
DeepTelos and DMLA – A Contribution to the MULTI 2022
Collaborative Comparison Challenge

Manfred Jeusfeld
manfred.jeusfeld@his.se
School of Informatics (IIT),

University of Skövde
Skövde, Sweden

Gergely Mezei
gmezei@aut.bme.hu

Dep. of Aut. and Applied Informatics,
Budapest Uni. of Tech. and Economics

Budapest, Hungary

Sándor Bácsi
bacsi.sandor@aut.bme.hu

Dep. of Aut. and Applied Informatics,
Budapest Uni. of Tech. and Economics

Budapest, Hungary

ABSTRACT
The MULTI 2022 Collaborative Comparison Challenge was cre-
ated to promote in-depth discussion between multi-level modeling
approaches. This paper presents a comparison of DeepTelos- and
DMLA-based solutions in response to the challenge.We first present
each approach and solution separately, and then list the similarities
and differences between the two solutions, discussing their relative
strengths and weaknesses.

CCS CONCEPTS
• Computing methodologies→Model development and anal-
ysis;Modeling methodologies; • Software and its engineering
→ Domain specific languages.

KEYWORDS
multi-level modeling, collaborative challenge, DeepTelos, DMLA

ACM Reference Format:
Manfred Jeusfeld, Gergely Mezei, and Sándor Bácsi. 2022. DeepTelos and
DMLA – A Contribution to the MULTI 2022 Collaborative Comparison
Challenge. In ACM/IEEE 25th International Conference on Model Driven
Engineering Languages and Systems (MODELS ’22 Companion), October 23–
28, 2022, Montreal, QC, Canada. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3550356.3561602

1 INTRODUCTION
Multi-level modeling supports an arbitrary number of modeling lev-
els to reduce accidental complexity not stemming from the target do-
main, but from the limitations of the modeling environments [3, 17].
The number and variety of multi-level modeling approaches has
significantly increased since the original introduction of the con-
cept of multi-level modeling. The multi-level modeling community
has created a number of challenges [20, 21] to compare the existing
approaches. The MULTI 2021/2022 Collaborative Comparison Chal-
lenge [22] calls for the comparison of two solutions implemented
by competing multi-level modeling approaches.

This paper is a response to this call by researchers responsi-
ble for the technology underlying the DeepTelos [14] and DMLA

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9467-3/22/10.
https://doi.org/10.1145/3550356.3561602

(Dynamic Multi-Layer Algebra) [24, 25] multi-level modeling ap-
proaches/tools. It is worth mentioning that DMLA already had a
solution [8] for the same challenge in 2021, however, that solution
compared DMLA to a significantly different multi-level approach
(Melanee [1]) and a major version change has taken place in DMLA
resulting in a slightly different solution. While DMLA and Melanee
are having a large number of differences, DeepTelos is much closer
to DMLA as the discussion at the end of this paper will show.

The structure of the paper is as follows. Section 2 provides brief
characterizations of DeepTelos and DMLA, section 3 presents re-
spective solutions to the domain challenge using a table format to
document how the requirements were addressed by each solution,
and section 4 then follows with an analysis of the key commonali-
ties and differences between the approaches, including a discussion
of the resulting pros and cons of each approach. Finally, Section 5
concludes the paper1.

2 BACKGROUND AND RELATEDWORK
In this section, we characterize the two multi-level modeling ap-
proaches we used to model our solutions.

2.1 DeepTelos by ConceptBase
DeepTelos [14] is a straightforward extension of Telos [16], which
was originally developed in the mid 80-ties for requirements mod-
eling [23], but later turned out to other applications areas such as
metamodeling [16]. Telos as implemented by ConceptBase [12] is de-
fined by around 30 axioms on-top of the base predicate 𝑃 (𝑖𝑑, 𝑥, 𝑛,𝑦),
whose facts are called propositions. One can think of it as RDF
triples with an additional fourth component for the identifier. The
30 first-order axioms define instantiation, specialization and attri-
bution/associations. ConceptBase realizes the axioms by deductive
rules and constraints. The most important axiom on instantiation
in Telos is about attributes/associations: an instance of a class can
instantiate the attributes/associations defined at the class. It must
however obey the constraints imposed by the class attribute (asso-
ciation, in particular, the target of the attribute/association at the
instance object must be an instance of the target of the attribute/as-
sociation at the class object. Specializations are governed by a
number of axioms as well. Notably, an instance of a subclass is also
an instance of any superclass of the subclass. Hence, attributes/asso-
ciations/constraints defined at a superclass also apply to instances
of its subclasses. Attributes/associations can exist between objects
at any abstraction level. For example, a highly abstract class Entity-
Type may have an attribute creator with concrete value PeterChen.
1All mentions of company or product names are purely for illustrative purposes and
does not make any claim about the real company or the real products.

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0002-9421-8566
https://orcid.org/0000-0001-9464-7128
https://orcid.org/0000-0002-4814-6979
https://doi.org/10.1145/3550356.3561602
https://doi.org/10.1145/3550356.3561602
https://doi.org/10.1145/3550356.3561602
https://creativecommons.org/licenses/by/4.0/


MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Manfred Jeusfeld, Gergely Mezei, and Sándor Bácsi

DeepTelos is then defined by six deductive rules and constraints.
Essentially, it adds a new predicate 𝐼𝑁 (𝑚,𝑐), stating that𝑚 is the
most-general instance of 𝑐 . Any instance of 𝑐 is then a subclass of
𝑚, and vice versa (any subclass of 𝑚 is a an instance of 𝑐). This
construct is closely related to the powertype patterns, which is also
used in other multi-level modeling approaches such as MLT [10].
By default, all attributes and associations in Telos are multi-valued,
i.e. can be instantiated several times for the same object. This can be
constrained by the so-called attribute categories single (multiplicity
0..1) and necessary (multiplicity 1..*). More multiplicities like 3..6
can be supported by appropriate constraints in ConceptBase. The
default multiplicity for attributes and associations is 0..*.

Listing 1: DeepTelos definition of Enumeration

Enumeration in Class with
attribute member: Proposition
rule rmember: $ forall x/Proposition EN/Enumeration

(EN member x) ==> (x in EN) $
end

DeepTelos is level-blind. Every explicit information is a fact
(proposition), which are related to each other by explicit or derived
instantiations, attributes/associations, and specializations. DeepTe-
los like Telos makes no difference between attributes and associa-
tions. Attributes are represented as links between an object and a
value, which itself is also represented as an object (=proposition).
The current version of DeepTelos adds the construct of enumera-
tions, which groups a set of instances to a named class as shown
in Listing 1. The predicate (x in c) denotes that the object 𝑥 is an
instance of the object 𝑐 , which is also called a class of 𝑥 . Note that
instantiation can be declared explicitly, e.g. (Enumeration in Class)
but also be derived by a rule like in rmember. Enumerations allow
to lift a set of instances to a named class. The paper [13] provides
more details on the definition of this version of DeepTelos, which
shall be used throughout this paper.

2.2 The Dynamic Multi-Layer Algebra
The Dynamic Multi-Layer Algebra (DMLA) [24, 25] is a modeling
approach aiming at supporting validated refinement. In DMLA,
one can model concepts, add various features to these concepts
and connect them, then refine the concepts, the features and the
connections step-by-step following a top-down method. DMLA
aims to provide a high-level of flexibility but at the same time a
rigorous validation mechanism during refinement. Typically, one
initially only has a vague conceptualization of the domain concepts
and only gradually obtains a more concrete understanding of them.
Modeling in DMLA aims to follow and aid this process by providing
a multi-layer modeling environment.

Over the years, the DMLA approach had three iterations. While
the first two [24] focused on creating a proof-of-concept implemen-
tation to the aforementioned goals, the third one [18] – which is
currently under development – tries to improve practical applica-
bility. Although the fundamentals of DMLA remained the same
during the iterations, many details have changed. The paper [8] has
presented a DMLA-based solution for the Collaborative Challenge
based on DMLA 2. In this paper, the DMLA-solution follows the

concepts of DMLA 3 resulting in slight differences compared to the
previous challenge solution.

DMLA consists of two main parts: (i) the Core containing the
formal definition of the modeling structures and their management
functions; and (ii) the Bootstrap [19], which is a set of essential
reusable entities of any modeled domains. The Core contains the
formal mathematical definition of how each model entity is defined
and also declares some primitive functions that directly manipulate
the model. This Core is interpreted over an Abstract State Machine
(ASM) [7]. The role of the Bootstrap is to provide a practical base
for modelers based on the Core. It is possible to create different
Bootstraps, and Bootstrap variations may affect the rules of mod-
eling (e.g. the interpretation of refinement). In DMLA 3, we have
realized that it is worth building an interface between the Core and
the Bootstrap. The interface is referred to as the Bootstrap-Core
Interface (BCI) and it acts as a standardization between the Core
and the Bootstrap [18]. Using the BCI, we obtain interchangeable
Core implementations (since the Bootstrap knows what functions
it can count on) and interchangeable Bootstraps (since the Core
knows what functions the Bootstrap expects).

In DMLA, the main relationship between elements at different
levels of abstraction is “refinement” which is used to gradually
constrain concepts. Since this interpretation of instantiation may
differ from others, we will use the term refinement instead of in-
stantiation. Refinement relates a DMLA entity to its classifier and
the framework automatically validates if there is indeed a valid
refinement relationship between the two entities. The semantics
of valid refinement are completely modeled by the Bootstrap. Note
that while each entity has a classifier, DMLA is a “level-blind” ap-
proach [2] since levels are not explicitly modeled. Each modeled
entity can refer to any other entity along the classifier-hierarchy,
as long as the validation rules are not violated. However, if so-
desired, it is entirely possible to create and use a Bootstrap which
is “level-adjuvant” [2].

Modeling entities describe their internal structure by slots and
may also have constraints and annotations attached restricting the
structure and/or the behavior of the entity. The slots of an entity
set up its structure, for example, a Company has an OwnedFactories
slot containing a list of references to Factorys. At the topmost
abstraction level, one does not usually have much information
about the exact structure and the details of an entity, therefore slots
are used merely as placeholders. Further down one can refine the
entity: add new slots, refine slots or omit them (if their cardinality
allows this).

A constraint defines a reusable validation mechanism (e.g. type
conformance check) attachable to any entity (unlike to DMLA2,
where the usage of constraints were limited to slots). Refinement is
usually driven by adding new constraints and further down narrow-
ing existing ones, thus restricting the structure and/or the behavior
of the entity. DMLA offers built-in constraints for re-occuring tasks
and allows creating universal, or domain-specific constraints in a
flexible way. The two most important built-in constraints kinds are:
i) type constraint restricting the type of the values to be put in a slot
(e.g. when filling the slot OwnedDeviceModels in a entity Company,
one can only use refinements of DeviceModel entity there), and the



DeepTelos and DMLA – A Contribution to the MULTI 2022 Collaborative Comparison Challenge MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

ii) cardinality constraint prescribing the allowed number of refine-
ments within a given slot (e.g. Company may have zero-to-many
Factorys).

Annotations are somewhat similar to constraints as they are
attached to entities, but instead of restricting their features an-
notations are meant to fine-tune the behavior of the given entity.
For example, the annotation “omit” marks an entity to be omitted
during refinement. Annotations are also used to express special in-
stantiation behaviors. For example the annotation “final” expresses
that the given entity is a fully concretized entity, i.e. an object not
meant to be refined/instantiated furthermore. Both constraints and
annotations are specified using the built-in, completely modeled
operation language. Moreover, entities may have operations in their
slots also using this built-in language. The modeled operation lan-
guage is the key to creating customizable Bootstraps as well since
the validation mechanism used during entity refinement can also
be described in a modeled way. By using this feature, validation
formulae can be attached to any entity and since slots, constraints
and annotations themselves are also modeled as entities, to any of
these entities as well. The validation formulae are used to customize
refinement rules of the given entity.

In DMLA, each entity has full control over the structure and
behavior of its refinements. For example, it is not possible to add new
features to an entity, unless the meta-entity explicitly allows this (by
having an appropriate meta-slot). Due to this rigorous mechanism,
each entity has exactly one meta-entity (to avoid contradictions)
and thus it is difficult to support inheritance between the entities
as entities should be able to inherit their structure from their base
entity instead of their meta-entity. To overcome this limitation,
DMLA 3 introduced Contracts. Compared to meta-entities, contracts
require a partial validation only: an entity conforms to a contract if
all slots of the contract can be mapped to a slot of the entity. Note
however that the entity may have other slots not mentioned in
the contract. From this point of view, contracts are very similar to
object-oriented interfaces in the sense that they define a structural
pattern that each entity adhering to this contract must include.
Thus, contracts allow the grouping of entities from different meta-
entities. From a technical point of view, contracts are added to
entities using annotations.

Although the entities of the Bootstrap are not detailed in this
paper, three of them, ComplexEntity, Contract and, Enum should
be mentioned. ComplexEntity is the usual basic building block for
domains. It has a highly flexible structure but also enforces the
basic modeling rules of refinements as described by the Bootstrap.
The flexibility in its structure is granted by a slot called Fields with
the cardinality 0..* and a type constraint set to Base (the root entity
of the meta-hierarchy) thus allowing any number of refinements
of any practically available type. The slot allows one to extend
entities with new slots, while omitting the slot denies this ability.
Contract – as mentioned earlier – allows the modeler to express
partial constraints on entities without the need to know or rule
their whole structure unlike in the case of refinement. Custom
validation described by the contracts is based on the operation
Conforms. The operation checks whether the referenced entity
has the slots and constraints defined in the contract. Although
the feature is not used in the paper, Conforms can be overridden
and thus custom conformance checks can be added. Enum is used

to create enumerations using refinements. Enumeration may be
refined in several steps and the concrete enumeration values are
refinements of the enumeration type.

3 DESCRIPTION OF THE CHALLENGE
SOLUTIONS

In this section we briefly describe the solutions modeled in both
approaches. See Table 1 for a summary of how the challenge re-
quirements were addressed by each solution.

3.1 DeepTelos Solution
The DeepTelos solution in Figure 1 uses the three Telos abstraction
principles: instantiation (label "instance of"), specialization (blue
links) and attribution/associations (black links). This is augmented
by the DeepTelos abstraction of most-general instances (red links).
In the diagram, red boxes are only used to highlight that the class
participates in a most-general instance relation. The level boxes
are included to improve the readability of the solution (especially
because the solution has a large number of relations). Objects and
classes in DeepTelos do not have explicit level numbers. However,
the levels can be effectively computed from the instantiation hier-
archy. The corresponding rules are provided with complete sources
at http://conceptbase.cc/multi2022challenge.

The hierarchy starts with the predefined Telos object Proposi-
tion. It defines the above-mentioned principles, in particular the
most-general instance association "IN". The instance DeviceType2 is
the top of our solution for the challenge. It has the most general in-
stance DeviceModel. The instance MobilePhoneModel of DeviceType
is a specialization of DeviceModel. MobilePhoneModel defines the
attribute ramoption. On the left, a small hierarchy of FactoryModel
and Factory allows to link factories and companies to device models
they support respectively own.

MobilePhoneFactory is a specialization of Factory (and hence
instance of FactoryModel). It specializes/refines the supports asso-
ciation of Factory to the class MobilePhoneModel. The query class
ConformantDevice checks that only such devices are produced that
are supported by a given factory. A query class is a subclass of
another class and specifies a query. Instances of the superclass
fulfilling the query are (derived) instances of the query class.

The class MobilePhone is the most-general instance of Mobile-
PhoneModel, and thus the superclass of mobile phone models such
as S400 or S500. MobilePhone defines an attribute actualram. This
attribute is the most general instance of ramoption. The class S400
restricts this attribute to instances of the enumeration 4_8GB. The
class S500 just has RAMSIZE as allowed range for actualram as
inherited from MobilePhone. Hence, any RAMSIZE instance is per-
missible for instances of S500. S400 and S500 are instance of Mobile-
PhoneModel. The DeepTelos definition of most-general instances
makes them (derived) subclasses ofMobilePhone. For example, each
instance of S400 is also an instance of the class MobilePhone. S400
specializes (further restricts) the actualram attribute ofMobilePhone.

2We use the term DeviceType rather than DeviceClass here, even it it may sound
counter-intuitive to some readers. Devices types include MobilePhoneModel, Beamer-
Model, etc., i.e. those objects are instances of DeviceType. A subclass SmartPhoneModel
of MobilePhoneModel would indeed also be an instance of DeviceType.

http://conceptbase.cc/multi2022challenge


MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Manfred Jeusfeld, Gergely Mezei, and Sándor Bácsi

Figure 1: DeepTelos Solution of the collaborative challenge

Listing 2: Conformant devices

ConformantDevice in GenericQueryClass isA Device with
parameter factory: Factory
constraint isconformant: $ (~factory produces this) ==>
exists dm/DeviceModel (~factory supports dm) and
(this in dm) $

end

Factory in Class with
constraint prodrule1: $ forall f/Factory d/Device
(f produces d) ==> (d in ConformantDevice[f/factory]) $

end

The lowest level shows instances/objects that are not classes.
Note that the objects Huawei and Factory124 have links that cross
level boundaries. Levels can be computed from the instantiation
hierarchies and cross level links are thus well-defined. Simular to
Huawei and Factory124, the classes Company and Factory have
links that cross level boundaries. The object Factory124 also has
two instances of the produces association. This records the fact that
the two respective mobile phones were produced by that factory.

The constraint in Listing 2 specifies, which phones can be produced
by a factory.

The query class ConformantDevice returns those instance of
Device that are produced by a given factory and that are instance
of a DeviceModel that is supported by the given factory (being a
parameter of the query class). Note that query classes are classes
whose instances are computed from the superclass (hereDevice) and
that are satisfying the constraints. So rather than explicitly stating
that a device is in ConformantDevice, the query class computes
the current conforming devices produced by a factory. The class
constraint prodrule1 then makes it mandatory that a factory only
produces conforming devices. A class constraint must be fulfilled
by all explicit and derived instances of the class. Note that we do
not demand specifically that a Huawei factory may only produce
Huawei phones. We rather generically define conformance for any
factory based on the supports and produces associations. Thus, a
company like Huawei may well own a factory, which produces
devices, where the device model is not owned by Huawei. The
condition in Listing 2 just demands that the factory must support
the device model of any device produced in the factory.



DeepTelos and DMLA – A Contribution to the MULTI 2022 Collaborative Comparison Challenge MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Listing 3: Constraints for Huawei factories

onlyhuawei: $ forall f/HuaweiMobilePhoneFactory
pm/MobilePhoneModel (f supports pm) ==> (Huawei ownsmodel pm) $

imei001constraint: $ forall f/HuaweiMobilePhoneFactory
sn/String p/MobilePhone (f produces p) and
(p imei sn) ==> (isLike(sn,"001*") = TRUE)

There are two requirements for Huawei mobile phone factories.
First, such factories only support Huawei phone models. Second,
mobile phones produces by a Huawei mobile phone company must
have IMEIs starting with "001" is realized by a Telos constraint. In
DeepTelos, this is achieved by the two constraints in Listing 3. The
first constraint demands that a Huawei phone factory may only sup-
port phone models that are owned by the company Huawei. Note
that this works in combination with the conformance constraint in
Listing 2. A Huawei phone factory can only support phone models
owned by Huawei. Then, the conformance rule makes sure that
a Huawei factory only produces Huawei phones (phones whose
models are owned by Huawei).

ConceptBase makes sure that constraints are never violated by
matching updates to the model database with applicable rules and
constraints. The constraint compiler generates efficient internal
code to check only those parts of a constraint that need to be
checked for a given update. For example, the above constraint does
not need to be checked when a mobile phone is deleted from the list
of produced mobile phones of a factory. The constraint compiler
attaches the code for the constraint to all model elements that are re-
ferred to by the constraint. In the case of the onlyhuawei constraint,
these elements are the supports association of HuaweiMobilePhone-
Factory and the ownsmodel association of Factory. The range of
ownsmodel is DeviceModel. So, a company can own any number of
devise models.

In summary, all requirements could be solved. Most were realized
by combining instantiation, specialization, attribution/association,
and most-general instances. A couple of user-defined constraints
like the "imei" constraint had to be added. Figure 1 shows on total
5 abstraction levels including the builtin object Proposition, even
though DeepTelos technically is level-blind. Still, one can derive
these levels by selecting the sequence Proposition-DeviceType-
DeviceModel-Device as the structuring elements. The source code
of the DeepTelos solution together with documentation is available
at http://conceptbase.cc/multi2022challenge.

3.2 DMLA Solution
Figure 2 shows the DMLA challenge solution, depicting entities as
boxes. The entities of the Bootstrap are represented by rounded rect-
angles indicating that they are not part of the domain model. Con-
crete objects (using the annotation “final”) are differentiated from
more abstract entities by their gray header. The refinement relation-
ship between the entities is denoted by dashed arrows with “refines”
stereotypes. For example, Huawei is a refinement of Company. Con-
tracts are denoted by dotted arrows with “conforms” stereotypes
(e.g. MP_Device has a slot RAM as defined in MP_Model).

The slots are shown embedded into entities similarly to attributes
of a class in UML class diagrams. Attributes pointing to another
entity aremodeled by slots and therefore visualized embedded in the

box, not as associations between the entities. Meta-slot relationships
are represented by Slot: MetaSlot labels. In DMLA3, slots, constraints
and annotations are cloned during the refinement by default, they
are to be mentioned only if they are changed. For the sake of clarity,
cloned elements that remain intact during refinement (e.g. when
refining MP_Device to HuaweiMP) are not visualized. Whenever
a new slot is introduced, it is shown in bold (e.g. introducing slot
RamSizes in MP_Model). Constraints of slots are denoted above the
corresponding slot in curly brackets with T: (type constraint) and
C: (cardinality constraint).

Company, Factory and Device entities refine ComplexEntity, De-
viceModel is defined as a contract, while RamSizeOptions is defined
as an enumeration. In DMLA, the possible structure of entities is
fully controlled by the meta-entity which acts as a definition of all
possible choices, in contrast, contracts limit the freedom of choice
afterwards. The philosophy behind DeviceModel being a contract is
that a device model does not describe features of devices but adds
custom limitations to the already existing features. For example,
each mobile phone may have RAM regardless of their model, but
the model may limit which kind of and how many RAM modules
the phone has. The potential to “conform” is set up between Device
and DeviceModel, and then realized between respective refinements
of them. In this scenario, the “conforms” relationship can be taken
as an interpretation of the “Type Object” pattern [15].

Each refinement chain in the model exemplifies a key feature
underlying DMLA: step-wise refinement. One starts from a highly
abstract entity and refines it step-by-step until a fully concretized
object is eventually obtained. For example, Factory references sup-
ported device models via a slot (SupportedDeviceModels). When
refining Factory and creating the MP_Factory entity, the type con-
straints applied on slot SupportedDeviceModels are narrowed so
that the slot can contain only refinements of the MP_Model entity.
Obviously, an MP_Model is a refinement of DeviceModel, thus the
constraint does not contradict its meta definition. Type constraints
automatically ensure that the concretization is always consistent
whenever the validation succeeds, thus there is no need to define
additional constraints.

Factory introduces an operation ProduceDevice to model that a
factory can produce devices. The operation checks whether the
deviceModel passed as a parameter is contained in SupportedDevice-
Models. Operation ProduceDevice is overridden inHuaweiMP_Factory
to add the produced mobile phone to the list of produced devices.

Listing 4: IMEIValidation - DMLA

operation Bool IMEIValidation()
for all device : self.ProducedDevices do

if not device.IMEI.StartsWith("001") then
Log("Huwaei IMEI numbers must start with 001.")
return false

end if
end for

return true

The DMLA solution also uses a custom validation formula which
is automatically enforced by the framework: IMEIValidation in
HuaweiMP_Factory. IMEValidation (see Listing 4) is used to con-
strain the IMEI of themobile phone devices produced by the Huawei
mobile factory to start with 001.

http://conceptbase.cc/multi2022challenge


MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Manfred Jeusfeld, Gergely Mezei, and Sándor Bácsi

Figure 2: DMLA Solution of the collaborative challenge

In summary, we point out the changes we made compared to
the previous [8] DMLA-based challenge solution: (i) explicit Con-
formsTo relationship between device and their device models is not
needed anymore, as the default mechanism of Contract handles the
conformance check; (ii) the validation formula for conformance
check (ValidateConformsTo) has been removed; (iii) RAM size op-
tions are modeled as the refinement of Enum; and (iv)MP_Model has
a slot RAM of enum type RAMSizeOptions instead of type Number.

4 DISCUSSION
In this section we compare the two solutions, highlighting simi-
larities and differences of both the solutions and approaches, and
investigate the respective trade-offs.

4.1 Similarities
The respective DeepTelos and DMLA solutions share a number of
similarities:

4.1.1 Abstraction Hierarchies. In the case of multi-level modeling
frameworks, it is usually an important question, how they deal with
the linguistic and ontological classification dimensions. Linguistic
classification separates language definitions (e.g. the UML language

definition) from language usages (e.g., UML user models) while
ontological classification represents domain classification relation-
ships, i.e., separates domain types from their domain instances
(e.g., UML class diagrams vs UML object diagrams) [4, 5]. Neither
DeepTelos, or DMLA support differentiating these two classifica-
tion dimensions. Both DeepTelos and DMLA require literal con-
formance between elements related by “instance-of”/“refinement”
relationships, i.e., use syntactic conformance relationships as used
in linguistic classification.

4.1.2 Levels. Both solutions start with abstract concepts and then
proceed to more and more concrete objects. Concretization (instan-
tiation/refinement) is based on entities, not on levels, neither ap-
proach use a global level organisation, both of them are level-blind.
Instead of levels, a modeling hierarchy is established implicitly
by instantiation/refinement chains of modeling elements in both
solutions. It is worth mentioning that both DeepTelos and DMLA
could easily support the addition of levels. In the case of DeepTelos,
this could be achieved by adding constraints, while in the case of
DMLA, one could create a level-adjuvant Bootstrap variant.

4.1.3 Attributes and associations. Both approaches handle data-
storing attributes and associations between modeling elements in



DeepTelos and DMLA – A Contribution to the MULTI 2022 Collaborative Comparison Challenge MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Requirement DeepTelos DMLA
1) A company has (a) a name, (b) owns fac-
tories, (c) owns device models

Company is a simple class having an at-
tribute name, and two associations owns and
ownsmodel

Company has slots for these features: Name,
OwnedFactories and OwnedDeviceModels

2) Huawei is a (a) company that (b) owns
Factory124 and (c) owns mobile phone mod-
els S400 and S500

Huawei is represented as an instance of Com-
pany that instantiates the owns association
once for Factory124 and the ownsmodel asso-
ciation twice for phone models S400/ S500.

(a) Huawei is a refinement of Company
(b)&(c) The references of entity Huawei are
set to Factory124, S400 and S500

3) A factory (a) produces devices. (b) sup-
ports a list of device models, (c) can only
produce devices that conform to (are of) sup-
ported device models

(a) is represented by an association of Fac-
tory to Device. (b) is represented by an asso-
ciation to DeviceModel. (c) is represented by
a constraint utilizing the query class Confor-
mantDevice, which has Factory as parameter

(a) Modeled by the operation ProduceDe-
vice(deviceModel : DeviceModel) : Device (b)
slot SupportedDeviceModels with type con-
straintDeviceModel (c) ProduceDevice checks
whether deviceModel is contained in Support-
edDeviceModels

4) A device conforms to a device model Device is the most-general instance of De-
viceModel. By a DeepTelos rule, it is then
also its instance.

The contract DeviceModel is added to Device

5) A device model captures what is universal
about the devices it describes

MobilePhoneModel is a specialization of De-
viceModel, and has specializations like S400

DeviceModel is refined by MP_Model,
HuaweiMP_Model, S400 and S500

6) A mobile phone model (a) allows specific
RAM size options and (b) is a device model

(a) MobilePhoneModel has an attribute
ramoption to RAMOPTION ; (b) see 5)

(a) MP_Model has a slot RAM of enum type
RAMSizeOptions; (b) MP_Model is modeled
as the instance of DeviceModel

7) A mobile phone device (a) conforms to a
mobile phone model, (b) has an IMEI and (c)
has a RAM size

(a) MobilePhone is most-general instance of
MobilePhoneModel and thus superclass of all
mobile phone models such as S400; (b) imei
(c) actualram are attributes of MobilePhone

(a) InMP_Device, the type constraint applied
on slot ConformsTo is refined to only allow
refinements of the MP_Model entity (b)&(c)
MP_Device has slots IMEI and RAM

8) A mobile phone factory supports mobile
phone models only

The supports association ofMobilePhone spe-
cializes the corresponding association of Fac-
tory to MobilePhoneModel

In MP_Factory, the type constraints on slot
SupportedDeviceModels is refined to allow
only instances of the MP_Model entity

9) A Huawei mobile factory (a) supports
Huawei mobile phonemodels only, (b) keeps
track of mobile phone devices it produced,
and (c) constrains the IMEI of the mobile
phone devices produced by the factory to
start with ‘001’

(a) constraints of listings 2 and 3 enforce that
only phones models owned by Huawei are
supported by its factories (b) the produces
association of Factory is applicable, (c) a con-
straint using the isLike() function ensures
this condition, see listing 3

(a) In HuaweiMP_Factory, the type con-
straint is narrowed on slot SupportedDevice-
Models to accept HuaweiMP_Model only (b)
ProducedDevices slot is introduced to store
the produced mobile phone devices; the
overriden ProduceDevice operation adds the
produced Huawei mobile phone device to
the list of produced devices (c) custom vali-
dation IMEIValidation ensures the restriction

10) Factory124 (a) is a factory, (b) sup-
ports Huawei S400 and S500 mobile phone
models, and (c) produced two S400 devices
(S4000_001, S4000_002)

(a) Factory124 is a derived instance of Fac-
tory, (b) Factory124 supports the required
mobile phone models, (c) Factory124 has pro-
duces to the objects S400_0001 and S400_0002

(a) Factory124 is an indirect refinement of
Factory, (b) slot SupportedDeviceModels is
filled out with concrete values to refer-
ence S400 and S500, (c) slot ProducedDevices
points to S400_001 and S400_002 refinements

11) S400 (a) is a mobile phone model and (b)
has either 4GB or 8GB of RAM

(a) S400 is a specialization of MobilePhone
and an instance of MobilePhoneModel; (b)
the enumeration 4_8GB specializes RAM-
SIZE and has 4GB and 8GB as instances.

S400 is an indirect refinement of MP_Model
(b) the enum RAMSizes is refined to allow ‘4’
and ‘8’ Gbs

12) S400_0001 (a) is a mobile phone device,
(b) conforms to the S400 model, (c) has 4GBs
of RAM, and (d) has ‘001468723648726’ as
its IMEI

S400_0001, (a) is derived instance of Mobile-
PhoneDevice (b) is a direct instance of S400,
(c) has 4GB of RAM, and (d) the IMEI at-
tribute has the specified value

(a) S400_0001 is the refinement of HuaweiMP
(b) S400 is set as a contract for the entity
(c)&(d) IMEI and RAM slots are concretized
with the mentioned values

13) S400_0002 (a) is a mobile phone device,
(b) conforms to the S400 model, (c) has 8GBs
of RAM, and (d) has ‘0018768768475638’ as
its IMEI

Handled analogously to requirement 12) Analogously to requirement 12), S400_0002
is a refinement of HuaweiMP and S400 is set
as a contract for the entity

Table 1: Requirements of the challenge and their implementation in DeepTelos and DMLA



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Manfred Jeusfeld, Gergely Mezei, and Sándor Bácsi

a uniform way. There is no real difference in handling these fea-
tures of modeling entities. As the solutions show, instantiation
(refinement) of attributes/associations is applied by defining an in-
stanceOf/refinement relation between the corresponding elements.
Moreover, both approaches support multiplicity constraints on at-
tributes/associations. Besides similarities, there are differences as
well: in DeepTelos, everything, even primitive literals are modeled
as objects (i.e. separate modeling entities), while in DMLA, literals
are modeled as a value of a slot. The solution of DeepTelos produces
more objects by storing literals such as numbers as proper objects.
A possible extension to Telos [11] avoids to model literals as objects,
but is not implemented yet.

4.1.4 Constraints. Both approaches support most of the widely
used constraints as built-in constructs. For example type narrowing
of attributes, or multiplicity constraints can be used out-of-the box.
Most of the type-narrowing requirements set by the challenge were
able to be solved by using these built-in constructs in both solu-
tions. Besides the built-in constraints established via the standard
notation, both DeepTelos and DMLA support custom constraints
as well. However, the details of how constraints can be formulated
differ (see section 4.2.4).

It is worth mentioning that both approaches support defining
a set of constraints and query entities fulfilling these constraints.
DeepTelos uses query classes to achieve this feature, while DMLA
uses Contracts. The philosophy in both cases is to collect specific
entities based on a set of rules. Note that contracts were used in
the DMLA solution in a static way (Device must comply to the
DeviceModel at all times), but DMLA also supports dynamic casting
of entities to a contract.

4.1.5 Enumerations. Both DeepTelos and DMLA use an enumera-
tion (defined by an instantiation hierarchy) to define possible RAM
options. Note that this is obviously not the only way to handle the
corresponding requirement, but the authors find the use of enumer-
ations pragmatic and a well-established practice in object-oriented
modeling.

4.1.6 Pure Objects. Pure objects, i.e., elements which cannot have
any direct or indirect instances, cannot be explicitly found in either
of the approaches automatically. However, both DeepTelos and
DMLA has a built-in construct to mark entities as pure objects. In
the case of DeepTelos, this can be achieved an appropriate constraint
forbidding to instantiate such objects, while in DMLA, one can use
the annotation Final (as used in the DMLA solution).

4.1.7 Accidental Complexity. Although both approaches were able
to solve the challenge, there were some difficulties to overcome in
both cases.

In DeepTelos, query classes/custom constraints needed to be
added when structural capabilities were not sufficient. Specifying
such custom rules are potential source of errors and they would
be unnecessary if the framework would support a wider range of
structure specification rules.

DMLA uses contracts to express the relation between Device and
DeviceModel. Although it is a straightforward solution, it has its lim-
itations. The slot RAM must be duplicated and the contract - entity
relations (including their refinements, e.g. between S400_0001 and

S400) must be added manually. Compared to the previous DMLA-
based solution [8], the amount of accidental complexity has signifi-
cantly reduced.

4.2 Differences
4.2.1 Number of classifiers. There is a difference between the ap-
proaches regarding the number of classifiers a modeling entity may
have. While DMLA allows exactly one classifier per entity, DeepTe-
los has no limits in the number of explicit or derived classes of an
object. This limitation of DMLA is partially addressed by Contracts
as constraints inherited from other classes can be realized via con-
tracts. Nevertheless, the limitation on the number of classifiers is a
weakness of DMLA compared to DeepTelos.

4.2.2 Linguistic extensions. DMLA does not have a built-in support
for so-called “linguistic extensions” [9] but rather takes a “language
definition” approach for its refinement hierarchies. In DMLA, every
element must be given an explicit type that is either from the
Bootstrap or the user model. Elements cannot introduce features by
themselves, instead they can only refine features that their “metas”
have already defined. It is possible though to emulate “linguistic
extensions” by using a special universal slot (ComplexEntity.Fields):
as long as this dedicated slot is cloned in the refinement chain, an
entity can freely introduce new features originating from this slot.
While feasible, this technique has some hallmarks of a workaround.

In contrast, DeepTelos allows to change objects at any abstraction
level at any time, e.g. to add an attribute to a class or to an object.
Since any object or class in DeepTelos is instance of the predefined
object Proposition, one can also add attributes that are not defined at
the explicit classes of that object or its superclasses. Even more so,
one can add new attributes to the object Proposition such as creator
and then use this attribute for any class/object in the multi-level
model. On the other hand, there is no mechanism in DeepTelos
to remove the ability of “linguistic extensions” and thus to deny
adding new attributes.

4.2.3 Specialization. While DeepTelos supports specialization (sub-
classing), DMLA does not. In the DeepTelos solution, the most-
general instance is the key construct in avoiding the redundant
definition of features. Note that the most-general instance relation
is directly referring to instantiation and specialization. It frees the
modeler from defining many instantiations and specializations man-
ually by deriving them. While instantiation establishes different
abstraction levels for the object and its class, specialization is typi-
cally defined between classes that are at the same abstraction level.
Since objects/classes, their explicit instantiations/specializations
and attributes/associations are all propositions, they all can use the
constructs defined for propositions. For example, attributes and as-
sociations can be specialized at the subclass level. An example was
the supports association that is specialized for HuaweiMobilePhone-
Factory. Specialization hierarchies in DeepTelos (and Telos) can be
arbitrarily deep. A class can have more than one superclass in Telos
(multiple generalization), though we did not use this feature here.

In contrast to DeepTelos, DMLA cannot utilize specialization in
the same manner as it allows a single meta-entity as the source of
features. However, DMLA3 introduced Contracts to handle such
situations. It is worth mentioning that the philosophy behind the



DeepTelos and DMLA – A Contribution to the MULTI 2022 Collaborative Comparison Challenge MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

DMLA solution is also slightly different from the DeepTelos solu-
tion as explained in the solution discussion. Here, DeviceModels
are handled as restricting specifications rather than superclasses.
MP_Device does not inherit any of its features from MP_Model, but
conforms to the rules set by MP_Model, while it has the same set of
features as it would have without conforming to MP_Model. This
solution is less general, than using subclassing though, since it
offers a solution only for conformance checking but requires the
duplication of attributes.

Note that the previous DMLA-based challenge solution [8] had
to model the ConformsTo relationship between device and their
device models. It is not needed anymore as the default mechanism
of Contract handles the conformance check.

4.2.4 Constraint Language and Evaluation. Having a textual con-
straint language to express custom restrictions on model entities is
an essential feature in modeling. DeepTelos uses a predicate logic
language for deductive rules and constraints. There are predefined
predicates for instantiation (x in c), specialization (c isA d), and
attribution/associations (x n y). The semantics is restricted to finite
interpretations and thus their evaluation will always terminate,
unless they contain arithmetic expressions. Deductive rules derive
predicates. The DeepTelos formalization is mostly defined by such
rules, e.g. a rule that derives that a subclass of a most-general in-
stance is a derived instance of the powertype of that most-general
instance. A class constraint is a formula that must be satisfied by
any state the of multi-level database. Constraints and rules can be
added are removed at any time from the database. Of course, such
updates are also subject to the constraint checker of ConceptBase.
For example, removing a rule may lead to constraint violations
since some facts required by a constraint can no longer be derived.
A special feature of Telos as implemented by ConceptBase are
query classes, i.e. classes whose instances are computed from its
membership constraint. A potential weakness of the ConceptBase
constraint language is its Turing-incompleteness.

In comparison, DMLA has a built-in operation language (DM-
LAScript). The primary purpose of this language is to support
validation, but it can also be used to create operations such as Pro-
duceDevice. The main advantage of this language is that it has been
created to be used in a multi-layer environment with the DMLA
modeling philosophy in mind. Since the language is completely
modeled in the Bootstrap, it can be altered without modifying
the framework. Furthermore, since language constructs and opera-
tion definitions are also modeled, they are validated against their
classifier similarly to domain entities. Custom constraints for the
“refinement” relationship can be specified by custom operations
written in DMLAScript attached to entities. It is also possible to cre-
ate reusable, parameterized validation logic described by constraint
entities. DMLA constraints help in avoiding redundancy, but they
also have the additional benefit of being able to be refined. Since
constraints are also modeled by entities, their refinement works
similarly to the refinement of any other entity. By specifying cus-
tom validation and refinement rules to constraints, one can control
how the constraint behaves during refinement. For example, the
type constraint is defined to allow tightening, but not loosening the
type parameter during its refinement. The evaluation of constraints
is automatically applied by the framework, or can be triggered

manually. Compared to the constraint language of DeepTelos, DM-
LAScript is more complete, but DMLA does not support analyzing
the operations in particular with respect to termination.

4.2.5 Modeling Huawei Phones. The DMLA solution defines an
explicit class for Huawei mobile phones and Huawei mobile phone
models, where the two stand in a conformity contract. Furthermore,
the DMLA solution includes the class HuaweiMP_Factory, which
also specifically refers to Huawei mobile phones and Huawei mobile
phone models. This ensures by structure that a Huawei factory can
indeed only support Huawei phone models and produce Huawei
mobile phones.

In contrast, the DeepTelos solution for conformance relies on
a generic query class ConformantDevice, which expresses that de-
vices produces by a factory are conforming if the device model
of the device is supported by the factory. A second constraint for
Huawei factories makes sure that it can only support device models
that are owned by the company Huawei. In combination with the
conformance constraint, this yields the same effect as the DMLA
solution. The difference is that the DeepTelos solution is slightly
more flexible. Mobile phone models dynamically become "Huawei"
mobile phones via the ownmodel relation of Company. In contrast,
the DMLA solution is easier to understand and follow for a domain-
expert and it may feel having a stronger safeguard against creating
incorrect models.

This difference between the two solutions is somewhat similar
to static (DMLA) vs. dynamic (DeepTelos) type checking. In descrip-
tion logic terminology, the DMLA concept for Huawei phones is an
"atomic concept" (instances are explicitly assigned to it), whereas
in corresponding concept in DeepTelos is a "defined" concept (in-
stances are computed from the definition of the concept and related
concepts) [6].

4.2.6 Learning Curve and Usability. DeepTelos is implemented in
ConceptBase which allows modelers to use the principles of instan-
tiation, specialization and attribution/associations known also from
UML. In contrast, DMLA more resembles a workbench that can be
adapted to a domain. Out of the box, using the default Bootstrap,
it presents the user with fewer standard modeling facilities, com-
pared to DeepTelos. However, a number of basic modeling ideas are
nevertheless present (e.g. entities, operations, slots, and constraint)
and once a user has become accustomed to less standard notions
like “refinement”, prototyping of domains becomes quite easy and
straightforward in DMLA.

In terms of usability, DeepTelos is more advanced since it sup-
ports a variety of formats and visualizations and can be used to
model in graphical, text-based, table-based and/or form-based for-
mats to provide various stakeholders with diverse viewpoints on a
deep model and multiple ways to edit it. The ConceptBase system
follows a client-server architecture. The server provides similar
capabilities to a database server, i.e. to persistently store, update,
and query objects (=propositions). It also implements the rule and
constraint language. The client programs include a textual editor
for Telos and it reports any constraint violations when new objects
are sent to the server. Further, the graph client allows to create
graphical views of the database. The direct return of constraint
violations in ConceptBase helps to avoid certain modeling errors in
this way. The learning issue with DeepTelos is not its complexity



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Manfred Jeusfeld, Gergely Mezei, and Sándor Bácsi

since it is defined by a small number of rules. The difficulty stems
from the number of possible abstraction levels. In the case of the
solution to this challenge, we required at least 4 abstraction levels.
A modeler familiar with 2-level modeling may find it hard to decide
on the number of necessary abstraction levels, as expressed by the
most-general instance sequence DeviceType-DeviceModel-Device.

In contrast, DMLA3 is currently under development. It supports
a textual workbench to write DMLAScripts and evaluate them, but
only basic editing features are supported and there is no graphical
editors available at the moment. The DMLA research group is
working on the visualization of multi-level models and on advanced
textual editors that will aim tomake domainmodeling amuch easier
process in the future, even for real industrial-scale applications [18].

5 CONCLUSION
The MULTI 2021/2022 Collaborative Comparison Challenge was con-
ceived with the intent to stimulate discussion between multi-level
modeling research groups. Although the challenge is not complex,
it can act as a common ground for identifying similarities and dif-
ferences between the concepts and mechanisms of the approaches.
This paper has presented two solutions to the challenge: DeepTe-
los and DMLA. Although many multi-level approaches follow a
level-adjuvant solution based on potency variants, DeepTelos and
DMLA are not. Both of them use a level-blind method and as the
solutions show in the paper, the two approaches and the philosophy
behind are very similar at several points e.g. type narrowing, or
constraints. The most significant difference is that DMLA relies on
a single refinement abstraction, while DeepTelos distinguished be-
tween instantiation, specialization, and the most-general instance
abstractions. Another main difference is that DeepTelos has a built-
in support for evaluating logical formulas, while DMLA focuses on
flexibility instead based on its modeled operation language. Finally,
DMLAScript is somewhat more flexible in handling structure defi-
nitions, where DeepTelos needs to express conditions by custom
constraints. The aim of the paper was not to announce a winner, but
to learn from each other. The authors believe that they succeeded in
this goal as they now have a mutual understanding of each other’s
approach.

ACKNOWLEDGMENTS
Thework of Sándor Bácsi and GergelyMezei presented in this paper
has been carried out in the frame of project no. 2019-1.1.1-PIACI-
KFI-2019-00263, which has been implemented with the support
provided from the National Research, Development and Innovation
Fund of Hungary, financed under the 2019-1.1. funding scheme.

REFERENCES
[1] Colin Atkinson and Ralph Gerbig. 2016. Flexible deep modeling with Melanee,

In Modellierung 2016 - Workshopband : Tagung vom 02. März - 04. März 2016
Karlsruhe, MOD 2016. GI-Edition / Proceedings 255, 117–121. http://ub-madoc.
bib.uni-mannheim.de/40981/

[2] Colin Atkinson, Ralph Gerbig, and Thomas Kühne. 2014. Comparing multi-level
modeling approaches. In CEUR Workshop Proceedings, Vol. 1286. CEUR, Valencia,
Spain.

[3] Colin Atkinson and Thomas Kühne. 2001. The Essence of Multilevel Metamodel-
ing. In UML 2001 — The Unified Modeling Language. Modeling Languages, Concepts,
and Tools, Martin Gogolla and Cris Kobryn (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 19–33.

[4] Colin Atkinson and Thomas Kühne. 2002. Rearchitecting the UML Infrastructure.
ACMTransactions onModeling and Computer Simulation 12, 4 (Oct. 2002), 290–321.
https://doi.org/10.1145/643120.643123

[5] Colin Atkinson and Thomas Kühne. 2016. Demystifying Ontological Classi-
fication in Language Engineering. In Modelling Foundations and Applications,
Vol. LNCS 9764. Springer, Vienna, Austria, 83–100.

[6] Franz Baader andWerner Nutt. 2003. Basic Description Logics. In The Description
Logic Handbook: Theory, Implementation, and Applications, Franz Baader, Diego
Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider
(Eds.). Cambridge University Press, Cambridge, UK, 43–95.

[7] E. Börger and R. Stärk. 2003. Abstract State Machines: A Method for High-Level
System Design and Analysis (1st ed.). Springer-Verlag, New York, USA.

[8] Sándor Bácsi, Arne Lange, Thomas Kühne, Gergely Mezei, and Colin Atkin-
son. 2021. Melanee and DMLA – A Contribution to the MULTI 2021 Collab-
orative Comparison Challenge. In 2021 ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems Companion (MODELS-C). IEEE,
Fukuoka, Japan, 556–565. https://doi.org/10.1109/MODELS-C53483.2021.00086

[9] Juan de Lara and Esther Guerra. 2010. Deep Meta-modelling with MetaDepth. In
Objects, Models, Components, Patterns, Jan Vitek (Ed.). Springer, Berlin, 1–20.

[10] Claudenir M. Fonseca, João Paulo A. Almeida, Giancarlo Guizzardi, and Victo-
rio Albani de Carvalho. 2018. Multi-level Conceptual Modeling: From a Formal
Theory to a Well-Founded Language. In 37th International Conf. Conceptual Mod-
eling, ER 2018, Xi’an, China, October 22-25, 2018. Springer, Xian, China, 409–423.
https://doi.org/10.1007/978-3-030-00847-5_29

[11] Manfred A. Jeusfeld. 2021. Attribute objects: An odd thing between objects and
values. Academia Letters (2021), 1–6. https://doi.org/10.20935/AL543

[12] Manfred A. Jeusfeld. 2022. ConceptBase.cc User Manual - Version 8.2. http:
//conceptbase.sourceforge.net/userManual82/CB-Manual.pdf.

[13] Manfred A. Jeusfeld. 2022. Evaluating DeepTelos for ConceptBase A Contribution
to theMulti-Level Process Challenge. Enterp. Model. Inf. Syst. Archit. Int. J. Concept.
Model. 17 (2022). https://doi.org/10.18417/emisa.17.5

[14] Manfred A. Jeusfeld and Bernd Neumayr. 2016. DeepTelos: Multi-level Mod-
eling with Most General Instances. In Conceptual Modeling - 35th Interna-
tional Conference, ER 2016, Gifu, Japan, November 14-17, 2016, Proceedings (Lec-
ture Notes in Computer Science, Vol. 9974), Isabelle Comyn-Wattiau, Katsumi
Tanaka, Il-Yeol Song, Shuichiro Yamamoto, and Motoshi Saeki (Eds.). 198–211.
https://doi.org/10.1007/978-3-319-46397-1_15

[15] Ralph Johnson and Bobby Woolf. 1997. Type Object. In Pattern Languages of
Program Design 3, Robert C. Martin, Dirk Riehle, and Frank Buschmann (Eds.).
Addison-Wesley, 47–65.

[16] Manolis Koubarakis, Alexander Borgida, Panos Constantopoulos, Martin Doerr,
Matthias Jarke, Manfred A. Jeusfeld, John Mylopoulos, and Dimitris Plexousakis.
2021. A retrospective on Telos as a metamodeling language for requirements
engineering. Requir. Eng. 26, 1 (2021), 1–23. https://doi.org/10.1007/s00766-020-
00329-x

[17] Thomas Kühne and Colin Atkinson. 2008. Reducing accidental complexity in
domain models. Software & Systems Modeling 7, 3 (01 Jul 2008), 345–359. https:
//doi.org/10.1007/s10270-007-0061-0

[18] Gergely Mezei, Máté Hidvégi, and Norbert Somogyi. 2021. DMLA 3.0: Towards
an Industrial Multi-Layer Modeling Framework. In Proceedings of the Automation
and Applied Computer Science Workshop 2021 : AACS’21, Dmitriy Dunaev and
Istvan Vajk (Eds.). BME DAAI, Budapest, Hungary, 272–283. https://bmeaut.
github.io/DMLAWeb/Papers/AACS2021_DMLA3.pdf

[19] Gergely Mezei, Zoltán Theisz, Dániel Urbán, Sándor Bácsi, Ferenc A. Somogyi,
and Dániel Palatinszky. 2019. A bootstrap for self-describing, self-validating
multi-layer metamodeling. In Proceedings of the Automation and Applied Computer
Science Workshop 2019 : AACS’19, Dmitriy Dunaev and István Vajk (Eds.). BME
DAAI, Budapest, Hungary, 28–38. https://bmeaut.github.io/DMLAWeb/Papers/
AACS19_paper_4.pdf

[20] MULTI2018. 2018. https://www.wi-inf.uni-duisburg-essen.de/MULTI2018/wp-
content/uploads/2018/03/MULTI2018-BicycleChallenge.pdf.

[21] MULTI2019. 2019. https://www.wi-inf.uni-duisburg-essen.de/MULTI2019/wp-
content/uploads/2019/05/MULTI_Process_Modeling_Challenge.pdf.

[22] MULTI2022. 2022. https://jku-win-dke.github.io/MULTI2022/MULTI2021_
Challenge.pdf.

[23] John Mylopoulos, Alexander Borgida, Matthias Jarke, and Manolis Koubarakis.
1990. Telos: Representing Knowledge About Information Systems. ACM Trans.
Inf. Syst. 8, 4 (1990), 325–362. https://doi.org/10.1145/102675.102676

[24] Dániel Urbán, Gergely Mezei, and Zoltán Theisz. 2017. Formalism for Static
Aspects of Dynamic Metamodeling. Periodica Polytechnica Electrical Engineering
and Computer Science 61, 1 (2017), 34–47. https://doi.org/10.3311/PPee.9547

[25] Dániel Urbán, Zoltan Theisz, and Gergely Mezei. 2018. Self-describing Oper-
ations for Multi-level Meta-modeling. In Proceedings of the 6th International
Conference on Model-Driven Engineering and Software Development - Volume
1: MODELSWARD. INSTICC, SciTePress, Funchal, Madeira, 519–527. https:
//doi.org/10.5220/0006656105190527

http://ub-madoc.bib.uni-mannheim.de/40981/
http://ub-madoc.bib.uni-mannheim.de/40981/
https://doi.org/10.1145/643120.643123
https://doi.org/10.1109/MODELS-C53483.2021.00086
https://doi.org/10.1007/978-3-030-00847-5_29
https://doi.org/10.20935/AL543
http://conceptbase.sourceforge.net/userManual82/CB-Manual.pdf
http://conceptbase.sourceforge.net/userManual82/CB-Manual.pdf
https://doi.org/10.18417/emisa.17.5
https://doi.org/10.1007/978-3-319-46397-1_15
https://doi.org/10.1007/s00766-020-00329-x
https://doi.org/10.1007/s00766-020-00329-x
https://doi.org/10.1007/s10270-007-0061-0
https://doi.org/10.1007/s10270-007-0061-0
https://bmeaut.github.io/DMLAWeb/Papers/AACS2021_DMLA3.pdf
https://bmeaut.github.io/DMLAWeb/Papers/AACS2021_DMLA3.pdf
https://bmeaut.github.io/DMLAWeb/Papers/AACS19_paper_4.pdf
https://bmeaut.github.io/DMLAWeb/Papers/AACS19_paper_4.pdf
https://doi.org/10.1145/102675.102676
https://doi.org/10.3311/PPee.9547
https://doi.org/10.5220/0006656105190527
https://doi.org/10.5220/0006656105190527

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 DeepTelos by ConceptBase
	2.2 The Dynamic Multi-Layer Algebra

	3 Description of the Challenge Solutions
	3.1 DeepTelos Solution
	3.2 DMLA Solution

	4 Discussion
	4.1 Similarities
	4.2 Differences

	5 Conclusion
	Acknowledgments
	References

