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Abstract: Dementia is a neurological condition that primarily affects older adults and there is still
no cure or therapy available to cure it. The symptoms of dementia can appear as early as 10 years
before the beginning of actual diagnosed dementia. Hence, machine learning (ML) researchers
have presented several methods for early detection of dementia based on symptoms. However,
these techniques suffer from two major flaws. The first issue is the bias of ML models caused by
imbalanced classes in the dataset. Past research did not address this issue well and did not take
preventative precautions. Different ML models were developed to illustrate this bias. To alleviate the
problem of bias, we deployed a synthetic minority oversampling technique (SMOTE) to balance the
training process of the proposed ML model. The second issue is the poor classification accuracy of
ML models, which leads to a limited clinical significance. To improve dementia prediction accuracy,
we proposed an intelligent learning system that is a hybrid of an autoencoder and adaptive boost
model. The autoencoder is used to extract relevant features from the feature space and the Adaboost
model is deployed for the classification of dementia by using an extracted subset of features. The
hyperparameters of the Adaboost model are fine-tuned using a grid search algorithm. Experimental
findings reveal that the suggested learning system outperforms eleven similar systems which were
proposed in the literature. Furthermore, it was also observed that the proposed learning system
improves the strength of the conventional Adaboost model by 9.8% and reduces its time complexity.
Lastly, the proposed learning system achieved classification accuracy of 90.23%, sensitivity of 98.00%
and specificity of 96.65%.

Keywords: balanced accuracy; bachine learning; oversampling; dementia prediction

1. Introduction

Dementia is a mental condition defined by a steady decline in cognitive processes that
interfere with everyday living tasks such as memory, problem solving, visual perception,
and capacity to focus on a specific task [1]. Usually, older adults are more prone to
dementia and many people believe that it is an unavoidable result of aging, which is
perhaps incorrect perception. Dementia is not a natural part of the aging process; instead,
it should be regarded as a substantial cognitive deterioration that interferes with everyday
life. The fundamental cause of dementia development is a variety of disorders and traumas
to the human brain [2]. The number of dementia patients is rapidly increasing worldwide
and statistical projections suggest that 135 million people might be affected with dementia
by 2050 [3]. Furthermore, dementia is ranked on the seventh place in the leading causes of
deaths in the world [4] and it is the major cause of disability and dependency among older
adults globally [4].
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The conventional diagnostic assessment of dementia involves medical history, clin-
ical examinations (e.g., neurological, mental state, and cognitive examinations) and an
interview with a relative other than the informant [5]. Current early-stage dementia diag-
nosis is based on pathological characteristics or cognitive diagnostic tests. Neuroimaging
can detect pathology characteristics. Magnetic resonance imaging (MRI) is used to ex-
amine the change in neuron-structure [6,7]. The electroencephalography (EEG) is used
to evaluate event-related potentials to diagnose early stages of dementia in patients [8,9].
Patel et al., combined EEG and MRI imaging to improve the detection of the early stage of
dementia [10]. However, such tools are insufficient for identifying dementia since the cost
of testing is prohibitively high, and the testing method is too lengthy and intrusive. Further-
more, recent research suggests computed tomography (CT) or MRI of the brain to rule out
structural causes for the clinical phenotype [1,11]. It has been estimated that primary-care
clinicians fail to diagnose anywhere from 29% to 76% of patients with dementia or probable
dementia [11].

Along with a reliable diagnostic process, appropriate handling must be simple for
dementia patients. There are benefits for employing cognitive tests to determine the early
stage of dementia since they are quick and easy to do; nevertheless, it is difficult for
paramedics to contact patients and promote the testing because elderly individuals often
dread attending hospitals. The only way to do tests is through unskilled relatives, who do
not completely comprehend the scales. As a result, test findings are often inaccurate. ML
algorithms provide a novel answer to this challenge. Paramedics now have an improved
access to patients’ lives because of information technology, and they can detect poor
cognitive function at an early stage. Additionally, ML algorithms can provide expert
medical knowledge. An automated diagnostic systems based on ML techniques can give a
high accuracy and user-friendly method of detecting the early stages of dementia. Based
on ML approaches, scientists have developed several automated diagnostics systems for
various diseases e.g., heart failure [12–16], Parkinson [17], hepatitis [18] and clinical decision
support systems [19].

Ana W. Capuano et al. presented an assessment of dementia risk for older adults
based on derivation and validation [20]. In their study, the RADaR (Rapid Risk Assessment
of Dementia) discrimination was good for the derivation and external-validation cohorts
(AUC of the 3-year prediction = 0.82–0.86), compared to age alone (AUC of the 3-year
prediction = 0.73), which is a key risk factor for dementia. The inclusion of genetic infor-
mation did not improve the discrimination. F. V. Cederwald et al., investigated how the
continuing trajectory of cardiovascular risk impacts the likelihood of dementia and memory
impairment in the future. For this purpose, they used a Bayesian additive regression tree
as a multistate survival analysis method [21]. J. R. Cejudo et al. used the cumulative
incidence function and inverse probability weighted Cox proportional hazards regression
models with adjustments for demographic and clinical covariates, to investigate whether
platelet function is associated with dementia risk in the Framingham Heart Study [22].
Statistical models are useful for determining relationships between variables, but they
perform poorly when it comes to predicting outcomes, such as disease prediction. ML
models often perform better at predicting results, therefore, researchers are employing ML
for disease detection.

1.1. Machine Learning for Dementia

Several automated diagnostic systems were proposed in the literature for the early de-
tection of dementia using ML approaches. Dallora et al. [23] investigated predictive factors
for the 10-year prediction of dementia based on decision trees (DT) using the Swedish Na-
tional study on Aging and Care (SNAC) database. In their proposed method, they deployed
a recursive feature elimination (RFE) feature selection method in order to select the most
important variables from dataset for the classification of dementia. Their proposed method
based on RFE and DT had achieved the highest area under the curve (AUC) of 74.50%. D.
Stamate et al., developed a framework for the prediction of mild cognitive impairment
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(MCI) and dementia. Their proposed framework was based on the Relief approach paired
with statistical permutation tests for feature selection, model training, tweaking and testing
using ML algorithms such as random forest (RF), support vector machine (SVM), gaussian
processes, stochastic gradient boosting and extreme gradient boosting. The stability of
model performances were studied using computationally expensive monte carlo simula-
tions. Their results for the dementia detection were: an accuracy of 88.00%, sensitivity
of 93.00%, and the specificity of 94.00%, whereas the results for the moderate cognitive
impairment detection showed a sensitivity of 86.00% and specificity of 90% [24]. Visser
et al., developed a system for detecting subtypes of dementia from blood samples while
utilizing deep learning (DL) and other supervised ML approaches such as RF and extreme
gradient boosting. The AUC for proposed DL method was 85% (0.80–0.89), for xgboost it
was 88% (0.86–0.89), and for RF it was 85% (0.83–0.87). In comparison, cerebrospinal fluid
(CSF) measurements of amyloid, p-tau, and t-tau (together with age and gender) gave AUC
values of 78%, 83%, and 87%, respectively by using xgboost [25]. P. Gurevich et al., used
SVM and neuropsychologic factors and achieved 89.00% accuracy through their proposed
method [26]. M. Karaglani et al., proposed an automated diagnosis system for Alzheimer’s
disease (AD) by using blood-based biosignatures. In their proposed method, they em-
ployed mRNA-based statistically equivalent signatures for feature ranking and a RF model
for classification. Their proposed automated diagnostics system reported an accuracy of
84.60% [27]. E. Ryzhikova et al., analyzed CSF using ML algorithms for the diagnosis of
AD. For the classification purpose, artificial neural networks (ANN) and SVM discriminant
analysis (SVM-DA) methods were applied for distinguishing AD and hippocampal (HC)
participants with 84.00% sensitivity and specificity. The proposed classification models
had a high discriminative power, implying that the technique had a lot of potential for AD
diagnosis [28]. P.C Cho & W.H Chen designed a double layer dementia diagnosis system
based on ML where fuzzy cognitive maps (FCMs) and probability neural networks (PNNs)
were used to provide the initial diagnosis at the base layer and Bayesian networks (BNs)
were used to provide final diagnosis at the top layer. The highest accuracy reported by their
proposed system was 83.00% [29]. Multimodal medical signals fusion for smart healthcare
systems also important for designing and development of automated diagnostic systems
for the prediction of diseases [30].

1.2. State-of-the-Art Work

F. A. Salem et al., presented a regression-based ML model for the prediction of demen-
tia. In their proposed method, they investigated ML approaches for imbalanced classes in
the dataset. They started with intentionally oversampling the minority class and under-
sampling the majority class, in order to reduce the biasness of ML model. Furthermore,
they deployed cost-sensitive strategies to penalize the ML models when an instance is
misclassified in the minority class. According to their findings, the balanced RF was the
most resilient probabilistic model (using only 20 features/variables) with an F1-score of
0.82, G-Mean of 0.88, and AUC of 0.88 using ROC [31]. F.G. Gutierrez et al. had designed an
automated diagnostic system for the detection of AD and frontotemporal dementia (FTD)
by using feature engineering and genetic algorithms. Their proposed system had obtained
an accuracy of 84% [32]. G. Mirzaei & H. Adeli analyzed state-of-the-art ML techniques
for the detection and classification of AD [33]. H. Hsiu et al. studied ML algorithms for
early identification of cognitive impairment. Their proposed model obtained an accuracy
of 70.32% by threefold cross-validation scheme [5]. Several classification models were
constructed using different ML models and feature selection methodologies to automate
MCI detection based on gait biomarkers. The ML model by A. Shahzad et al. [34] used
for mild cognitive impairment (MCI) pre-screening based on inertial sensor-derived gait
biomarkers achieved an accuracy of 71.67 % and sensitivity of 83.33 %.

ML algorithms work best when the samples are roughly evenly split in the dataset.
However, dementia has a rather uncommon occurrence, thus balancing sampling the
sample must occur in order to build datasets.
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1.3. Aim of Study

In this article, we have addressed two challenges of dementia prediction using the
SNAC dataset, such as bias in the developed ML models and lower accuracy of dementia
detection. To show the problem of bias in ML models, we have constructed and trained six
distinct ML models i.e., Logistic Regression (LR), K Nearest Neighbors (KNN), Gaussian
Naive Bayes (GNB), Support Vector Machine (SVM), Decision Tree (DT), and Random
Forest (RF). We used the synthetic minority oversampling technique (SMOTE) method to
overcome this problem. The second issue is a poor rate of accuracy for dementia prediction
while using SNAC dataset. We develop an intelligent learning system that is a hybrid with
autoencoder and adaptive boosting (Adaboost) learning models to address the issue of low
accuracy of dementia detection. The autoencoder is utilized for feature extraction, whereas
Adaboost is employed for the classification of dementia patients versus healthy subjects.
The experimental findings clearly reveal that the offered solutions assist in the alleviation
of both problems to some extent.

It is important to note that dementia has numerous subtypes with the most prevalent
being Alzheimer’s disease, Vascular dementia, dementia with Lewy Bodies, and Frontotem-
poral dementia. However, mixed pathologies are not uncommon, particularly Alzheimer’s
disease often coexists with Vascular or Lewy Bodies dementia. In addition, unusual sub-
types are sometimes mistakenly diagnosed for Alzheimer’s disease [35]. The research
described here makes no difference between subtypes, and the word “dementia” refers to
all types of dementia.

2. Materials and Methods
2.1. Dataset Description

The data utilized in this study is a subset of the Swedish National Study on Aging and
Care (SNAC). The SNAC is a longitudinal cohort that has been collecting multifactorial
data from the Swedish older adult population with the goal of “creating trustworthy,
comparable, longitudinal datasets” that will represent an effective infrastructure for aging
research and care provision to the elderly [36]. The SNAC (https://www.snac-k.se/) was
created as a multipurpose project to study the health and social care of the aging population,
and it includes a database consisting of records about physical examination, psychological
assessment, social factors, lifestyle factors, medical history etc.

The SNAC data is gathered from four different locations, which represent two Swedish
counties i.e., borough and municipality: Skåne, Blekinge, Kungsholmen, and Nordanstig.
The SNAC-Blekinge baseline assessment is selected in this study, with data collected from
2000 to 2003. Although there is evidence in the literature that environmental variables may
have a role in the incidence of dementia [37,38], this study is based on generic criteria and
no distinctions are made between urban and rural locations. Subjects are excluded from
this study based on the following criteria: (i) subjects who already had dementia at baseline;
(ii) subjects who have missing values at the outcome variable (dementia diagnosis at the
10-year mark); (iii) subjects who have more than 10% missing values in the input variables;
(iv) subjects who died before the 10-year study mark; and (v) subjects who were diagnosed
with dementia before the 10-year mark, as they could already have advanced dementia.

The SNAC Blekinge baseline included 1402 people. Following the application of
aforementioned exclusion criteria, the research sample consisted of 726 people (313 males
and 413 females), of which 91 (12.5 %) had dementia at the 10-year point and 635 (87.5 %)
did not. Table 1 shows the demographics of research sample in the selected dataset. The
variables selection from the SNAC-Blekinge database was based on information from the
literature that indicate the impact of selected variables on the dementia disorder [39,40]. It
is noteworthy during the selection of variables from SNAC-Blekinge database that there
were no differences established between dementia subtypes since mixed pathologies are
widespread and rare subtypes are frequently misdiagnosed as Alzheimer’s disease [35].

https://www.snac-k.se/
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Table 1. Demographic overview of the samples in the dataset.

Age_Group Male Female Subj.Sum Diagnosis.Dementia

60 82 82 164 02
66 75 95 170 06
72 50 74 124 10
78 41 50 91 17
81 35 46 81 19
84 26 42 68 22
87 04 19 23 14

90+ 00 05 05 01

Total 313 413 726 91

It is also worth mentioning that all of the variables used for the SNAC project were
chosen based on evidence of importance in the aging process (health/disease, social and
support network, lifestyle factors, material conditions, and personal resources), as well as
statistics on care service utilization [36]. At the study’s baseline (2000–2003) 75 variables
were chosen from the following categories: demographic, social, lifestyle, medical history,
blood test, physical examination, psychological, and the assessment of numerous health
instruments related to dementia evaluation. The list of selected variables can be depicted
from Table 2.

Table 2. Overview of selected variable.

Variable_Category Variables_Names Sum

Demographic Age, Gender 02

Social Education, Religious Belief, Religious Activities, Voluntary
Association, Social Network, Support Network, Loneliness 07

Lifestyle

Light Exercise, Alcohol Consumption, Alcohol Quantity, Work
Status, Physical-Workload, Present Smoker, Past Smoker,
Number of Cigarettes a Day, Social Activities, Physically

Demanding Activities, Leisure Activities

11

Medical History

Number of Medications, Family History of Importance,
Myocardial Infarction, Arrhythmia, Heart Failure, Stroke,

TIA/RIND, Diabetes Type 1, Diabetes Type 2, Thyroid Disease,
Cancer, Epilepsy, Atrial Fibrillation, Cardiovascular Ischemia,
Parkinson’s Disease, Depression, Other Psychiatric Diseases,

Snoring, Sleep Apnea, Hip Fracture, Head Trauma,
Developmental Disabilities, High Blood Pressure

22

Biochemical Test Hemoglobin Analysis, C-Reactive Protein Analysis 02

Physical Examination

Body Mass Index (BMI), Pain in the last 4 weeks, Heart Rate
Sitting, Heart Rate Lying, Blood Pressure on the Right Arm,

Hand Strength in Right Arm in a 10s Interval, Hand Strength in
Left Arm in a 10s Interval, Feeling of Safety from Rising from a
Chair, Assessment of Rising from a Chair, Single-Leg Standing

with Right Leg, Single Leg Standing with Left Leg, Dental
Prosthesis, Number of Teeth

13

Psychological Memory Loss, Memory Decline, Memory Decline 2, Abstract
Thinking, Personality Change, Sense of Identity 06

Health Instruments

Sense of Coherence [41], Digit Span Test [42], Backwards Digit
Span Test [42], Livingston Index [43], EQ5D Test [44], Activities
of Daily Living [45], Instrumental Activities of Daily Living [46],

Mini-Mental State Examination [47], Clock Drawing Test [48],
Mental Composite Score of the SF-12 Health Survey [49],

Physical Composite Score of the SF-12 Health Survey [49],
Comprehensive Psychopathological Rating Scale [50]

12
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The target variable that is used to predict the dementia by the proposed model is given
by medical doctors at the mark of 10 years following the SNAC baseline. The International
Statistical Classification of Diseases and Related Health Problems-10th Revision (ICD-10)
and the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) were used to
make the dementia diagnosis (DSM-5).

2.2. Data Preparation

To deal with missing data, the K-Nearest Neighbors (KNN) multiple imputation
method was used [51]. This strategy works by locating the K data entries which are most
similar (near) to a missing data item. The KNN imputation fills in the missing values with
the mean (for numeric variables) or the most common value (for categorical variables)
of the K, the most similar neighbors [51]. In this study, the KNN imputation was used
independently on items from the majority (no dementia at 10 years) and minority classes
(dementia at 10 years mark) because of the significant class imbalance (12.5% on the
minority class against 87.5% on the majority class). This way the danger of contaminating
the minority class with data from the majority class was reduced. This is consistent with
the literature on missing values on binary answer decision trees, which has demonstrated
that when imputation is done independently, classification performance improves [52].
After dealing with missing values in the dataset, we have performed a normalization and
standardization operation on the selected dataset to improve the quality of data [53]. The
performance of ML algorithms improves after data standardization.

Since the dementia dataset has only numeric values with different scales, we have
applied a standard-scaler function on the data. The standard-scalar function work as
rescaling the distribution of the data values so that the mean of observed value is 0 and
standard deviation is 1 [54].

2.3. Proposed Model

In this paper, we developed an intelligent learning system for dementia detection
using electronic health record (EHR) data. The proposed learning system is cascaded
by three algorithms i.e., autoencoder with synthetic minority oversampling technique
(SMOTE) and Adaboost ensemble learning model in order to improve the performance of
the proposed model. The autoencoder is used for features extraction so that the proposed
model does not learn noisy or irrelevant information from the feature space which causes
overfitting in the ML model. SMOTE is deployed to deal with the problem of imbalance
classes in the dataset and Adaboost model is used as a predictive model to detect presence
or absence of dementia in the population of older adults. To understand the working of
proposed learning system, Figure 1 presents an overview of the newly developed model.

Hereby, the operation of proposed learning system components, namely autoencoder,
SMOTE, and Adaboost, are given as follows:

The architecture of the autoencoder consists of two parts, one is the encoder while
other is the decoder. The encoder part is used to extract features from the reduced dataset.
The feedforward neural network is the simplest form of autoencoder with a single layer
perceptron that participates in a multilayer perceptron (MLP) with one or more hidden
layers between the input and output layer of the neural network. The number of neurons
in input and output layer are equal. The purpose behind the equal number of neurons is to
reduce the information loss from the original dataset. Thus, autoencoder uses unsupervised
learning. The mathematical formation of autoencoder and decoder is given as:

σ : λ→ ω, ∂ : ω → λ : σ, ∂ = argσ,∂min‖λ− (∂ ◦ σ)λ‖2 (1)

where σ and ∂ are the transition of autoencoder and λ is a given input to target value ω.
The hidden layer of neural network take input at the encoding stage is given as:

X ε ft = λ and map to h ε fn = ω (2)
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h = Υ(βX + u) (3)

where h is the data and referred as code, latent variables σ is an activation function, such as
sigmoid function. β is a weight matrix and u is a bias vector. Weight and biases values are
iteratively updated by backpropagation during training phase.
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Figure 1. Schematic overview of the proposed intelligent learning system.

The decoder stage of the autoencoder maps h
′

to the features extraction X
′

of the same
shape of X.

h
′
= Υ

′
(β
′
X + u

′
) (4)

where Υ
′
, β
′

and u
′

might be irrelevant to corresponding Υ, β and u for the encoder.
For minimize the reconstruction errors of the autoencoders during training phase is

referred as information loss and given as:

Ψ(X, X
′
) =

∥∥∥X− X
′
∥∥∥2

=
∥∥∥x− Υ

′
(β
′
(Υ(βX + u)) + u

′
)
∥∥∥2

(5)

where, X is the average on the training set and autoencoder training is performed through
backpropagation of the error, such as other feedforward neural networks.

Following the features extraction from autoencoder, data partitioning occurs for train-
ing and testing of the proposed predictive model. The SMOTE was employed to prevent
biasness in proposed learning model for an unbiased prediction of dementia [55]. SMOTE
generates synthetic samples of the minority class that results in balanced classes in the
dataset. Thus, proposed learning system is trained on balance data by avoiding the biasness
factors of ML model due to imbalance classes in the dataset. It is important to mention
that the SMOTE is applied on training data following data partitioning. If the SMOTE
algorithm is used for balancing the classes on the whole dataset (i.e., prior to data parti-
tioning) then, it would result in biased performance of ML model since samples from the
testing dataset would also be included in the training dataset [56]. SMOTE, in contrast to
other oversampling approaches, acts in the feature space rather than the data space [55]. It
synthesizes (i.e., oversamples) minority class samples by taking a sample from the minority
class and creating new samples along the line that links any or all of the k-minority class
nearest neighbors. Figure 2 presents the minority and majority class distribution in the
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dataset before and after the implementation of SMOTE. In this study, we use “imbalanced
learn”, a Python-based library to employ the SMOTE technique [57].

(a) Original class distribution in the dataset (b) Balance class distribution after oversampling

Figure 2. Class distribution before and After applying SMOTE.

Boosting is an ensemble learning strategy that combines the learning ability of weak
learners to construct a strong learning model. Freund and Schapire introduced the first
practical boosting ensemble model, adaptive boosting or Adaboost [58]. In other words, the
Adaboost model transforms a collection of weak classifiers or estimators into a powerful
one. It combines the result of various learning algorithms (weak learners or estimators) by
assessing their weighted total, which represents the boosting ensemble model’s ultimate
output. The final equation of the Adaboost model for classification is as follows:

U(x) = sign

(
T

∑
t=1

λtut(x)

)
(6)

where µt represents the tth weak classifier and λt is its associated weight. Equation (6)
shows that the Adaboost model is a weighted mixture of T weak learners or estimators.
Details on the operation and formulation of the Adaboost model can be found in [59,60]. In
this study, we briefly explore the Adaboost model formulation as follows:

For a given dataset with n occurrences and binary labels (i.e., taking the case of binary
classification as studied in this research), the feature vector v and class label c may be
represented as vi ε Rh, ci ε {−1,+1} where −1 represents the negative class (absence of
dementia) and +1 represents the positive class(presence of dementia). Weights for each
data point are initialized in the first phase as follows:

v(vi, ci) =
1
n

i = 1, 2, 3, ...n (7)

Then, we iterate from t = 1 to T, applying weak classifiers to the dataset and selecting
the one with the lowest weighted classification error.

kt = Kvt

[
1c 6=u(x)

]
(8)

The weight for tth weak classifier or estimator is then determined as follows:

γt =
1
2

ln
(

1− kt

kt

)
(9)

Any classifier (weak estimator) with an accuracy greater than 50% will have a positive
weight. Furthermore, larger weights will be assigned to more accurate classifiers. Classifiers
with less than 50% accuracy, on the other hand, will have negative weights. Adaboost
combines such classifier predictions by flipping their sign. As a result of the sign flipping
of its prediction, a classifier with 30% accuracy can be changed into one with 70% accuracy.
Only classifiers with an exact 50% accuracy have no contribution to the final prediction.
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vt+1(vi, ci) =
vt(vi, ci)exp[−γtciut(xi)]

Zt
(10)

where Zt is a normalizing factor used to make the sum of all instance weights equal to
one. Additionally, it is evident from Equation (10), that the “exp” term will always be
greater than 1 when the misclassified example is from a positive weighted classifier (i.e.,
γt is always positive and c × u is always negative). After each cycle, the misclassified
instances will be updated with higher weights. The same concept is used for negative
weighted classifiers, with the exception that the initial accurate classifications become
misclassifications once the sign is flipped. Finally, after T iterations, the Adaboost model
will acquire a final prediction by averaging each classifier’s weighted prediction (i.e.,
weak estimator).

In this research work, we implemented the Adaboost ensemble model in Python
software package using scikit-learn module [61]. The Adaboost model’s hyperparameter,
i.e., the number of estimators used to generate the final ensemble model, will be indicated
by Nest. Furthermore, the decision tree classifier is employed as the basis estimator. To
improve classification performance, we use an exhaustive search technique to find the ideal
value of hyperparameter of Adaboost model (i.e., Nest, learning rate: lr) that results as the
optimal Adaboost model which helped to yield best performance.

2.4. Validation & Evaluation

To test the efficacy of the proposed learning system, we employ holdout validation
scheme and cross-validation. For hold-out validation, we split the dataset into 70% and
30% ratio for training and testing purposes, respectively. To establish the efficacy of the
proposed learning system, we tested the proposed model against a range of evaluation
metrics. i.e., accuracy, sensitivity, specificity, F-score or F-measure, and Mathew’s correla-
tion coefficient (MCC). To test the efficacy of the proposed learning system using receiver
operator curve (ROC) and area under the curve (AUC), we employ a stratified k-fold
validation strategy with k = 6. Traditional accuracy metrics fail to reflect a model’s gen-
uine behavior, as illustrated in experiment 1 of Section 3 of this study. Thus, we used the
balanced accuracy metric, which more accurately reflects the real behavior of the built
models [62–64]. Pereira et al. [65] utilized a similar accuracy metric (global accuracy [65])
that was proposed by Papa et al. [66]. This accuracy metric is also a suitable choice for
reflecting a model’s genuine behavior when trained on imbalanced data. In the following
formulation, ACC stands for the commonly used accuracy metric, while ACCbal stands
for the balanced accuracy metric. The mathematical formulation of the used assessment
metrics is given as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

where TP stands for the number of true positives, FP stands for the number of false
positives, TN stands for the number of true negatives, and FN stands for the number of
false negatives.

Sensitivity =
TP

TP + FN
(12)

Speci f icity =
TN

TN + FP
(13)

ACCbal =
Sensitivity + Speci f icity

2
(14)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(15)

F =
2TP

TP + FN + FP
(16)
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In a statistical analysis of binary classification problem, F signifies F-score, also known
as F-measure or F1 score. F-score yields a value range between 0 and 1, where 1 represents
perfect forecasts and 0 represents the poorest. MCC is used to assess the correctness of a test.
MCC can have a value range between −1 and 1, where 1 represents the perfect forecast and
−1 represents the poorest forecasts. Consider an example of 100 individuals among them
90 people sufferers from dementia and 10 individuals are healthy subjects, to highlight the
benefits of employing a balanced accuracy metric. If we build a model that always predicts
a subject to be a dementia patient, then it would have 100% sensitivity but 0% specificity
and traditional accuracy of 90%. However, the balance accuracy will be 50%. It is evident
that the true behavior of the constructed model is reflected by balanced accuracy, because
model can detect only one class but completely failed to detect the second class. However,
the traditional accuracy failed to describe the genuine behavior of the constructed model.

3. Results

Three different types of experiments were carried out to rigorously assess the per-
formance and efficacy of the newly proposed system for dementia prediction. In the first
experiment, we have demonstrated the impact of imbalance classes in the dataset using
six conventional ML models. While in the second experiment, the traditional Adaboost
algorithm is fine-tuned using a grid search algorithm and tested on the balance dementia
dataset. The second experiment is extended and in the second phase of the experiment, the
dataset is preprocessed through data standardization and normalization. Following that,
the newly proposed method based on autoencoder and Adaboost is tested on the processed
data with balanced classes in dataset using the SMOTE method. We have also compared
the results of the newly proposed model against the traditional Adaboost model on the
balanced dataset. In the third experiment, other conventional ML methods are fine-tuned
and tested with features extracted from the autoencoder on the same balanced dementia
dataset for performance comparison. All experiments are carried out on a system powered
by an Intel (R) Core (TM) i5-8250U CPU running at 1.60GHz and running Windows 10
Home 64bits(Blekinge Institute of Technology, Karlskrona, Sweden) as the operating system.
All of the experiments make use of the Python software package as a software tool.

3.1. Experiment 1: Impact of Imbalance Classes in the Dataset

In this section, we have employed several ML models (NB, LR, kNN, SVM, RF, DT) to
demonstrate the impact of imbalanced data for the prediction of dementia. From the Table 3,
it can be depicted that ML models are sensitive to the imbalanced data. The employed
ML models are clearly biased in favor of majority class. For instance, it can be observed
from the Table 3 that we obtained high a rate of specificity and low rate of sensitivity (see
Table 3) when ML models are trained on imbalanced data.

Table 3. Performance of conventional ML predictive models on imbalanced dataset, Where AccTrain:
Accuracy on training data, AccTest: Accuracy on test data, Sens: Sensitivity, Spec: Specificity, MCC:
Matthews correlation coefficient.

Model AccTrain (%) AccTest (%) Sens. (%) Spec. (%) F1_Score MCC

NB 82.57 74.10 22.22 91.10 74.00 0.1428
LR 85.32 71.15 23.53 90.55 71.00 0.1228
RF 89.55 76.50 15.36 89.40 77.00 0.2278
DT 71.45 66.50 25.93 91.62 67.00 0.1882

kNN 78.56 48.40 16.67 89.62 49.00 0.0335
SVM 86.69 65.60 31.25 91.09 66.00 0.1896

To avoid this biasness problem, we take a step to balance the training data and for
this purpose we deployed the SMOTE method [55] to balance the size of each class in the
training data. After balancing the data, it is evident from Table 4 that the performance of
ML models is improved i.e., the ML models do not suffer from the biased performance
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as it can be seen from the values of specificity and sensitivity. Furthermore, we have also
studied the performance of ML models based on the ROC evaluation metric while using
imbalance data. Figure 3 presents the performance evaluation of ML models based on AUC
by using ROC curve.

Table 4. Performance of conventional ML predictive models on balanced dataset, Where AccTrain:
Accuracy on training data, AccTest: Accuracy on test data, Sens: Sensitivity, Spec: Specificity, MCC:
Matthews correlation coefficient.

Model AccTrain (%) AccTest (%) Sens. (%) Spec. (%) F1_Score MCC

NB 75.37 70.70 98.57 78.89 70.00 0.2287
LR 82.74 76.85 85.35 80.55 77.00 0.4038
RF 98.96 85.95 52.73 87.68 86.00 0.4264
DT 80.44 73.51 80.58 91.62 74.00 0.3526

kNN 78.56 67.49 75.16 55.62 67.00 0.2534
SVM 96.26 75.82 92.52 84.20 76.00 0.3596

Figure 3. ROC of ML models for dementia prediction

3.2. Experiment 2: Comparative Study with Conventional Adaboost for Dementia Prediction

This experiment has two phases: in the first phase, we deployed a conventional
Adaboost model with hyperparameters fine-tuned using a grid search algorithm on the
balanced dataset. The performance of this model is assessed using the ROC. Figure 4b,
presents the results of this experiment, in which the conventional Adaboost obtained an
average accuracy of 82.00% using all 75 features of the balanced dataset based on the k-fold
evaluation metric. While in second phase of this experiment, we evaluated the performance
of the newly proposed autoencoder-SMOTE-Adaboost model for dementia patient classifi-
cation. We employed the autoencoder to extract features from the dataset, which not only
helped to increase the Adaboost accuracy but also greatly decreased the time complexity of
the proposed model by reducing the data dimensionality. The extracted features by the
autoencoder are given as input to the Adaboost model and the hyperparameters of the
Adaboost was fine-tuned using a grid search algorithm that assisted in determining the
optimal number of estimators (Nest) and the learning rate of the Adaboost model. The
obtained accuracy along with other performance evaluation metrics are given in Table 5.
It can be depicted from Table 5 that the newly proposed autoencoder-SMOTE-Adaboost
model has achieved the best accuracy on testing data of 90.23% and an accuracy of 92.10%
on training data. This was achieved with the best number of estimators (Nest) of 10 and
learning rate (lr) of 0.05.
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Table 5. Classification accuracy of the proposed autoencoder-SMOTE-Adaboost model with optimal
hyperparameters of Adaboost on balance dataset, where Nest: number of estimators, lr: learning rate
of adaboost, Fe: Feature extracted, AccTrain: Accuracy on training data, AccTest: Accuracy on test data,
Sens: Sensitivity, Spec: Specificity.

Nest lr Fe AccTrain (%) AccTest (%) Sens. (%) Spec. (%)

400 0.05 06 90.44 88.29 89.85 82.66
100 0.01 02 88.48 89.54 82.63 91.58
100 0.05 02 88.48 89.54 85.63 78.98
100 0.01 10 87.12 90.00 92.14 83.56
300 0.1 12 89.54 90.16 86.32 91.74
400 0.1 15 92.41 87.58 91.05 86.48
300 0.1 03 89.32 89.54 86.00 90.55
100 0.05 05 88.48 90.00 87.82 95.74
400 0.05 06 92.10 90.23 97.86 98.12
200 0.05 01 88.76 89.54 85.00 81.41
10 0.05 06 92.10 90.23 98.00 96.65
50 0.1 04 89.48 90.00 78.36 88.00
50 0.05 07 90.13 86.36 89.05 95.48
200 0.1 06 94.08 86.36 98.00 90.00

Furthermore, the result of this experiment can be observed from the Figure 4a where
the proposed model achieved an average AUC of 90.00% based on the k-fold evaluation
metric. For both phases of the experiments, we have taken the same value of K = 6, so
that fair comparison is done. The overall performance comparison based on AUC between
conventional Adaboost model and the proposed model on balanced dataset is shown in
the Figure 4.

(a) ROC of proposed model (b) ROC of the conventional Adaboost

Figure 4. Performance comparison of proposed model with conventional Adaboost model in term of
area under the cruve.

3.3. Experiment 3: Performance Comparison of the Proposed Model with Other ML Models

We have constructed various comparable prediction systems such as hybridizing au-
toencoder with Naive Bayes (NB), Logistic Regression (LR), Random Forest (RF), Decision
Tree (DT), K Nearest Neighbors (KNN) and Support vector machine (SVM) to test the
efficiency of the newly proposed learning system. Table 6 presents the outcomes of each
constructed hybrid model. It is noteworthy that all of these constructed hybrid models are
tested on balanced data using SMOTE technique for data balancing.

From Table 6 it can be observed that the newly proposed model has achieved the
accuracy of 90.23% while using only a small subset of extracted features (06) in comparison
to the rest of the ML models. Hence, the proposed model also reduces the complexity of
the Adaboost predictive model as training on a smaller number of features will result in
reducing training time of the ML model.
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Table 6. Performance of autoencoder-based predictive models on balanced dataset, where Hyp.:
hyperparameters value; Fe: feature extracted; AccTrain: accuracy on training data; AccTest: accuracy
on test data, Sens: sensitivity; Spec: specificity.

Model Hyp. Fe AccTrain (%) AccTest (%) Sens. (%) Spec. (%)

AEC * + NB V = 0.82 14 87.25 87.22 95.56 82.37
AEC + LR C = 10 15 84.40 87.15 85.35 90.87
AEC + RF Ne = 100 10 100 86.00 52.73 83.45
AEC + DT Ne = 20 18 86.23 88.18 80.58 89.68

AEC + kNN k = 14 20 100 83.48 79.16 95.32
AEC + SVM C = 0.5 12 87.15 86.22 92.52 80.28

AEC +
Adaboost Ne = 10 06 92.10 90.23 98.00 96.65

AEC *: Autoencoder.

4. Discussion

In this study, an intelligent learning system is presented for the prediction of de-
mentia using the SNAC dataset. We used 75 features from the SNAC dataset related to
demographic, social, lifestyle, medical history, biochemical tests, physical examination,
psychological assessment and diverse health instruments relevant to the dementia disorder.

To improve the accuracy of the proposed model along with lower time complexity, we
have deployed an autoencoder to reduce the data dimensionality. Based on an artificial
neural network, the autoencoder helped to extract useful features from the feature space.
After extracting features from the dataset, it was observed that the classes in the dataset
were highly imbalanced. To balance the class distribution in the training set of the classifier,
we have used SMOTE and for the classification of dementia patients the Adaboost ensemble
model was employed. The hyperparameters of the Adaboost model were fine tunned using
a grid search algorithm. Thus, the proposed learning model consist of two modules which
are hybrid as a single system.

From the results, it can be observed that the proposed model dealt effectively with
both problems, imbalance classes in dataset and lower accuracy of ML models for dementia
prediction. Experiment 1, addressed the impact of imbalanced classes in the dataset for the
prediction of dementia. From Table 3, it can be observed that performance of ML models
tends to bias toward the majority class with the ML models achieving higher results of
specificity and lower results for sensitivity. This means that the ML models tend to bias
the majority class in the dataset. The proposed model has not only resolved the issue of
bias results but also improved the accuracy of dementia prediction. Table 5 presents the
performance of the proposed model along with hyperparameter values of the Adaboost
model. It can be depicted from the Table 5 that the newly proposed model achieved the
highest accuracy of 90.23% on testing data, training accuracy of 92.10%, sensitivity of
98.00% and specificity of 96.65% while using only 6 features, which are extracted by the
autoencoder. The learning rate of the Adaboost was (lr) 0.05 and the number of estimators
were (Nest) 10.

Furthermore, we have also compared the results of the newly proposed model with
other state-of-the-art ML models which were proposed in the literature for dementia
prediction. It can be observed from the Table 7 that the proposed model has achieved
significantly improved results when compared to other ML models.
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Table 7. Classification accuracies comparison with previously proposed methods for dementia
prediction.

Study (Year) Method Accuracy (%) Balancing

P.C. Cho & W.H.
Chen (2012) [29] PNNs 83.00 No

P.Gurevich et al.
(2017) [26] SVM 89.00 Yes

D.Stamate et al.
(2018) [24] Gradient Boosting 88.00 Yes

Visser et al.
(2019) [25] XGBoost+ RF 88.00 No

Dallora et al.
(2020) [23] DT 74.50 Yes

M.Karaglani et al.
(2020) [27] RF 84.60 No

E. Ryzhikova et al.
(2021) [28] ANN + SVM 84.00 No

F.A salem et al. (2021)
[31] RF 88.00 Yes

F. G. Gutierrez et al.
(2022) [32] GA 84.00 No

G. Mirzaei,& H. Adeli
(2022) [5] MLP 70.32 No

A. Shahzad et al.
(2022) [34] SVM 71.67 No

Proposed Model
(2022)

Autoencoder +
SMOTE + Adaboost 90.23 Yes

5. Conclusions & Future Work

In this paper, we have identified the problems of lower accuracy and bias in the ML
models due to imbalanced classes in the dataset for dementia prediction. From experiments,
it is demonstrated that when ML models are trained on imbalanced data, their performance
is skewed towards the data’s majority class. As a result, for the dementia detection problem,
we found a high rate of specificity, but a poor rate of sensitivity since the dementia patient’s
class was in the minority and healthy subject class was in the majority. To deal with the
bias problem, we presented a novel diagnostic system for the detection of dementia. In our
proposed model, the SMOTE technique is employed to eliminate the problem of imbalanced
classes in the dataset. The proposed model has two main components which are hybridized
and work as a single learning system. The first component work to extract useful features
from the dataset for reducing data dimensionality, which helps to lower the computational
complexity of the proposed model and improve the accuracy of dementia prediction. For
this purpose, we have employed an autoencoder which has reduced the number of features
from 75 to 6. The second component of the newly proposed model works as classifier
and for this task, we utilized the Adaboost classifier. The hyperparameters of Adaboost
model were fine-tuned using a grid search algorithm. From the experimental results, it
is observed that the newly proposed model has outperformed the traditional Adaboost
model along with other state-of-the-art ML models that also used extracted features from
the autoencoder. It was also observed that the proposed learning system improved the
performance of a conventional Adaboost model by 9.8%. Moreover, the proposed model
has also demonstrated a lower time complexity as compared to the traditional Adaboost
model because the proposed model uses a fewer number of features than the traditional
Adaboost model.

Therefore, the problem of bias in the developed ML models was avoided in this
work, and an unbiased learning model was designed that enhanced dementia diagnosis
accuracy while also lowering the complexity of ML models by reducing the number of
features. However, the achieved accuracy still needs significant improvement. This is a
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shortcoming of this study. Future research should focus on developing more robust models
that can enhance dementia diagnosis accuracy while keeping the unbiased behavior of the
developed models. This could be possible by combining feature extraction approaches
with deep learning models. Furthermore, when the number of samples in the dataset is
large, the performance of ML techniques improves. The dataset employed in this study has
only 721 samples, which is rather small in terms of sample size. As a result, researchers
must develop datasets with large sample sizes, particularly for dementia.
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