environment in the terminology of
Ziemke), while other emphasize having a physical body with sensors
and actuators affected by sensor noise and friction (the physical embod-
iment) or having organism-like bodies exhibiting similar sensorimotor
capabilities as natural cognitive agents (the organismoid embodiment),
or even focusing on the type of processes that constitute a living body
(the organismic embodiment) (Ziemke, 2003).

4.2. Multi-layer model: from cognitive paradigms to data

We now describe how the paradigm just discussed may influence
actual implementations of self-driving cars. As seen in Fig. 3, there
are four layers (cognitive paradigm, theory, implementation, and data)
and different instantiations at each layer, with cognitivist influenced
instantiation to the left (represented by the colour green) and emer-
gentist instantiations to the right (represented by the colour brown).
Here, we focus on describing the relations between the layers. In the
next section we address what determines the horizontal location of an
instantiation. At the top layer are the cognitive paradigms ranging from
cognitivism to emergent systems (Vernon, 2014). Computationalism,
one layer below, is a function of cognitivism, and can be implemented
with symbolic AI (yellow solid arrows), dependent on embedded a
priori knowledge. Connectionism and enactivism, however, are influ-
enced, by emergent approaches in differing ways leading to differences
at the implementation and data layers. Thus, the emergent paradigm,
influencing connectionism at the theory layer, can lead to neural net-
work implementations with larger control exerted by the designer

69

Cognitive Systems Research 76 (2022) 63-77

( Emergent

v

[Connectionism] [ Enactivis

Computationa.l}'

v
[ Deep Reinforcement
Learning

| v
SymbeS Neural Network
Al
1
1 :
. 4
Embedded a- ||
. Developer
priori B ecicd Self-collected

Knowledge )}

Fig. 3. From cognitive paradigms and theories to implementation and data, inspired
by the work of Guest and Martin (2020). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

in more restricted environments (red dashed arrows). The emergent
paradigm might also lead to other types of implementation by the
emergent paradigm’s focus on self-organization and autonomy (blue
dotted arrows). An example is coupling it with notions taken from
enactivist theories to the degree that deep reinforcement learning using
neural networks can accommodate these.

Different implementation techniques also require data to be in
compatible formats. For symbolic AI, knowledge and rules need to be
provided to the system. These are usually chosen by the developer
and they necessarily reflect the developer’s mindset or may be limited
to what data is available. Approaches such as reinforcement learning,
meanwhile, interact with the environment and collect the data as
experiences, and are in that sense, less dependent on explicit human
input. Nevertheless, we do acknowledge that there are today always
some selection bias from human designers.

4.3. Characterizing implementations based on their cognitive characteristics

The main point of this paper is to suggest that one side of Fig. 3,
i.e., the (right) emergent paradigm side of the model, is underex-
plored in self-driving car systems and could be explored to approach
some of the hard problems with self-driving cars. However, it may
not be obvious what makes one implementation emergentist or not.
Thus, to be able to systematically compare the different approaches
(i.e., symbolic AI, neural network as subsystem, neural networks as
end-to-end learning, and reinforcement learning, see Section 3 and
Table 4), we make use of the ten cognitive characteristics proposed
by Vernon et al. (2007) and Vernon (2014): computational operation,
representational framework, embodiment, perception, action, anticipation,
adaptation, motivation, autonomous, and social cognition. In the follow-
ing, we first introduce each characteristic and define what a cognitivist
and emergent implementation of each could consist of. In addition,
we introduce a mid-point between the two ends of the spectrum. For
visualization purposes, we map this on the same colour scheme used in
Fig. 3, where dark green represents the cognitivist side to dark brown
that represents the emergentist side (see Fig. 4). After analysing the
self-driving car systems in each paper (Section 3), we determined the
appropriate colour shade/paradigm for each characteristic. We then
constructed a table consisting of the different papers and the cognitive
characteristics, and finally applied the assigned colour to each cell. The
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Fig. 4. The spectrum from cognitivism (green) to emergent systems (brown) for each of the ten cognitive characteristics. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 5

Comparison of approaches for self-driving cars based on ten cognitive characteristics. Dark green cells indicates a cognitivist focus and dark brown cells indicates an emergent
systems focus for each of the characteristics and approaches. Note that, for the present purposes, we do not distinguish between work that addresses the whole problem of self-driving
and work that addresses specific aspects of the intelligent subsystem. The point of this table is merely to illustrate the currently dominant approaches. (For interpretation of the
references to colour in this table legend, the reader is referred to the web version of this article.).

Comparison factors Symbolic Al Neural network RL
Oka Urmson  Monte- Bacha Chen Al- Kim Pomer- Bojarski ~ Chen Kendall Zhu Saleh
et al. et al. merlo et al. et al. Qizwini and leau et al. and et al. et al. et al.
(1999) (2008) et al. (2008) (2015) et al. Canny (1989) (2016) Huang (2019) (2020) (2019)
(2008) (2017) (2017) (2017)

Computational operation
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Action
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resulting table thus visualizes to what extent cognitivism or emergent paradigm puts little focus on embodiment, which would mean that any

characteristics are present in the different approaches and specific architecture could simply be transferred onto a different platform with
implementations (see Table 5). no consequences, while the emergent paradigm suggests behaviour
will be highly co-determined by the body that the architecture is
4.3.1. Cognitive characteristics implemented in. However, as previously discussed there are different
Here we briefly describe how cognitivism and emergentism differ levels of embodiment, which highlight different aspects of the body of
on ten different characteristics as defined by Vernon et al. (2007) and the system in question.
Vernon (2014). The different characteristics are summarized in Fig. 4. Perception from a cognitivist perspective is a direct mapping be-
Computational operation refers to the nature of the computations tween what the agent senses from the outer world and the symbolic
performed by the system. On the cognitivist end, they are the rule- representation defined for the agent. Dorffner (1999) describes this
based syntactic transformation of symbol tokens, while on the emergent view as based on an objectivist epistemology:
end, they are self-organized patterns of computations in a distributed
network. The underlying view is an objectively existent outside world which
Representation framework refers to the relationship between the must be mapped onto a faithful image in the cognitive agent in order
agent’s knowledge of the external world and the agent’s internal world. for the latter to act intelligently. (...) For instance, to say that a
On the cognitivist end, the designer feeds the system with the required symbol ‘CHAIR’ represents the category of chairs, one must not only
knowledge about the world using symbolic annotation (e.g. Newell specify the symbol, but must also assume that a category chair exists
(1990) and see perception below). On the other end, a system can self- in the world, independently from whether the observer or the agent
organize based on its interaction with the environment in a way that to be modelled interacts with the world (Dorffner, 1999, p. 24).
may not require explicit representations; for example if a sub-symbolic
end-to-end neural network is used. This implies that the perceptions of the world are formed independently
Embodiment refers to how the physical body - e.g. the properties of the individual subject, and only establish a reference to something
of the actual platform used - affects cognitive mechanisms, including in the external world (cf. also Newell, 1990 Newell’s law of represen-
how the agent interacts with and senses the world. The cognitivist tation). A consequence of this is that perceptions are thought to be
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independent of action, forming what has been called a sandwich model
of cognition (Hurley, 2001). Emergent paradigm breaks the separation
of action and perception and focuses on how the agent’s actions and
interaction with the world create the inner world of the agent (Clark,
1997). As pointed out above, the particular embodiment of the agent
may thus also influence the perceptions.

Action refers to how the agent changes the outer environment.
In the cognitivist case, actions are only the end product of cognition
computed according to some sequential procedures that take the agent
from the current state to the goal state. The agent computes the
changes between states based on the rules of symbols it holds that
takes it to the defined goal. In emergent paradigm, often, the starting
point of cognitive development is action where action may also serve
cognitive purposes (cf. e.g. Clark (1997)). Emergent paradigm also
emphasizes the continuous interaction with the environment based on
representations tied to action. Thus, an important distinction, from
the emergent paradigm perspective, is between the reactive nature of
the controller/control system and the (externally observable) reactive
behaviour of the agent (e.g. Nolfi and Floreano (2000)). The distinction
can be seen in Chapman and Agre’s (1989) two meanings of planning.
First, “to plan” can have the general meaning of reasoning about action
without the mechanism. For example, a slime mold’s behaviour might
be described as goal-directed even though the slime mold has no encod-
ing or representation of its goal (cf. Anderson and Rosenberg (2008),
Von Uexkiill (1992)). Second, planning can be used in a more restricted
sense referring to the process of constructing plans (or programs) to be
executed in a step-wise manner (Chapman & Agre, 1989). Planning in
the second more restricted sense is independent of the general meaning
of planning because there could be other means than the construction of
step-wise plans to achieve planning in the first general sense. Emergent
paradigm emphasizes that planning in the first sense may often be the
result of simpler mechanisms but as seen in the next section have also
envisaged new types of mechanisms for planning in the restricted sense.

Anticipation refers to how the agent predicts the next state. A
cognitivist view of anticipation sees the system as making a plan to
reach a goal, by having a predefined state space where the possible
states are logically connected and predictable. The agent can link the
sequence of next states by predicting the change in symbol represen-
tations. Thus, in this sense anticipation is planning (in the restricted
sense, as previously defined). An emergent view, often sees anticipation
as an intrinsic aspect of brains and cognition (Bar, 2009). The focus
of emergent paradigm has often been on continuous online interaction
with the environment, but it is clear that cognition is also geared for
mental time travel and thinking about future states not given by the
current environmental situation, so called off-line cognition (cf. Clark
and Grush (1999)). From an emergent perspective off-line cognition
may be seen as based on the off-line reactivation of sensorimotor
processes rather than a separate system (Grush, 2004; Hesslow, 2002,
2012; Moller, 1999).

Adaptation refers to how the agent develops or learns. One the
one extreme, cognitivist approaches view learning as loading a priori
knowledge for the agent and then build upon the knowledge structure.
On the other, emergent approaches treat learning as changing the
internal state during the process. In emergent systems, the agent re-
organizes its topology or structure as a response to the change in the
environment every time the agent gets a feedback by interaction to
adapt to the change.

Motivation is what drives the agent to take an action, including
influencing attention and adaptation. A cognitivist view of motivation
is based on a given criteria that associates preferred future states with
specific actions. In this case, the agent takes an action based on what
the current state is and what the desired state should be. An emergent
interpretation would be to fulfil certain values. The agent does not have
a direct mapping between the current state and the desired state, but
have a value that it needs to maintain where there could be several
ways of satisfying this value.
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Autonomy refers to the ability to freely interact in an unknown
environment, which varies from, in the cognitivist case, being less
relevant and restricted to a particular environment to, in the case of
emergent systems, being free to interact and adapt in unencountered
environments.

Social cognition is the extent to which the agent is perceived as
part of the environment, where it interacts with the surrounding and
other agents. In order to interact or collaborate with other agents,
the agent needs to act in support of the goals of the other agents
or the shared goal. This involves among other things reading faces,
recognizing emotional experiences and detecting eye gaze. The agent’s
ability to have an effective social interaction with other agents depends
on its ability to interpret information about other agents’ activities and
intentions. Reading intentions can be categorized into low-level inten-
tion associated to movement and high level intention associated with
actions and motives (Vernon, 2014). From a cognitivist perspective
other agents are mere inputs and have lesser impact on the individual
behaviour, whereas on the emergent end of the spectrum social agents
together create a shared understanding of the situation and the other
social agents forms a new situation with distinct dynamics that could
not be observed with a single agent.

It should be noted here, that the purpose of contrasting the
paradigms is to establish differences between paradigms within cog-
nitive systems research and how they might influence the design of
self-driving cars. Note, in this paper we are not arguing for a particular
approach, instead we aim to highlight how emergent paradigms may
be underexplored in the development of self-driving car systems. We
also provide some suggestion regarding which the emergent system
paradigm might be most useful.

5. Opportunities for self-driving cars and cognitive systems re-
search collaboration

To summarize, so far we have identified four common approaches
the design of self-driving cars (symbolic Al, neural network as subsys-
tem, neural network as end-to-end learning, and reinforcement learn-
ing), described how the cognitivist paradigm differs from the emergent
systems paradigm, and described a model for how the paradigms might
influence the type of techniques and data used in the design of the
self-driving car system. Table 5 reflects and visualizes to what extent
the 13 papers (discussed earlier in Section 3) contain aspects of the
systems akin to cognitivist thinking or emergentist thinking. For the
social cognition category, if the agent proposed in the paper runs
in an environment where no other agents are included we mark the
characteristic with Not Applicable (NA) in the table. We have also
collapsed the neural network as subsystem and neural network as end-
to-end learning approaches to the heading Neural Network to match
the three implementation classes in Fig. 3.

It is evident from our analysis (and indicative of a visual inspection
of the table) that, overall, cognitivist (dark green) and connectionist
(lighter green) perspectives dominate current work as only 8 out of
130 cells can be said to be right of centre of the spectrum, i.e., in-
cluding characteristics that are representative for the emergent system
paradigm. As also illustrated in the layered model (Fig. 3), the papers
representing a symbolic approach are cognitivist on most character-
istics, the deep learning approaches could be seen as connectionist
including both cognitivist and emergent system aspects, and finally the
reinforcement learning paradigm includes more aspects of the emergent
system paradigm than the two others. The reinforcement learning
approach still includes many characteristics that are more toward the
cognitivist side of the spectrum.

In more detail, the computational operation characteristic shows
more diversity and seven of the papers exhibit some aspects repre-
sentative of the emergent system paradigm. Five of the papers do
not include other social agents. The absence of other social agents
could be seen as indicative of a cognitivist approach per se, as the
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emergent systems paradigm emphasizes the interplay with the envi-
ronment including other social agents for cognition. However, it is
difficult to determine if the absence of social agents was mainly a
methodological and pragmatic choice, rather than being a consequence
of the cognitivist paradigm. The lack of emergent system characteristics
in the approaches and particular system implementations suggests that
there are still opportunities for exploring different paradigms, not the
least the right side of our model visualized in Fig. 3 where the emergent
paradigm and enactivist theory resides. We explore some of these
opportunities in this section.

5.1. Vision-based perception system and rare scenarios

It is quite evident in the field that vision has been of central
importance for the development of self-driving cars. Perception in
current work tends to be largely cognitivist with hybrid approaches
(similar green shades in Perception in Table 5), mainly using neural
networks for object detection and recognition. Visual sensory data is
considered one of the key elements of the perception system for self-
driving cars and the main channel of observing the outer world is
through 2D cameras, often supported with LIDAR. With the availability
of different annotated datasets such as road object detection (Geiger
et al., 2013), bird eye views of road' and pedestrians® as well as the
rapid development of ML and CNN for image processing (Al-Qizwini
et al., 2017; Chen et al., 2015), self-driving cars have shown high
performance in detecting and categorizing the surrounding objects. De-
spite this massive development in computer vision for object detection,
difficulties and failures in rare situations are still common (Grigorescu
et al., 2020).

One of the challenges for perception is the need for training on
large amounts of data to learn how to handle the input data, which
has significant consequences for self-driving cars. The nature of the
sensory data to be collected is more than just dispersed images of
objects but a composition of a real world scenes and scenarios. For a
level five self-driving car, the number of different possible scenarios
is huge and many situations are unique or so rare they are difficult to
identify (Grigorescu et al., 2020). These rare cases are not only difficult
to collect but also difficult to train on. When rare cases are not well
represented in the data-set, the learning mechanisms may not be able
to identify them as important, for example, sorting them as noise. In the
actual traffic situations, rare cases, such as fatal accidents, are usually
the most important ones and require careful handling because they may
cost lives (Da Lio, Dond, Papini, Biral, & Svensson, 2020).

Several approaches have been proposed to solve the less-present-
data problem in general (Feldman, 2020) or for specific applications
(e.g. recommender systems Park & Tuzhilin, 2008), nevertheless the
field is still understudied (Johnson & Khoshgoftaar, 2019). Current
approaches for solving this challenge are either to work on the sample
data level and introducing the model to more of the rare samples, or to
work on the decision making level by giving additional weight or value
to less represented samples.

Taking an emergent perspective may suggest new ways to concep-
tualize and address perception in autonomous system, for example,
by emphasizing the interactive perspective and that perception is for
action (Hurley, 2001). In embodied Al experiments with simple robots,
this has been demonstrated to be a useful perspective and has been
described as a form of sensori-motor coordination, that is, behaviours
where an agent structures its sensory input through interaction with
its environment (Hallam, Dario, Jean-Arcady, & Gillian, 2002; Scheier,
Pfeifer, & Kunyioshi, 1998). For example, Scheier et al. (1998) showed
that a robot that learned to circle objects could differentiate between

1 http://cvgl.stanford.edu/projects/uav_data/.
2 http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/
daimler_pedestrian_benchmark_d.html.
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large and small objects, despite the fact that its sensory system could
not do such a categorization by itself. In addition to the structuring
of sensory input, the active structuring of its own environments is
a pervasive characteristic of humans and other animals emphasized
by embodied and enactive theories of cognition. Ziemke, Bergfeldt,
Buason, Susi, and Svensson (2004) demonstrated with a simple simu-
lated robot experiment that a task requiring memory could be solved
by a reactive (memory-lacking) agent evolving a strategy of placing
road-signs in its environment that perturbed its behaviour so that it
could reach the goal position. While not immediately transferable to
the design of self-driving car systems, they indicate different ways in
which taking an emergent perspective have given rise to new design
solutions.

Another solution inspired by embodied theories (Hesslow, 2002;
Svensson, Thill, & Ziemke, 2013) directly applied to research on self-
driving cars suggests that it is possible to take the on-line driving
experiences off-line (while the car is not under operation) and enable
the car to “dream” about unseen and uncommon situations derived
from its online experiences and data that has been collected from the
real driving (Da Lio et al.,, 2020; Da Lio et al., 2017; Plebe, Papini,
Dona, & Da Lio, 2019).

5.2. Understanding human behaviours and intentions

One of the takeaway lessons from the DARPA 2007 challenge win-
ner (Urmson et al., 2008) is that driving is a social activity that involves
understanding other agents’ behaviours and intentions. Although not
trivial, several driving tasks such as lane keeping, overtaking, and
adapting to other cars on highways have been shown to be handled
by self-driving cars at least to some degree. However, once the traf-
fic situation requires a meaningful interaction with other vehicles or
pedestrians, which at least in the case of a human driver would require
a need to identify others and communicate one’s own intentions, the
abilities of handling the situation drops significantly. In these more
complex situations, where the traffic rules and guidance of road mark-
ings and the like is not enough, factors such as culture, eye contact,
body language, feelings and empathy play a large role.

A self-driving car would therefore be more like a social agent that in-
teracts with other social agents. Although there are several approaches
that try to solve the problem of interacting with other vehicles and
vulnerable road users as an intention prediction problem, the domi-
nant approach in Table 5 is toward the cognitivist perspective: social
cognition is reduced to predicting the trajectory of the other agent.
The interactive aspect, namely that the participating agents both act to
mutually create an understanding of the situation is still less explored
in these approaches. For example, a pedestrian who approaches or is
waiting at a crossing area may be perceived as intending to cross.
However, if the pedestrian does not actually have the intention to cross
this may lead to the autonomous car (designed with single dynamical
model) to unnecessarily slow down or stop, potentially creating a traffic
disturbance. To avoid this, an autonomous driving system needs to be
able to appropriately interpret the pedestrian intention and behaviour,
not just the kinematics of the movement. Indeed, research on pedestrian
crossing behaviour suggests that it is determined by a mix of pedestrian
factors (e.g. social norms, age, walking speed) and environmental
factors (e.g. vehicle speed, lighting, traffic flow) (Rasouli & Tsotsos,
2020). While efforts on building more complex sensor systems (cf.
e.g. Konrad, Shan, Masson, Worrall, and Nebot (2018)) might advance
the perception system, pedestrians sometimes rely on eye contact with
the driver in which case autonomous vehicles also need to have some
way of communicating its intentions (Rasouli & Tsotsos, 2020).

Social interaction is thus better characterized as a dance than as a
transfer of information (Lindblom, 2015). There already are enactivist
models that demonstrate the core mechanisms in this regard, for exam-
ple when it comes to coordination between agents (Di Paolo, Rohde, &
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De Jaegher, 2010; Froese & Di Paolo, 2008). In autonomous vehicle re-
search, efforts to address this have, for example, used Bayesian models
to account for different possible intentions. Hashimoto, Gu, Hsu, and
Kamijo (2015), for example, proposed a Dynamic Bayesian Network
with Bayesian filtering framework for predicting the pedestrian inten-
tion at the crosswalk area. Quintero, Parra, Lorenzo, Fernandez-Llorca,
and Sotelo (2017), on the other hand, used a Hidden Markov Model
for intention recognition along with the body language. In their study,
intention recognition is not restricted to finding the maximum simi-
larity of the current observation with the pedestrian motion sequences;
rather, it also evaluates how the intention of the pedestrian has evolved.
Understanding the pedestrian’s intention includes predicting the next
behaviour of the pedestrian. Li et al. (2019) conducted a comprehensive
study of the approaches for predicting pedestrian trajectories especially
for long sequences.

Modelling self-driving cars to smoothly interact with other human
agents therefore requires both technological development and insights
from cognitive systems research, simply because this is fundamentally
an interaction between two cognitive agents. Similar to findings in
social cognition research (De Jaegher, Di Paolo, & Gallagher, 2010),
and in line with the aforementioned dance metaphor, all aspects of
this interaction (including the interaction dynamics themselves) are
relevant and need to complement the technological development such
as sequence recognition techniques as presented by Hashimoto et al.
(2015).

5.3. Driving styles, motivations, and embodiment

Another social aspect is understanding the motivation behind the
decision-making of other drivers. Motivation in driving can be reflected
in the driving style. Different drivers have different driving styles (Sag-
berg, Selpi, Bianchi Piccinini, & Engstrom, 2015). The driver’s per-
sonality trait and emotions (Po6 & Ledesma, 2013), as well as age
and experience (Miller & Taubman-Ben-Ari, 2010) plays a big role in
defining the driving style.

For self-driving cars, understanding motivation affects both the
design of the driving and understanding the motivation of the other
road participants. For the development of self-driving cars, as shown
in Motivation in Table 5, most of the literature undervalues the factor
of motivation in the architectural design of the agent (represented as
the green shade which is either predefined or within limits). Some
studies of self-driving cars do point to the idea of having autonomous
agents with different driving styles and adapt to the preferences of the
current users of the self-driving car (e.g. Kraus, Althoff, Hei3ing, and
Buss (2009), Kuderer, Gulati, and Burgard (2015)).

However, motivation, as viewed from an emergent perspective, does
not involve a direct mapping that associates preferred future states with
specific actions, but is rather something that comes from within. Bor-
rowing an example from the psychologist von Hofsten (2004) highlights
this point:

For example, before infants master reaching, they spend hours and
hours trying to get the hand to an object in spite of the fact that
they will fail, at least to begin with. For the same reason, children
abandon established patterns of behaviour in favour of new ones.
For instance, infants often try to walk at an age when they can
locomote much more efficiently by crawling. In these examples
there is no external reward. It is as if the infants knew that sometime
in the future they would be much better off if they could master the
new activities.

Thus, the notion of motivation is not necessarily tied to external
rewards or a mapping to an explicit future state, but it is inherent in the
design of the agent, and this has implications for the designers of such
systems because it clarifies where the decision to prefer one driving
style over another in a specific context takes place.
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It is worth noting here that the design of the agent, in principle,
extends to the specific nature of the body that it has. As previously men-
tioned, an emergent view on embodiment entails that the embodiment
of an agent cannot be separated from the control system of that agent.
Some researchers in the field of situated and adaptive/evolutionary
robotics have taken this to mean that it is intrinsically difficult or
impossible for a human designer to design the control system from
the robots point of view, but that the robot must itself generate its
own representations of the world and let the control system adapt
to the embodiment of the agent (Pfeifer & Bongard, 2006). Thus, to
some extent what is good data and training scenarios for a self-driving
car may be different from that of a human learning to drive, and
thereby affect what the agent considers to be reasonable driving styles.
Reinforcement learning approaches do, to some extent, address this
aspect as the data is self-collected by the agent from the environment
along with the corresponding reward, as opposed to supervised learning
approaches (Barto & Dietterich, 2004) with the data collection mainly
conducted and labelled based on human involvement. However, taking
inspiration from emergent paradigms in adaptive/evolutionary robotics
would suggest finding design methods that take the human even more
out of the loop.

5.4. User experience in self-driving cars

Although our main focus is on the development of the intelligent
system of self-driving cars (and the relevance of cognitive systems
research in this context), it is worth pointing out that research in the
cognitive domain is also relevant for another aspects of autonomous
vehicles: the human pilot, and thus the user experience aspects of self-
driving cars. This includes, for example, the interaction between the
system and the user in partial autonomy driving (e.g. SAE levels three
and four), in which a human driver remains involved in the driving
task, as well as the user experience of a fully autonomous driving
system (SAE level five), in which no human driver is involved in the
driving process.

Trust and safety are key elements for critical systems as autonomous
vehicles. That is, the users trust that the driving agent is intelligent
enough to safely drive in complex and unpredictable traffic environ-
ments. A system that is perceived as not trustworthiness may not be
used in the proper way or not at all (Raats, Fors, & Pink, 2020). While
great effort is invested in developing autonomous vehicles with high
capabilities, the field of autonomous vehicles needs also to address
the aspects of user experience, in particular the user perception of a
trustworthy system.

Psychological studies on autonomous driving user experience show
that the appearance of the driving system can, for example, influence
the user’s perception of the trustworthiness of the system. A study
by Lee, Kim, Lee, and Shin (2015) showed that a human-like appear-
ance of the driving system increases the trustworthiness for how the
user perceives the driving agent’s intelligence.

Further, the importance of including end users (and an understand-
ing of how they perceive Al systems) into the algorithmic development
has been highlighted recently (Shin, 2021a). Without such efforts, the
autonomous vehicle can be in danger of being perceived as a “black
box” even though the importance of aspects such as transparency and
explainability in this context are well understood (Shin, 2021b).

Until full automation is reached, the human driver will need to
interact with the driving system. For example, when the autonomous
system is unable to handle a driving situation, the system needs to shift
control from the intelligent system to the human driver. This opens the
opportunity for the field of self-driving cars user experience to study
the process of handling the driving responsibility exchange from and to
the intelligent driving system from the interactive perspective (Walch,
Lange, Baumann, & Weber, 2015) as well as the legal and ethical
considerations (McCall, McGee, Meschtscherjakov, Louveton, & Engel,
2016).
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Cognitive
paradigm

Fig. 5. From data and hypothesis to cognitive paradigms and theories.

In addition, the driver assistance system needs to predict the driver’s
intention for smooth interaction. An example of level two SAE is a
system that predicts the driver intention to change lane and warns the
driver for another car in the blind spot. If the assistance system falsely
predicted that the driver intends to change lane while not intended, the
system would give a false alarm that may be irritating for the driver
if frequently repeated and the driver may then turn off the assistance
system (Wen, Zhang, Wang, & Han, 2015).

5.5. The relevance of self-driving cars in cognitive systems research

So far, we have discussed how the development of self-driving car
systems can benefit from inspiration from work in cognitive systems,
in particular within emergent paradigms. However, it is also important
to highlight the converse: cognitive systems research can benefit from
work on self-driving cars.

For example, in cognitive systems research, agents are often studied
in simplified environments, either in simulation, or, if a robotic agent
is used, in a constrained experimental setting. Self-driving cars, by
contrast, necessarily have to deal with a rich environment with various
intentional interactions. From a cognitive systems perspective, a self-
driving car is thus an agent that deals with a rich environment, but
retains simplicity in terms of control since they are characterized by
two degrees of freedom (longitudinal and lateral control). Most, if not
all, work in cognitive systems research that has made use of wheeled
robots (Nolfi & Tani, 1999; Scheier et al., 1998; Tani & Nolfi, 1999;
Ziemke et al., 2004) to model cognitive mechanisms could be further
studied in autonomous vehicles. As is evident throughout this paper,
these mechanisms are all relevant for autonomous vehicles, and the
degree to which they can be successfully implemented can lead to
new theories in cognitive systems via a bottom-up path in Fig. 5 (see
also Guest and Martin (2020)).

6. Discussion and future work

Self-driving cars are interesting for both robotics and AI as well as
cognitive systems research because they are autonomous systems that
act and interact with other autonomous agents in real life situations.
They need to solve the full range of tasks that other cognitive systems
need to solve in the real world and should therefore also be understood
as a cognitive system in their own right, not the least because it opens
the potential for new collaborations between the traditional Al domain
and cognitive systems research.

While significant work has been done in the field of self-driving
cars, the largest focus has been on improving the hardware components
for sensors, such as cameras and LIDARs, or software algorithms for
localization, object detection or trajectory planning (Pendleton et al.,
2017). Methods such as dynamical modelling are suitable for determin-
istic problems but they show shortcomings in more versatile application
like self-driving cars (Hashimoto et al., 2015). We argue that the
development of self-driving cars requires more than the technological
development of algorithms. This includes several aspects.
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The intelligent driving system, responsible for decision making,
needs to handle various of situations. While the designers and develop-
ers may be able to model in advance some of these situations or provide
data for them, the system needs to handle rare situations that are less
encountered (Da Lio et al., 2020; Da Lio et al., 2017). Those are usually
the most dangerous and important ones. Current techniques of machine
learning such as deep learning lack the ability to cover this need. Such
situations require the system to act with cognitive abilities such as
autonomy and adaptability. In cognitive systems this is largely studied
as an emergent system in which the system focuses on the relation
between the agent and the environment. Exploring emergent systems
for self-driving cars opens opportunities for various research directions
regarding how to build an intelligent driving system that learns and
adapts in real world situations. Learning from dreaming is an example
of the innovations for cognitive inspired techniques for self-driving
cars. This research direction studies how humans learn by dreaming of
un-encountered experiences to improve the performance in real world
situations. We intentionally left free space in Fig. 3 to indicate that
further theories may still emerge, for example by formalizing enactivist
theories further. Accordingly, additional implementation approaches
may come forth from these theories that demonstrate enactive systems.
The space in the data layer suggests the ability to have new oppor-
tunities in the knowledge/data used for learning and interaction with
the environment. Although the current self-collected data represent
what enactivists claim about self-constructed models, it is still bounded
by the developers’ modelling. We suggest that additional theories and
implementation techniques may require a shift in how the data is per-
ceived and represented. Again, this highlights the symbiotic potential
between autonomous vehicle development on one hand and cognitive
systems research on the other.

Another large research area that requires cognitive systems studies
in self-driving cars is the social interaction. Self-driving cars are social
agents that interact with other road users that could be vehicles or
pedestrians. The interaction with other road users requires a highly
developed understanding of their intentions and needs. This involves
body language categorization and understanding to predict the inten-
tion of the different road users in the scene and how to act accordingly.
This is one of the difficult aspects of self-driving cars because the same
observable may originate from different intentions. For example, a
pedestrian standing in a crosswalk area may have the intention to cross
or just to wait. Assuming that every pedestrian presented in the crossing
area has the intention to cross may lead into traffic disturbance, while
misunderstanding the intention of crossing may cost a human life.
Therefore, wide study of human interaction is required for developing
social cognition for self-driving cars.

While many techniques have shown successful outcomes for the
different aspects of self-driving cars, the narrow focus on techniques
may not lead to the desired progression. For example, prediction is
a rising topic in modelling other agent’s behaviours, such as pre-
dicting trajectories or intentions. Predictions that are only based on
data analysis and categorization may be misleading without taking
human cognition into account (Quintero et al., 2017). Prediction needs
to be considered from a cognitive system point of view along with
considering the technical aspects. For example, taking into account the
emergent system characteristic of perception being for action, suggests
prediction may not be seen as only a trajectory but also for how it
is integrated and related to the control of the car. Another example
is using synthetic data generation for training self-driving cars on less
encountered experiences. There are techniques for generating synthetic
data such as Generative Adversarial Networks (Goodfellow et al., 2014)
that learn to generate new data by combining features from the original
dataset. Initial work has been done to train driving agents with this
type of synthetically generated data (Ha & Schmidhuber, 2018; Santana
& Hotz, 2016). However, real world applications like self-driving cars
need cognitively inspired techniques for generating the synthetic data
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to avoid generating dangerous unrealistic scenarios. This opens the op-
portunities for additional research in how to use current techniques for
cognitive systems. An example is how to generate meaningful synthetic
experiences for training purposes with the least human crafting of these
situations.

We claim that the collaboration of self-driving cars development
and cognitive systems research does not only benefit the former but
also the latter. Cognitive system research lacks real world applications
for cognitive studies beyond lab bounded robotic systems. The field
of self-driving cars automatically and naturally extends the typical
embodied AI experiment to a realistic setting with high complexity
where the role of autonomy, emergence, experience, sense-making,
and embodiment cf. Vernon (2014) can be investigated in new ways.
For example, it introduces the cognitive system to situations where
aspects of human trust and acceptance are part of the context, to
interactions with other social agents in the form of self-driving car, hu-
man driver, and vulnerable road user interactions, and to interactions
with infrastructure (e.g. vehicle-to-vehicle and vehicle-to-X communi-
cation Dey, Rayamajhi, Chowdhury, Bhavsar, & Martin, 2016; Harding
et al., 2014).

7. Summary and conclusion

In this paper, we first presented the field of self-driving cars from an
Al and machine learning point of view. We then introduced ten cogni-
tive characteristics to describe to what degree self-driving car systems
have properties that are either compatible with or influenced by the
cognitivist paradigm or the emergentist paradigm. By applying the ten
characteristics on thirteen papers describing real world implementa-
tions of self-driving car systems, we showed that on most characteristics
there is a prevalence of cognitivism. We then tried to show that there is
an unknown but possible opportunity to exploit the emergentist side of
the characteristics in self-driving car system development by pointing
to some specific examples of how embodied Al experiments previously
have exploited principles from the emergent paradigm to design new
solutions. Although we have primarily highlighted emergent paradigms
as a likely candidate, many of the ideas in that field, particularly around
enactivism, remain at a theoretical level and, as such, how to transform
the theory to the implementation layers below is an open question.
Self-driving car systems do offer an opportunity to demonstrate these
ideas in practice by providing an ideal agent, situated in the real world,
that can demonstrate different implementations. As just pointed out in
the previous section there is also a bi-directional flow of information
between building self-driving cars and building a better understanding
of natural cognitive systems. To conclude, we suggest that advances in
both domains can be made if this potential is acted upon.
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